
RESEARCH ARTICLE

Expression Changes in Epigenetic Gene Pathways Associated With
One-Carbon Nutritional Metabolites in Maternal Blood From
Pregnancies Resulting in Autism and Non-Typical Neurodevelopment
Yihui Zhu , Charles E. Mordaunt, Blythe P. Durbin-Johnson, Marie A. Caudill, Olga V. Malysheva,
Joshua W. Miller, Ralph Green, S. Jill James, Stepan B. Melnyk, M. Daniele Fallin, Irva Hertz-Picciotto ,
Rebecca J. Schmidt , and Janine M. LaSalle

The prenatal period is a critical window for the development of autism spectrum disorder (ASD). The relationship
between prenatal nutrients and gestational gene expression in mothers of children later diagnosed with ASD or non-
typical development (Non-TD) is poorly understood. Maternal blood collected prospectively during pregnancy provides
insights into the effects of nutrition, particularly one-carbon metabolites, on gene pathways and neurodevelopment.
Genome-wide transcriptomes were measured with microarrays in 300 maternal blood samples in Markers of Autism
Risk in Babies-Learning Early Signs. Sixteen different one-carbon metabolites, including folic acid, betaine,
50-methyltretrahydrofolate (5-MeTHF), and dimethylglycine (DMG) were measured. Differential expression analysis and
weighted gene correlation network analysis (WGCNA) were used to compare gene expression between children later diag-
nosed as typical development (TD), Non-TD and ASD, and to one-carbon metabolites. Using differential gene expression
analysis, six transcripts (TGR-AS1, SQSTM1, HLA-C, and RFESD) were associated with child outcomes (ASD, Non-TD, and
TD) with genome-wide significance. Genes nominally differentially expressed between ASD and TD significantly over-
lapped with seven high confidence ASD genes. WGCNA identified co-expressed gene modules significantly correlated
with 5-MeTHF, folic acid, DMG, and betaine. A module enriched in DNA methylation functions showed a suggestive pro-
tective association with folic acid/5-MeTHF concentrations and ASD risk. Maternal plasma betaine and DMG concentra-
tions were associated with a block of co-expressed genes enriched for adaptive immune, histone modification, and RNA
processing functions. These results suggest that the prenatal maternal blood transcriptome is a sensitive indicator of ges-
tational one-carbon metabolite status and changes relevant to children’s later neurodevelopmental outcomes.
Autism Res 2021, 14: 11–28. © 2020 The Authors. Autism Research published by International Society for Autism
Research and Wiley Periodicals LLC.

Lay Summary: Pregnancy is a time when maternal nutrition could interact with genetic risk for autism spectrum disorder.
Blood samples collected during pregnancy from mothers who had a prior child with autism were examined for gene
expression and nutrient metabolites, then compared to the diagnosis of the child at age three. Expression differences in
gene pathways related to the immune system and gene regulation were observed for pregnancies of children with autism
and non-typical neurodevelopment and were associated with maternal nutrients.

Keywords: autism spectrum disorder; neurodevelopment; maternal blood; one-carbon metabolites; nutrition; trans-
criptome; prenatal

Introduction

Autism spectrum disorder (ASD) is a group of neu-
rodevelopmental disorders characterized by persistent
impairment in social interactions, communication,

restricted interests, or repetitive behaviors, and language
deficits [Maenner et al., 2020]. Current data show that
one in every 54 children in the United States has ASD
[Maenner et al., 2020]. One major component of ASD risk
is genetic heritability, based on studies of twins, siblings,
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and other family members [Ozonoff et al., 2011; Sandin
et al., 2014; Wessels & Pompe van Meerdervoort, 1979].
Common genetic variants each having small effects dom-
inate most ASD risk compared with rare gene variants
with large effects [Weiner et al., 2017]. Large genome-
wide association studies (GWAS) support the role of com-
mon genetic variants in ASD with remaining challenges
in ASD complexity and heterogeneity [Grove et al., 2019;
Iossifov et al., 2014; Sanders et al., 2015]. Mutations in
single genes can explain less than 1% of ASD cases
[Bourgeron, 2015; Tsai & Bell, 2015].
Accumulating lines of evidence suggest that ASD risk

arises from both genetic and environmental risk factors.
In utero maternal exposures can contribute as ASD risk
factors, including air pollution, fever, asthma, and nutri-
tion, especially nutrients involved in the one-carbon met-
abolic pathway [Raz et al., 2015; Schmidt et al., 2011,
2012; Zerbo et al., 2013]. Other studies suggest that one-
carbon metabolism is implicated in gene–environment
interactions in ASD [L. Schaevitz, Berger-Sweeney, &
Ricceri, 2014; L. R. Schaevitz & Berger-Sweeney, 2012].
Maternal prenatal nutritional supplements containing
folic acid and additional B vitamins that play a role in
one-carbon metabolism are associated with ASD risk
reduction [Schmidt et al., 2011; Schmidt, Iosif, Guerrero
Angel, & Ozonoff, 2019; Suren et al., 2013]. A common
genetic polymorphism affecting folic acid metabolism,
MTHFR C677T, interacts with maternal nutrition, as asso-
ciation between folic acid and reduced ASD risk was
strongest for mothers and children withMTHFR 677 C > T
variant genotypes [Y. Li et al., 2020; Schmidt et al., 2012].
These findings suggest that additional gene–environment
interactions relevant to ASD may be identified from
investigations into maternal factors, since maternal and
fetal metabolisms are shaped by both shared genetics and
nutritional environment during pregnancy that can coor-
dinately impact neurodevelopment.
Gene expression levels are also influenced by both

