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Highlights Impact and Implications

� JNK is highly activated in hepatic cholestasis and

positively correlates with cholestasis activity in
humans.

� Jnk1 and Jnk2 cooperate in hepatocytes to prevent
experimental cholestasis.

� Jnk1/2 deletion triggered oxidative stress burst, loss
of mucus homoeostasis, and upregulated the IL-6
and Apelin signalling pathways.

� Inhibiting Apelin signalling mitigates bile duct
ligation-induced liver injury and fibrosis in Jnk-
deficient mice.

� siRNA targeting Jnk1/2 knockdown in wild-type
mice recapitulates the Jnk1Dhepa/2Dhepa phenotype
after bile duct ligation.
https://doi.org/10.1016/j.jhepr.2023.100854
The cell-specific function of Jnk genes during chole-
stasis has not been explicitly explored. In this study,
we showed that combined Jnk1/2, but not Jnk2 defi-
ciency, in hepatocytes exacerbates liver damage and
fibrosis by enhancing Apelin signalling, which con-
tributes to cholestasis progression. Combined cell-
specific Jnk targeting may be a new molecular strat-
egy for treating cholestatic liver disease.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhepr.2023.100854&domain=pdf
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Background & Aims: Cholestatic liver injury is associated with c-Jun N-terminal kinases (JNK) activation in distinct cell types.
Its hepatocyte-specific function during cholestasis, however, has not yet been established. Therefore, in our present study, we
investigated the role of JNK1/2 during cholestasis and dissected its hepatocyte-specific function.
Methods: A cohort of patients with primary biliary cholangitis (n = 29) and primary sclerosing cholangitis (n = 37) was
examined. Wild-type, hepatocyte-specific knockout mice for Jnk2 (Jnk2Dhepa) or Jnk1 and Jnk2 (Jnk1Dhepa/2Dhepa) were
generated. Mice were subjected to bile duct ligation (BDL) or carbon tetrachloride (CCl4) treatment. Finally, Apelin signalling
was blocked using a specific inhibitor. As an interventional approach, Jnk1/2 were silenced in wild-type mice using lipid
nanoparticles for small interfering RNA delivery.
Results: JNK activation was increased in liver specimens from patients with chronic cholestasis (primary biliary cholangitis
and primary sclerosing cholangitis) and in livers of Mdr2-/- and BDL-treated animals. In Jnk1Dhepa/2Dhepa animals, serum
transaminases increased after BDL, and liver histology demonstrated enhanced cell death, compensatory proliferation, hepatic
fibrogenesis, and inflammation. Furthermore, microarray analysis revealed that hepatocytic Jnk1/2 ablation induces JNK-
target genes involved in oxidative stress and Apelin signalling after BDL. Consequently, blocking Apelin signalling attenu-
ated BDL-induced liver injury and fibrosis in Jnk1Dhepa/2Dhepa mice. Finally, we established an interventional small interfering
RNA approach of selective Jnk1/2 targeting in hepatocytes in vivo, further demonstrating the essential protective role of Jnk1/2
during cholestasis.
Conclusions: Jnk1 and Jnk2 work together to protect hepatocytes from cholestatic liver disease by controlling Apelin sig-
nalling. Dual modification of JNK signalling in hepatocytes is feasible, and enhancing its expression might be an attractive
therapeutic approach for cholestatic liver disease.
Impact and Implications: The cell-specific function of Jnk genes during cholestasis has not been explicitly explored. In this
study, we showed that combined Jnk1/2, but not Jnk2 deficiency, in hepatocytes exacerbates liver damage and fibrosis by
enhancing Apelin signalling, which contributes to cholestasis progression. Combined cell-specific Jnk targeting may be a new
molecular strategy for treating cholestatic liver disease.
© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Cholestatic liver injury is a major cause of liver fibrosis and,
subsequently, cirrhosis in patients with chronic liver disease. In
addition to mechanical obstruction of the common bile duct, for
example, through bile stones or carcinomas, especially primary
biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC)
frequently trigger biliary cirrhosis and finally might require liver
transplantation.1 Experimentally, surgical ligation of the com-
mon bile duct (BDL) has become the most prominent experi-
mental model not only to induce obstructive cholestasis but also
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to thoroughly analyse the mechanisms triggering cholestasis.
BDL induces liver fibrosis and is characterised by biliary epithe-
lial cell (BEC) proliferation, activation of portal myofibroblasts,
and massive deposition of extracellular matrix. Therefore, BDL
mimics various aspects of the complex mechanisms leading to
hepatic inflammation, fibrosis, and cirrhosis in patients with
cholestasis.2 Indeed, multiple signalling pathways have been
reported to be implicated in the pathogenesis of hepatic chole-
stasis including c-Jun-N-terminal kinase (JNK) signalling.