genetic and environmental factors, especially by in utero
maternal nutrition [Vucetic, Kimmel, Totoki, Hollenbeck, &
Reyes, 2010; Yajnik & Deshmukh, 2012]. Maternal periph-
eral blood therefore offers a unique window to study trans-
criptome alterations during pregnancy that may reflect
altered fetal development associated with nutrition
[Costello et al., 2008; Croen et al., 2008]. Numerous envi-
ronmental factors during pregnancy can alter gene expres-
sion levels [Haugen, Schug, Collman, & Heindel, 2015;
Zerbo et al., 2013]. Other neurodevelopment disorders,
such as schizophrenia, have also demonstrated a significant
interaction of genetic risk with maternal perinatal environ-
mental factors that affected the transcriptome [Ursini
et al., 2018; Xu et al., 2014]. Postmortem brain gene expres-
sion studies revealed gene co-expression modules enriched
for immune response and neuronal development functions
in ASD [Gupta et al., 2014; Voineagu et al., 2011]. Other

studies using child peripheral blood and cord blood showed
that differential gene expression in ASD was enriched for
immune and inflammatory processes [Ansel, Rosenzweig,
Zisman, Melamed, & Gesundheit, 2017; Mordaunt, Park,
et al., 2019; Tylee et al., 2017].

While numerous studies have investigated specific
genes or pathways in children with ASD, none have
focused on the maternal transcriptome during preg-
nancy. Further, most previous ASD transcriptome studies
used data from specimens collected postmortem or after
childbirth, as opposed to prospective studies to help
understand potential etiologic changes that occur before
behavioral symptoms. Other large epidemiology studies
examined environmental effects in ASD, but how the
environment influences alterations at the molecular level
remains to be understood. The goal of this study was to
examine maternal prenatal gene expression profiles asso-
ciated with both maternal serum one-carbon metabolites
and the child outcome (ASD, Non-TD, TD) to shed light
on molecular changes during pregnancy.

Methods
MARBLES Study Design

The MARBLES study recruited mothers in Northern Cali-
fornia with at least one child with ASD who were preg-
nant or planning another pregnancy. Due to a shared
genetic background, 24% of the next children met the
criteria for ASD. A previous publication detailed the study
design of MARBLES [Hertz-Picciotto et al., 2018; Mor-
daunt, Park, et al., 2019]. In order to enroll into MAR-
BLES, all five of the following criteria needed to be met:
(a) the prospective child has one or more first or second
degree relatives with ASD; (b) mother is 18 years or older;
(c) mother is pregnant or able to become pregnant;
(d) mother is able to speak, read, and understand English
and plans to raise the child with English spoken at home;
(e) mother lives within a 2.5-hr drive from Davis/Sacra-
mento, California. Demographic, diet, environmental, and
medical information were collected by telephone interviews
or questionnaires throughout the pregnancy. Infants
received standardized neurodevelopmental assessments from
6 months until 3 years old [Hertz-Picciotto et al., 2018]. At
3 years old, the child was assessed clinically using the gold
standard Autism Diagnostic Observation Schedule (ADOS)
[Lord et al., 2000], the Autism Diagnostic Interview—Revised
(ADI-R) [Rutter, LeCouteur, & Lord, 2015], and the Mullen
Scales of Early Learning (MSEL) [Mullen, 1995]. Based on a
previously published algorithm using ADOS and MSEL
scores [Mordaunt, Park, et al., 2019; Schmidt et al., 2019],
participants were classified into three outcome groups
including ASD, TD, and Non-TD [Chawarska et al., 2014;
Ozonoff et al., 2014]. Children with ASD had scores over
the ADOS cutoff and fit ASD DSM-5 criteria. Children with
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Non-TD outcomes were defined as children with low
MSEL scores (two or more MSEL subscales with more than
1.5 standard deviations (SD) below averages or at least one
MSEL subscale more than 2 SD below average) and ele-
vated ADOS scores. Children with TD outcome had all
MSEL scores within 2.0 SD and no more than one MSEL
subscale that is 1.5 SD below the normative mean and
scores on the ADOS at least three points lower than the
ASD cutoff.

RNA Isolation and Expression Microarray

Maternal peripheral blood was collected at study visits
during all three trimesters of pregnancy in PAXgene
Blood RNA tubes with the RNA stabilization reagent
(BD Biosciences) and stored frozen at −80�C. The first
timepoint sample was used for mothers who had multiple
blood draws (n = 12) during pregnancy. RNA was isolated
using the PAXgene Blood RNA Kit (Qiagen) according to
the default protocol. Total RNA was converted to cDNA
and biotin labeled. Expression was measured using
Human Gene 2.0 Affymetrix microarray chips with three
batches by the John Hopkins Sequencing and Microarray
core following washing, staining, and scanning proce-
dures based on manufacturer’s protocol.

Data Preprocessing and Normalization

Robust Multi-Chip Average (RMA) [Bolstad, Irizarry,
Astrand, & Speed, 2003; R. A. Irizarry, Hobbs, et al., 2003;
Rafael A. Irizarry, Bolstad, et al., 2003] from the oligo R pack-
age was used for normalization of Affymetrix CEL files. For
quality control, we used the oligo and ArrayQualityMetrics
R packages [Carvalho & Irizarry, 2010; Kauffmann, Gentle-
man, & Huber, 2009]. No samples were identified as outliers
by principal component analysis, the Kolmogorov–Smirnov
test, or Euclidean distance to other arrays. Probes were
mapped at the transcript level using the pd.hugene.2.0.st R
package, and those annotated to genes (36,459) were used
in subsequent analyses.

One-carbon Nutrient Metabolite Measurements

Serum and plasma samples from the same blood draw as
specimens used for RNA expression analysis were used to
measure one-carbon and nutrient metabolites. Metabolites
were selected for their role in one-carbon metabolism and
may be relevant to gene expression. S-adenosylmethionine
(SAM) and S-adenosylhomocysteine (SAH), adenosine,
homocysteine, cystine, cysteine, glutathione (GSH), and
glutathione disulfide (GSSG) were measured in the James’
laboratory at the Arkansas Children’s Research Institute
using HPLC with electrochemical detection as previously
described [Hollowood et al., 2018; Melnyk et al., 2012].

Serum pyridoxal phosphate (PLP), the biologically active
form of vitamin B6 (Vit B6), was measured by HPLC using
fluorescence detection in the Green-Miller laboratory at
the UC Davis Medical Center (inter-assay coefficient of var-
iation (CV) = 4.8%) [Talwar et al., 2003]. Total serum vita-
min B12 (Vit B12) was measured using automated
chemiluminescence in the CLIA-approved Medicine Clini-
cal Laboratories at UC Davis Medical Center (inter-assay
CV = 6.2%). Plasma choline, betaine, and dimethylglycine
(DMG) were measured using LC–MS/MS stable isotope
dilution methods in the Caudill laboratory [Holm, Ueland,
Kvalheim, & Lien, 2003; Yan et al., 2011] with modifica-
tions to include measurements of trimethylamine N-oxide
(TMAO) and methionine [Wang et al., 2008; Yan
et al., 2012]. Intra-assay and inter-assay CVs of the in-
house controls were 3.0% and 3.6% for choline; 1.5% and
1.7% for betaine, 2.5% and 2.4% for DMG; 2.6% and 2.6%
for methionine; and 3.1% and 3.4% for TMAO. Serum
5-methyltetrahydrolate (5-MeTHF) and folic acid were
quantified in the Caudill laboratory using LC–MS/MS
stable-isotope dilution methods [Pfeiffer, Fazili, McCoy,
Zhang, & Gunter, 2004] with modifications based on the
instrumentation [West et al., 2012]. Intra-assay and inter-
assay CVs of in -house controls were 1.8% and 1.9% for
5-methyltetrahydrofolate; and 4.9% and 8.5% for
folic acid.

Differential Gene Expression

After normalization, surrogate variable analysis (SVA) was
used to estimate and adjust for hidden confounding vari-
ables on gene expression [Leek, Johnson, Parker, Jaffe, &
Storey, 2012]. Differential gene expression was identified
using the limma R package by a linear model that
included the children’s diagnosis outcome (ASD, Non-
TD, and TD) and all surrogate variables [Ritchie
et al., 2015]. Differential gene expression analysis with
children diagnosed as ASD, Non-TD, and TD were
included in the same model with three levels of diagnosis
using the F-test [Ritchie et al., 2015]. Pairwise fold
change, standard error, and P-value between ASD versus
TD, and Non-TD versus TD were extracted from the same
model using the limma R package. Differentially
expressed transcripts were identified as those with an
unadjusted P-value <0.05. Genome-wide significant dif-
ferentially expressed transcripts were classified as those
with a false discovery rate (FDR) adjusted P-value (q-
value) <0.05. To complement adjustment by SVA, we
used an alternative approach that adjusted for known
confounders, including batches, trimesters, child gender,
and cell types using limFit function in limma R package.
Differentially expressed transcripts between ASD versus
TD, and non-TD versus TD were extracted using the same
approach as SVA adjustment and compared.
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Gene Overlap Analysis

Gene overlap analysis was performed by Fisher’s exact
test using the GeneOverlap R package [Li, 2019]. In each
comparison, the null distribution was generated from
1000 random samples of all genes annotated to tran-
scripts on the array. Gene symbols annotated to differen-
tially expressed transcripts were compared to 943 genes
in the Simons Foundation Autism Research Initiative
(SFARI) Gene database [Abrahams et al., 2013]. As an
alternative approach to using the whole probe set on the
Affymetrix arrays (36,459) as background, an analysis of
filtered probe values was performed based on removing
probe intensity on the lowest 5% intensity probes
(34,636) to remove genes with the lowest expression
levels.

Gene Ontology (GO) Term and Pathway Enrichment Analysis

Transcripts with significant expression levels or selected
gene lists were exported to DAVID bioinformatics soft-
ware with default settings for GO analysis [Ashburner
et al., 2000; The Gene Ontology Consortium, 2017]. The
analysis was done using the GO ontology database and
Fisher’s exact test with multiple test correction by the
FDR method [The Gene Ontology Consortium, 2017].
GO term enrichments were presented with hierarchical
terms. GO terms with an FDR adjusted P-value <0.05 were
considered statistically significant. GO terms enrichment
analyses was performed separately for both all genes and
filtered probes representing expressed genes.

Weighted Gene Co-expression Network Analysis (WGCNA)

A weighted gene co-expression network was built using
the WGCNA R package [Langfelder & Horvath, 2008;
Zhang & Horvath, 2005] with normalized expression
levels after adjustment for batch effects (3 batches) using
the ComBat function from the sva R package [Johnson,
Li, & Rabinovic, 2007]. The correlation matrix included
all probes and all samples. To construct a signed adja-
cency matrix, estimated soft thresholding power
(power = 6) was used to achieve approximately scale-free
topology (R^2 fit >0.8). Adjacency values were trans-
formed into a signed topological overlap matrix (TOM).
Co-expression modules were identified from the dissimi-
larity matrix (1-TOM) with a minimum module size of
30 probes using Pearson’s coefficient. Module eigengenes
were clustered based on correlation. Similar modules were
merged based on a cut height of 0.25 to generate co-
expression modules. Each module’s expression profile
was summarized into a module eigengene (ME) using the
matched module’s first principal component. The correla-
tion between each gene in the module with the ME was
represented as intramodule connectivity (kME). Module
hub probes were defined as the probe in each module

with the highest module membership. Hierarchical clus-
tering was done using the standard R function hclust
with the default setting using ward’s agglomeration
method [Gentle, Kaufman, & Rousseuw, 1991]. Pearson’s
correlation coefficient was used to measure the correla-
tion between traits and modules. Highly correlated
modules were defined as those with an FDR adjusted
P-value <0.05.