JNK is a mitogen-activated protein kinase (MAPK) family
member. There are three Jnk genes in mammals: Jnk1, Jnk2, and
Jnk3 (encoded by MAPK8, MAPK9, and MAPK10, respectively).
Jnk1 and Jnk2 are expressed in almost all cells, including liver
parenchymal cells, whereas Jnk3 is mainly expressed in the brain,
heart, and testis.3,4 We and others investigated the potential role
of Jnk for liver fibrogenesis.5–7 In particular, Kluwe et al.5 re-
ported that Jnk1−/− mice were protected against hepatic fibrosis,
whereas fibrogenesis was increased in Jnk2-deficient animals.
Concomitantly, we showed that Jnk1 activation mediates trans-
activation and inhibits apoptosis of hepatic stellate cells (HSCs)
during murine liver fibrosis.7

However, before patients with cholestasis and fibrosis can be
offered an effective treatment, selective inhibition of a specific
gene (e.g. Jnk) or complete blockade of JNK in a specific cell or
tissue needs to be thoroughly investigated. In hepatocytes, Jnk1
and Jnk2 appear to have combined effects in protecting mice
from chronic liver disease of different aetiologies, whereas the
deleterious functions of Jnk genes might be restricted to the non-
parenchymal cell (NPC) compartment.8–11

In the present study, we aimed to characterise the relevance
of Jnk activation in PBC and PSC. We generated hepatocyte-
specific Jnk1/2 double knockout mice for functional studies to
analyse the tissue-specific role of Jnk in hepatocytes. We per-
formed a comprehensive analysis and here describe cell-specific
strategies to target Jnk in cholestatic liver disease using our
experimental approach. As a result, targeting JNK may be an
effective treatment for cholestatic liver disease, whereas pan-JNK
inhibition may have negative side effects.
Materials and methods
Human samples
Human formalin-fixed and paraffin-embedded liver specimens
were obtained from patients with PSC and PBC (n = 37 and n = 29,
respectively) who underwent liver biopsy, resection, or trans-
plantation. Control liver tissues without histological signs of
inflammation or fibrosis (n = 5) were obtained from individuals
undergoing liver resection as a result of metastasis. The samples
were collected retrospectively at the Institute of Pathology, RWTH
AachenUniversity, Aachen,Germany; theDepartmentof Pathology,
Otto-von-Guericke University Magdeburg, Germany; the Institute
of Pathology, Neuropathology and Molecular Pathology of the
University of Innsbruck, Austria; and the tissue bank of the Pa-
thology Institute of theUniversity of Heidelberg under the approval
of the local ethics committees (No. 61/18Magdeburg;No 1115/2019
Innsbruck; No. EK166-12 Aachen; and No. S-043/2011 Heidelberg).
Three board-certified liver pathologists blinded to the clinical de-
tails confirmed the diagnosis histologically (JH, PB, and BG).

Generation of mice and animal experiments
Alb-Cre mice with a C57BL/6 background were purchased from
The Jackson Laboratory (Bar Harbor, ME, USA). Hepatocyte-
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specific Jnk2 (Jnk2Dhepa) and Jnk1/2 (Jnk1Dhepa/Jnk2Dhepa) mice
were generated by crossing Jnk2LoxP/LoxP and Jnk1LoxP/LoxP/Jnk2LoxP/
LoxP, respectively, with Alb-Cre-transgenic mice. Animal experi-
ments were carried out according to the German and Spanish
legal requirements and animal protection law, and approved by
the authority (LANUV, Germany, No./AZ: 84-02.04.2016.A080;
and Spain, PROEX 125-1/20). Induction of liver fibrosis was
performed in 8- to 10-week-old age-matched male mice (six to
seven animals were included per time point and mouse strain)
by ligating the common bile duct (BDL) for 2 and 28 days. Control
animals (four per group) were opened and immediately closed
(sham). To support the findings from Jnk1Dhepa/Jnk2Dhepa mice,
we treated C57BL/6 wild-type (WT) mice with lipid nano-
particles (LNPs) carrying small interfering RNAs (siRNAs) against
Jnk1 and Jnk2 to knock down Jnk1/2 in hepatocytes followed by
BDL for 2 days. For functional study, Jnk1f/f/2f/f and Jnk1Dhepa/
2Dhepa mice were treated with the Apelin receptor (ApelinR)
antagonist (ML221) during BDL for 1 week (see the Supple-
mentary information).