Cell Type Proportion Deconvolution

CIBERSORT was used to estimate the proportions of each
cell type using the default settings and the LM22 adult
peripheral blood signature gene expression profiles [New-
man et al., 2015]. Normalized expression levels adjusted
for batch effects were used to estimate cell type propor-
tions. Both relative and absolute modes were performed
together with 100 permutation tests. P-values were calcu-
lated using FDR multiple test adjustment. Significant
associations were defined based on FDR adjusted P-value
<0.05.

Results
Study Sample Characteristics and Nutrient Measurements

High quality RNA was isolated from 300 maternal periph-
eral blood samples collected during pregnancy from the
MARBLES high risk ASD cohort (Table S1). Children from
MARBLES pregnancies were diagnosed at 3 years old as
ASD (67, including 47 male and 20 female), Non-TD
(79, including 46 male and 33 female), and TD
(154, including 79 male and 75 female) (Table S2).

Nutrients in the one-carbon metabolism pathway,
including methionine, SAM, SAH, adenosine, homocyste-
ine, 5-MeTHF, folic acid, Vit B6, Vit B12, choline, DMG,
betaine, cystine, cysteine, GSH, and GSSG were directly
measured from maternal blood in 14%–62% of all sam-
ples (Table S3). None of these metabolites in maternal
blood were significantly associated with clinical out-
comes of children (Table S3). Measurements for one-
carbon metabolites and transcriptomes were conducted
on samples collected throughout pregnancy (Fig. S1).

Differential Gene Expression Analyses by Child Outcome

Expression was measured using the Human Gene 2.0
Affymetrix microarray and adjusted for all surrogate vari-
ables, followed by differential gene expression analysis
for child diagnosis (ASD, Non-TD, TD) on 36,459 tran-
scripts. There were 28 surrogate variables (SVs) identified,
including 5 SVs significantly associated with batch effect
and 2 SVs significantly associated with gestational age of
maternal blood draw (Fig. S2). Six transcripts located at
four genes (TGR-AS1, SQSTM1, HLA-C, and RFESD) were
associated with child outcomes (ASD, Non-TD, TD) with

INSARZhu et al./Maternal blood expression profiles in autism14



genome-wide significance by F-test (FDR adjusted P-value
<0.05) (Table S4). Three out of these six transcripts
mapped to HLA-C (Major Histocompatibility Complex,
Class I, C) (FDR adjusted P-value <0.05).

Comparing the maternal blood transcriptome between
ASD and TD outcomes revealed 2,012 differentially
expressed transcripts at a nominal confidence level
(unadjusted P-value <0.05) that mapped to 1,912 genes,
including 980 up-regulated and 1,032 down-regulated
transcripts, with none significant after FDR adjustment
(Fig. 1A, Table S5). There was a significant overlap
between these 1,912 differentially expressed genes and a
list of strong ASD candidate genes from the Simons Foun-
dation Autism Research Initiative (SFARI Gene, including
TRIO, GRIA1, SMARCC2, SPAST, DIP2C, FOXP1, and
CNTN4, Fisher’s exact test, P-value <0.05) [Abrahams
et al., 2013].

Comparing the maternal blood transcriptome between
Non-TD and TD outcomes revealed 1,987 differentially
expressed transcripts at a nominal confidence level
(unadjusted P-value <0.05) that mapped to 1,919 genes,
including 1,044 up-regulated and 943 down-regulated
transcripts (Fig. 1B, Table S6). Two of these transcripts,
RFESD and TRG-AS1, also passed genome-wide signifi-
cance (FDR adjusted P-value <0.05). Unlike the ASD ver-
sus TD comparison, however, no significant overlap was
observed between Non-TD versus TD differentially
expressed genes and SFARI gene lists. An alternative
approach of adjustment for known confounders revealed
a significant overlap with SVA adjusted differentially
expressed transcripts for both ASD versus TD and Non-
TD versus TD comparisons (Fisher’s exact test, P-value
<2.2E-16) (Fig. S3, Table S4).

Differential gene expression analysis using SVA resulted
in a significant overlap of 218 transcripts between ASD
versus TD differentially expressed transcripts and Non-TD
versus TD differentially expressed transcripts (Fisher’s
exact test, P-value <2.2E-16) (Fig. 1C). Gene ontology
(GO) analysis of these 218 transcripts revealed significant
enrichment for the interferon-gamma mediated signaling
pathway, apoptosis in muscle, response to interferon
gamma, and metal ion transport (Fig. 1D; Fig. S4). CaMK
(calmodulin-dependent protein kinase) families
(CAMK2A, CAMK2B, CAMK2D, and CAMK2G) and HLA
(human leukocyte antigen) systems (HLA-B, HLA-C, and
HLA-E) were included in those significant signaling
pathways (Fig. 1D). In contrast, neither list of ASD- or
Non-TD-specific differentially expressed transcripts were
significantly enriched for any GO terms. To control for
potential bias towards expressed genes in the GO terms,
we also used an alternative approach of filtering the pro-
bes based on intensity that removed the lowest 5% of
expressed transcripts (Fig. S5), which resulted in an iden-
tical list of significant GO terms (Table S7).

Weighted Gene Co-expression Network Analysis (WGCNA)
Identified Gene Modules Correlating with Specific Maternal
Nutrient Levels

WGCNA was performed as a complementary bioinfor-
matic approach that incorporates the independent and
inter-related associations of transcript levels with mea-
sured concentrations of maternal nutrients. First, expres-
sion values were adjusted for batch effects, then
correlation patterns among all transcripts were analyzed
across all 300 samples. WGCNA identified 27 co-
expressed gene modules in our dataset, representing
17,049 transcripts, distinguished from 19,410 transcripts
without evidence of co-expression were grouped into the
“gray” module (Fig. 2A,B; Fig. S6, Table S8). For each
module, the number of transcripts, as well as the hub
gene, defined as the gene with the highest correlation
with the module eigengene, were determined (Fig. 2B;
Table S9). Out of those 27 co-expression modules,
23 modules showed associations between eigengene
expression level and at least one variable related to demo-
graphics, diagnosis, or maternal nutrients, after FDR cor-
rection (FDR adjusted P-value <0.05) (Fig. 2A; Fig. S6). All
27 modules were significantly associated with one or
more traits, including child clinical outcome, demo-
graphic factors, and maternal blood metabolite concen-
trations at unadjusted P-value <0.05 (Fig. 2A; Fig. S7).

Multiple co-expression modules were significantly cor-
related (FDR adjusted P-value <0.05) with gestational age
at blood draw and four maternal metabolites, including
5-MeTHF, folic acid, DMG, and betaine (Fig. 2A). None of
the additional measured variables was significantly asso-
ciated with any co-expression gene modules, including
clinical outcome. However, the module “greenyellow”

showed a nominally significant positive correlation with
outcome (unadjusted P-value = 0.02, FDR adjusted P-
value = 0.14) and a negative significant correlation with
both 5-MeTHF (FDR adjusted P-value = 0.02) and folic
acid levels (FDR adjusted P-value = 0.02) (Figs. 2A and 3A,
B; Figs. S6 and S7; Table S10). Interestingly, the
greenyellow module eigengene was correlated in opposite
directions with ASD and 5-MeTHF, consistent with a
putative 5-MeTHF protective effect in ASD (Fig. 3A,B).

This “greenyellow” module contained 224 transcripts
with TRNAI2 as the hub gene (Table S10). These
224 transcripts showed a significant enrichment for gene
ontology functions in methylation-CpG binding,
methyl-dependent chromatin silencing, and keratinocyte
differentiation (Fisher’s exact test, FDR adjusted P-value
<0.05) (Fig. 3C, Table S11). The three known genes with
methyl-binding functions included MBD3L3, MBD3L4,
and MBD3L5, represented by 16857547, 16867905, and
16867910 transcripts (Fig. 3C). Normalized expression of
those three transcripts was also significantly associated
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Figure 1. Identification and function of ASD associated and Non-TD associated differentially expressed genes in maternal peripheral
blood. Differential expression analysis was performed in maternal peripheral blood transcriptomes (n = 300) after adjustment for surro-
gate variables. (A) Identification of 1,912 differentially expressed genes (2,012 transcripts, P-value <0.05) compared between children
diagnosed as ASD (n = 67) and TD (n = 154). (B) Identification of 1,919 differential expressed genes (1,987 transcripts, P-value <0.05)
compared between children diagnosed as Non-TD (n = 79) and TD (n = 154). Two transcripts located at RFESD and TRG-AS1 were
genome-wide significant in the Non-TD to TD comparison (Table S2). (C) Venn diagram represents the overlap in differentially expressed
transcripts (unadjusted P <0.05) identified in ASD to TD versus Non-TD to TD comparisons, which was greater than expected by random
using a Fisher’s exact test (P-value <0.001***). (D) Gene ontology (GO) and pathway analysis was performed on the 218 transcripts dif-
ferentially expressed in both ASD-TD and Non-TD-TD comparisons, with significant enrichments (Fisher’s exact test, FDR P-value <0.05).
In contrast, the differentially expressed transcripts uniquely associating with either ASD or Non-TD were not significantly enriched for
any GO terms.
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with the “greenyellow” module eigengene, supporting
their membership in the module (Fig. 3D).

There were 12 modules in the maternal transcriptome
significantly associated with gestational age, including
8 positively correlated modules (darkred, lightgreen,
cyan, darkgrey, brown, magenta, orange, and green) and
4 negatively correlated modules (lightyellow, lightcyan,
red, tan) (Fig. 2A, Table S12). Genes within modules with

a positive correlation with gestational age were signifi-
cant enriched for functions in RNA binding, chromatin
binding, and ATP binding, among others (Table S12). In
contrast, genes within modules negatively correlated
with gestational age were significantly enriched in func-
tions related to granulocyte activation, neutrophil medi-
ated immunity, coagulation, and other blood functions
(Table S12).