For details on methodology, please see the Supplementary
information.
Results
Activation of JNK in human cholestatic liver disease
Previously, we showed that JNK is activated in inflammatory cells
and myofibroblasts in patients with metabolic liver disease.7

However, cholestatic liver disorders, including PBC and PSC,
differ in their pathogenesis.12 Hence, we here investigated the
relevance of JNK in human and experimental cholestatic liver
disease.

Patients with PBC (n = 29) and PSC (n = 37) (Table 1) were
included. Representative H&E staining shows the typical histo-
logical liver appearance of PBC with progressive destruction of
small and medium-sized intrahepatic bile ducts, bile duct loss,
lymphoid cell infiltration, fibrosis ranging from limited portal
tracts to liver cirrhosis and PSC, a chronic cholestatic disorder
with progressive fibro-obliterative destruction of segments of
the biliary tree. The diseased were compared with healthy con-
trol livers (Fig. 1A). Here, we found strong phosphorylated JNK
(pJNK) immunoreactivity in livers of patients with PBC and PSC
compared with healthy controls. Interestingly, strong JNK acti-
vation was located in inflamed bile duct areas including hepa-
tocytes, the biliary epithelium, and other cells within the portal
fields, whereas pJNK staining was reduced or absent within
noninflamed bile ducts areas (Fig. 1B and Fig. S1A), suggesting an
association between JNK activation and cholestatic liver disease
development.

Quantification of pJNK-positive areas revealed a significant
increase of JNK activation in patients with PBC and PSC
compared with controls (Fig. 1C). As shown in Fig. 1D and
Fig. S1B, Western blot analysis showed higher JNK expression in
diseased livers compared with healthy livers. In addition, pJNK
expression as a marker of JNK activation was significantly
increased in livers of patients with PBC and PSC compared with
healthy tissue (Fig. 1E and Fig. S1C).

Alkaline phosphatase (AP) is a reliable and diagnostic marker
of disease activity in patients with PBC and PSC.13 Here, we found
a correlation between pJNK-positive areas and increased AP
serum levels (Fig. 1F).

Earlier results linked JNK1/2 activation and liver fibrosis.5,7,8

This led us to investigate whether there is a correlation
2vol. 5 j 100854



Table 1. Clinicopathological characteristics of patients with PSC and PBC.

Variables Patients with
PSC (n = 37)

Patients with
PBC (n = 29)

Age (years), mean ± SD 40.16 ± 13.2 56.14 ± 9.41
Sex, n (%)

Female 9 (24.3) 26 (89.66)
Male 28 (75.7) 3 (10.34)

AP (40–130 U/L), mean ± SD 261.38 ± 187.61 306.83 ± 204.58
GGT (<60 U/L), mean ± SD 290.73 ± 282.58 355.69 ± 511.65
AST (<50 U/L), mean ± SD 124.14 ± 185.75 83.62 ± 132.51
ALT (<50 U/L), mean ± SD 155.08 ± 167.92 84.69 ± 91.22
Total bilirubin (<1.2 mg/dl),
mean ± SD

2.09 ± 2.42 1.90 ± 3.72

Cholangitis activity, n (%)
CA0 3 (8.1)
CA1 16 (43.2) 9 (31)
CA2 10 (27) 6 (20.7)
CA3 8 (21.6) 14 (48.3)

Hepatitis activity, n (%)
HA0 3 (8.1) 1 (.4)
HA1 18 (48.6) 8 (27.6)
HA2 12 (32.4) 13 (44.8)
HA 4 (10.8) 7 (24.1)

Score A (fibrosis), n (%)
Stage 0 3 (8.1)
Stage 1 10 (27) 11 (37.9)
Stage 2 9 (24.3) 8 (27.6)
Stage 3 15 (40.5) 10 (4.5)

Score B (bile duct loss), n (%)
Stage 0 5 (13.5)
Stage 1 9 (24.3) 9 (31)
Stage 2 15 (40.5) 14 (48.3)
Stage 3 8 (21.6) 6 (20.7)

Score C (deposition of orcein-positive
granules), n (%)

Stage 0 24 (64.9) 15 (51.7)
Stage 1 9 (24.3) 9 (31)
Stage 2 1 (2.7) 2 (6.9)
Stage 3 3 (8.1) 3 (10.3)

Staging of PBC and PSC based on
Nakanuma et al.36, n (%)

Stage 1 3 (8.1)
Stage 2 9 (24.3) 5 (17.2)
Stage 3 10 (27) 10 (34.5)
Stage 4 4 (10.8) 4 (13.8)
Stage 5 2 (5.4) 4 (13.8)
Stage 6 6 (16.2) 5 (15.2)
Stage 7 1 (2.7)
Stage 8 1 (2.7) 1 (3.4)
Stage 9 1 (2.7)