Figure 2. Co-expression network modules with demographic factors and maternal peripheral blood one-carbon metabolites.
(A) Heatmap of Z-scores of modules eigengenes with sample covariates with 27 co-expression network modules on all 300 maternal
blood samples. Each row represents a different module eigengene and each column is the associated trait, which include child clinical
outcome, demographic factors, and maternal blood metabolite concentrations. The matrix was calculated by Pearson correlation and P-
values adjusted for the total number of comparisons. Color represents the direction (red, positive correlation; blue, negative correlation)
and intensity reflects the significance. (^ unadjusted P-value <0.05 and FDR adjusted P-value >0.05; * FDR adjusted P-value <0.05).
(B) Number of transcripts and hub genes from all 27 co-expressed modules are listed.
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Eight Co-expression Modules Strongly Clustered with Betaine
and DMG

Among the 27 identified co-expression modules, eight
modules (darkred, lightgreen, cyan, darkgrey, brown,
magenta, orange, and white) were highly correlated with
each other and clustered based on unsupervised hierar-
chical clustering, representing a total of 2,582 transcripts
(Fig. 4; Fig. S8, Table S13). Betaine and DMG were signifi-
cantly associated and clustered together with this distinct
block of co-expression modules.
Transcripts inside these eight clustered co-expression

modules associated with betaine and DMG showed sig-
nificant enrichment for 18 gene pathways involved in

adaptive immune response, RNA processing, histone
modification, inflammatory response, and Rett syndrome
(Fisher’s exact test, FDR adjusted P-value <0.05) (Fig. S9).
Network analysis using GeneMANIA [Warde-Farley
et al., 2010] identified a network with EVL in the center,
linked with other hub genes (Fig. S10).

Cell Type Composition in Maternal Peripheral Blood was
Associated With Maternal Metabolites But Not Child Clinical
Outcomes

In order to determine the effects of cell composition
differences on the findings associated with maternal
transcriptomes, cell type specific information from

Figure 3. “Greenyellow” module was positively associated with diagnosis and negatively associated with folic acid and 5-MeTHF.
(A) “Greenyellow” module eigengene was significantly associated with child diagnosis (one-way ANOVA, unadjusted P-value <0.05).
Greenyellow eigengene values were higher in maternal blood from ASD pregnancies than TD or Non-TD pregnancies. (B) “Greenyellow”
module eigengene level was significantly negatively associated with 5-MeTHF concentrations in maternal blood (ANOVA, P-value <0.05).
(C) Bar graph shows gene ontology (GO) and pathway significant enrichments from the 224 transcripts in “greenyellow” module
(Table S8). (D) Transcripts (16857547, 16867905, and 16867910) from MBD3L3-5 genes encoding proteins involved in methylation-CpG
binding functions were significantly negatively associated with “greenyellow” module eigengene.
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22 immune cell types was deconvoluted using the
CIBERSORT web tool. Maternal peripheral blood samples
reflected a mixture of cell types, with neutrophils as the
largest and most variable population ranging from 17%
to 48% (Fig. 5A; Table S14). The eigengenes for 21 out of
27 modules were significantly correlated with at least one
cell type (FDR adjusted P-value <0.05) (Fig. S11). No sig-
nificant difference was observed in cell type composition
between child diagnosis outcomes or gender (Fig. 5A,B;
Fig. S12). Furthermore, neither the “greenyellow” mod-
ule, nor the betaine and DMG variables were significantly
associated with cell type proportions, suggesting that the
associations identified with these modules were largely
cell type independent (Fig. 5B; Figs. S11 and S12).

In contrast, some cell type proportions were signifi-
cantly correlated with some maternal metabolites. Vit B6,
5-MeTHF, choline, cysteine, the ratio of DMG/betaine,

and the ratio of cystine/cysteine were separately associ-
ated with six cell types (FDR adjusted P-value <0.05)
(Fig. 5B; Fig. S12). Vit B12, folic acid, the ratio of
DMG/betaine, and the ratio of SAM/SAH were associated
with more than one cell type (FDR adjusted P-value
<0.05) (Fig. 5B; Fig. S12). The most significant association
was between vit B12 and memory B cells (FDR adjusted
P-value = 0.0001) (Fig. 5B; Fig. S12).

Discussion

Maternal blood collected during pregnancy can provide
molecular insights into the in utero environment relevant
to the etiology of ASD. This was the first study to our
knowledge to examine gene expression differences
together with one-carbon metabolites in peripheral blood

Figure 4. Eight weighted gene co-expression modules associated with maternal betaine and DMG concentrations were strongly clus-
tered. (A) Unsupervised hierarchical clustering dendrogram was performed with module eigengenes, betaine and DMG. The height of
each node represents the intergroup dissimilarity. Similar nodes clustered together under one branch. (B) Unsupervised hierarchical clus-
tering adjacency heatmap, with color and intensity representing the degree of correlation (dark, high; light, low correlation). Black box
indicates the block of eight weighted gene co-expression modules associated with betaine and DMG concentrations.
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during pregnancy from mothers of children that went on
to develop ASD, Non-TD, or TD at 36 months. Using
complementary bioinformatics approaches, we identified
several genes and gene pathways consistent with
proinflammatory and oxidative stress responses in
mothers of children with adverse neurodevelopmental
outcomes. We also identified eight novel co-regulated
gene modules associated with maternal blood betaine
and DMG concentration.

Genes and Gene Patterns Common to Mothers of Children
with ASD and Non-typical Neurodevelopment

Using differential gene expression analysis of individual
genes, we describe four genes (SQSTM1, HLA-C, TRG-AS1,
and RFESD) that were differentially expressed in mothers
by child diagnosis outcome of either TD, ASD, or Non-
TD. SQSTM1 encodes the p62 sequestosome that acts as a
receptor for ubiquitinated cargo in the selective

Figure 5. Imputed cell type proportions in material peripheral blood associated with demographic factors and maternal nutrients.
(A) Barplot of each cell type mean estimated proportion separated by children diagnosis outcomes using peripheral blood reference
panel in CIBERSORT. (B) Heatmap of correlation between sample demographic factors and maternal nutrients with cell type proportions.
Each row represents a cell type proportion and columns represent traits, including child diagnostic outcome, demographic factors, and
maternal blood nutrient concentrations. P-values adjusted for the total number of comparisons. Color represents the direction (red, posi-
tive correlation; blue, negative correlation) and intensity reflects the significance, *P-value <0.05 after FDR correction.
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autophagy response induced by oxidative stress [Sánchez-
Martín & Komatsu, 2020], and also links the mTOR and
GABA signaling pathways in brain [Hui & Tanaka, 2019].
RFESD, encoding an iron–sulfur cluster binding protein
with oxidoreductase activity, is located on 5q15, a
hotspot for copy number variants in intellectual and
developmental disabilities [Kaminsky et al., 2011; Sajan
et al., 2013]. TRG-AS1, T-cell receptor gamma locus anti-
sense RNA 1, is located on 7p14.1, another locus previ-
ously associated with developmental delay, intellectual
disability, and ASD [Kaminsky et al., 2011; Klamt
et al., 2016; Wenger et al., 2016]. HLA-C belongs to the
HLA (human leukocyte antigen) polymorphic loci
encoding major histocompatibility class I (MHC I) pro-
teins involved in antigen presentation to CD8+ T cells
and NK cells. HLA-C is important for both tolerance to
fetal allo-antigens and viral immunity during pregnancy
[Papúchová, Meissner, Li, Strominger, & Tilburgs, 2019].
Proinflammatory cytokines such as interferon gamma
(IFNγ) induce HLA-C expression in both lymphocytes
and placental trophoblasts. In the WGCNA modules,
HLA-C, SQSTM1, and TGR-AS1 were all members of the
same module, as evidence of co-expression. A number of
previous studies have shown that the HLA locus is associ-
ated with ASD [Saresella et al., 2009; Torres, Maciulis,
Stubbs, Cutler, & Odell, 2002; Torres et al., 2006] or HLA
locus activation in ASD children and their mothers
[Guerini et al., 2014; Guerini et al., 2009; Torres,
Westover, Gibbons, Johnson, & Ward, 2012], which is
consistent with our findings at HLA-C. Furthermore, two
additional class I loci, HLA-B and HLA-E, were also differ-
entially expressed in mothers of children classified as
ASD and Non-TD compared to TD children in this study,
providing further evidence of an MHC I response in preg-
nancies of non-typical neurodevelopment. These findings
are consistent with the known maternal effect of viral
infection during pregnancy of increasing susceptibility to
ASD and schizophrenia during pregnancy [al-Haddad
et al., 2019; Zerbo et al., 2013]. They also suggest how
common genetic polymorphisms at these HLA loci may
interact with common environmental factors such as
viral infection during pregnancy to impact diverse neu-
rodevelopmental outcomes.

Furthermore, gene pathway analysis of differentially
expressed genes common between ASD and Non-TD rev-
ealed enrichment for the interferon-gamma mediated sig-
naling pathway, which has been previously found to be
elevated in mothers of children with ASD and other neu-
rodevelopmental disorders [Goines et al., 2011;
Krakowiak et al., 2017]. In one such study, elevated
interferon-gamma levels in maternal midgestation
peripheral blood was associated with a 50% increased risk
of offspring ASD risk [Goines et al., 2011]. A second
enriched pathway included CaMK family members which
play an important role in neuronal connectivity and

synaptic plasticity [Bourgeron, 2015; Stamou, Streifel,
Goines, & Lein, 2013; Zimmerman, Pessah, & Lein, 2008]
as well as immune response and inflammation [Rac-
ioppi & Means, 2008]. Prior ASD studies have implicated
the CaMK pathway in dendritic growth and local connec-
tivity alterations related to gene–environment interac-
tions in ASD [Bourgeron, 2015; Stamou et al., 2013;
Zimmerman et al., 2008].

Although genome-wide significance of individual dif-
ferentially expressed genes was not observed between
samples from mothers whose children developed ASD
compared to TD after adjusting for multiple comparisons,
seven nominally-significant genes were also on the SFARI
list of strong ASD candidate genes. TRIO, Trio Rho gua-
nine nucleotide exchange factor, promotes exchange of
GDP for GTP and provides necessary support for cell
migration and cell growth related to Alzheimer disease
and other neurological conditions [De Rubeis et al., 2014;
Katrancha et al., 2017]. GRIA1, encoding a receptor for
glutamate, the predominant excitatory neurotransmitter
in brain, is activated by normal neurophysiologic pro-
cesses [De Rubeis et al., 2014; Geisheker et al., 2017].
SMARCC2 encodes a chromatin remodeling protein with
helicase and ATPase activities that has been implicated in
altering chromatin structure in ASD [Devlin et al., 2012].
CNTN4 functions in neuronal network formation and
plasticity, and is associated with nervous system develop-
ment at the transcriptome level [Fernandez et al., 2004;
Yoshihara et al., 1995]. Mutations in FOXP1, a develop-
mental transcription factor, are observed in rare cases of
intellectual disability with ASD [Ferland, Cherry, Preware,
Morrisey, & Walsh, 2003; Teramitsu, Kudo, London,
Geschwind, & White, 2004]. Dysregulated expression of
these ASD risk genes in maternal blood could reflect an
underlying shared genetic risk for ASD in these high-risk
families.

Methylation and Methyl-binding Functions in a Gene Module
Oppositely Associated with Folic Acid and ASD Risk

The complementary co-expression network analysis fur-
ther revealed a module of 224 co-expressed genes in
maternal blood showing an association with folic acid
and 5-MeTHF levels in the opposite direction from ASD
risk that could not be explained by cell type differences.
Interestingly, these ASD and nutrient associated genes
were functionally enriched for DNA methylation binding
and methylation-dependent chromatin silencing, consis-
tent with prior DNA methylation changes observed in
ASD [Coulson et al., 2018; Mordaunt et al., 2020; Vogel
Ciernia et al., 2019; Zhu et al., 2019] as well as ASD-like
syndromes associated with methyl binding proteins
[Cukier et al., 2012; Cukier et al., 2010]. MBD3L, which
has methyl-binding function, is predicted to assist with
demethylation reactions and functions as a
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transcriptional repressor [Fouse, Nagarajan, &
Costello, 2010; Mungall, 2002; Zhou et al., 2019]. Folic
acid, the synthetic form of folate that contributes the
substrate for one-carbon metabolism, and 5-MeTHF, one
of the active biological forms of folate that plays a critical
role in one-carbon metabolism, have also been shown to
be inversely associated with developmental delay.
One-carbon metabolites associated with changes in

gene expression in this study have also been associated
with the prevention of neurodevelopmental conditions
[Afman & Müller, 2006; Mordaunt, Kieffer, et al., 2019;
Waterland & Jirtle, 2004; Zhu et al., 2019]. The co-
regulated block of betaine and DMG co-expression mod-
ules contained genes enriched in the adaptive immune
system and chromatin modification functions, as well as
Rett syndrome, a known syndromic form of ASD [Amir
et al., 1999; Craig, 2004; Ducker & Rabinowitz, 2017;
Paparo et al., 2014]. Choline is metabolized to betaine,
which converts homocysteine to form methionine, gen-
erating DMG in the one-carbon pathway [Ueland,
Holm, & Hustad, 2005; Zeisel & Blusztajn, 1994]. A previ-
ous study of maternal peripheral blood collected at term
showed that changes in betaine and DMG were in the
opposite direction from choline when compared with
nonpregnant women [Friesen, Novak, Hasman, &
Innis, 2007]. EVL (Enah/Vasp-like) is involved in actin
cytoskeleton remodeling and is crucial for central ner-
vous system processes and immune system functions
[Gardiner et al., 2013; Krause, Dent, Bear, Loureiro, &
Gertler, 2003; Tsunoda et al., 2015]. One study also
showed EVL as a differentially expressed gene in schizo-
phrenia in peripheral blood [Gardiner et al., 2013].
Previous studies in ASD have been focused on post mor-

tem brain tissue [Ginsberg, Rubin, Falcone, Ting, &
Natowicz, 2012; Voineagu et al., 2011], as a tissue rele-
vant to the condition, but collected after diagnoses were
made, raising concerns about reverse causation in deter-
mining etiologically-relevant expression changes. Few
studies have focused on prospective transcriptomic pro-
files collected prior to the presentation of the condition
[Glatt et al., 2012; Mordaunt, Park, et al., 2019], and none
have examined maternal gene expression profiles during
pregnancies at high risk for developing ASD. In addition,
few studies have integrated maternal transcriptome and
one-carbon metabolite data within biospecimens. Fur-
thermore, most studies of ASD expression biomarkers
have not considered the roles of nutritional factors dur-
ing pregnancy that could be relevant to fetal develop-
ment. Although maternal one-carbon metabolites were
not significantly associated with child outcome in this
study, they were associated with transcriptomic differ-
ences that were relevant to child neurodevelopmental
outcomes. This could be explained by differential mater-
nal responses to similar concentrations of maternal
metabolites, or if there were ongoing transcriptomic

changes in response to nutrient metabolite concentra-
tions, but that there were timing-specific metabolite con-
centrations (e.g., earlier in gestation, as indicated in some
studies [Schmidt et al., 2011; Schmidt et al., 2019;
Schmidt et al., 2012; Suren et al., 2013]) that are relevant
to neurodevelopmental outcomes and we did not capture
all potentially critical time points in the metabolite
measures.

A limitation of using maternal peripheral blood to
examine expression is that it contains multiple cell types,
and proportions can differ across samples. However, esti-
mated cell type composition of maternal blood was not
significantly associated with the child’s clinical out-
comes, the “greenyellow” module, betaine, or DMG,
which suggests that our main findings were not driven by
differential cell type proportions. After correcting for
multiple comparisons, this study did not identify any
individual differentially maternally expressed genes spe-
cifically associated with ASD, although 6 transcripts from
4 genes reached genome-wide significance with diagnosis
of either ASD or Non-TD. Another potential limitation is
the relatively low number of samples with certain metab-
olite measurements available. Future studies on maternal
nutritional factors and child outcomes would be benefi-
cial in confirming our data. Furthermore, lack of genome-
wide evidence of individual differentially expressed genes
specific to a pairwise comparison of ASD versus TD is likely
due to the relatively small sample size that is inherent to a
prospective ASD study, that is underpowered to detect
small differences in transcript levels. However, this does
not eliminate the importance of identifying and under-
standing the biologically significant gene set enrichments
and co-expression network modules using differential gene
expression and WGCNA analysis. Additionally, other fac-
tors, including genetics, epigenetics, gestational age, and
other environmental factors can influence the trans-
criptome and ASD risk. Approaches incorporating those
factors will be important in future studies.

In summary, genome-wide gene expression analysis of
maternal peripheral blood samples revealed trans-
criptome changes associated with maternal one-carbon
metabolites and child neurodevelopmental outcomes
implicating maternal immune, apoptotic, and epigenetic
mechanisms in the development of ASD in offspring. In
addition, folic acid and 5-MeTHF were associated with
expression of genes involved in methylated-CpG binding
in an opposite direction to that of ASD, consistent with
prior evidence of protection. Finally, maternal betaine
and DMG levels clustered with co-expressed genes related
to immune, chromatin modification, and development
functions. These results therefore provide important bio-
logical insights into maternal gene pathways associated
with adverse neurodevelopment in the child, as well as
the suggested protective association with one carbon
metabolites in the complex etiology of ASD.
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