Ludwig’s staging (fibrosis, cholangitis,
and hepatitis)37, n (%)

Stage 1 5 (13.5) 2 (6.9)
Stage 2 7 (18.9) 11 (37.9)
Stage 3 6 (16.2) 8 (27.6)
Stage 4 19 (51.4) 8 (27.6)

Data are presented as mean ± SD or n (%).
ALT, alanine aminotransferase; AP, alkaline phosphatase; AST, aspartate amino-
transferase; GGT, gamma-glutamyltransferase; PBC, primary biliary cholangitis; PSC,
primary sclerosing cholangitis.
between pJNK expression in PBC and PSC livers and fibrosis
staging (F0–F3). As expected, pJNK expression was significantly
increased in different stages of fibrotic PBC and PSC livers
compared with healthy control livers. However, there was no
stage-dependent increase (Fig. 1G). The detailed analysis
demonstrated increased JNK activation in both cholangiocytes
and NPCs and significantly correlated with the degree of liver
JHEP Reports 2023
fibrosis in patients with cholestasis (Fig. 1H and Fig. S2D and E).
Although the number of hepatocyte-positive cells was increased
in fibrotic livers (F1–F3) compared with F0, the number of
hepatocyte-positive cells was inversely correlated with the de-
gree of liver fibrosis (Fig. S2D and F).

Next, we compared the spatial distribution of pJNK and alpha-
smooth muscle actin (aSMA) expression in livers of patients with
PSC and PBC. Interestingly, double aSMA and pJNK-positive HSCs
were observed (Fig. 1I). However, apart from HSC-positive cells,
co-staining of pJNK–cytokeratin 19 (CK19) demonstrated chol-
angiocytes and hepatocytes, among the pJNK-positive cells, with
the highest density in the periportal area (Fig. 1J).

Enhanced Jnk expression and activation in murine cholestasis
The finding that JNK is activated in different cell types, for
example, hepatocytes and NPCs in livers of patients with
cholestasis suggested that JNK might have different functions
during disease progression. Thus, we aimed to define the cell-
type-specific function of JNK in cholestatic liver disease.

Indeed, as found in human cholestatic livers, we found
enhanced Jnk1 and Jnk2 mRNA expression in livers of BDL-
treated WT (Jnk1f/f/2f/f) mice compared with sham-operated
WT controls (Fig. S2C), suggesting a functional role of Jnk1 and
Jnk2 during cholestasis.

Next, we studied JNK activation in two murine models of
cholestasis – Mdr2-/- animals and WT mice following BDL. As
shown in Fig. 2A and B, JNK protein expression was comparable
in diseased and healthy livers. However, in BDL-treated and
Mdr2-deficient mice, we found increased pJNK expression,
strengthening the link between JNK activation and cholestasis.
pJNK immunostaining of liver sections using both models uni-
formly revealed increased intensity of pJNK staining in the per-
iportal areas, which decreased or is almost absent in the central
vein area. Notably, pJNK staining was visible in the biliary
epithelium, hepatocytes, and NPCs in the vicinity of bile ducts of
cholestatic livers compared with respective controls (Fig. 2C).
Moreover, JNK activation was demonstrated in Kupffer cells (KCs)
as seen by co-staining with CLEC4F (Fig. 2D). As a result, our
findings clearly showed that mouse cholestasis reflects the hu-
man JNK activation phenotype. We primarily focused on the BDL
model to define the functional role of JNK during cholestasis.

Hepatocyte-specific Jnk2 deletion does not change the course
of BDL-induced liver injury
Our previous work demonstrated that Jnk1 in hepatocytes has no
impact on acute and chronic hepatic injury during experimental
liver fibrosis.7 We evaluated the relevance of Jnk2 in hepatocytes
(Jnk2Dhepa) for BDL during cholestasis. Deletion of Jnk2 in hepa-
tocytes was confirmed by genotyping PCR, reverse transcription
PCR, and Western blot analyses (Fig. S2A–C). Twenty-eight
days after BDL, Jnk2Dhepa livers showed no obvious macroscopic
or microscopic differences compared with controls (Jnk2f/f)
(Fig. S2D and E).

Moreover, hepatic fibrosis assessed by Sirius Red (SR) staining
and mRNA expression of collagen 1A1 (Col1A1) and asma as well
as serum levels of alanine aminotransferase (ALT) and bilirubin
were comparable between both groups (Fig. S2F–H).

Overall, our findings suggest compensatory crosstalk between
Jnk1 and Jnk2 in hepatocytes as hepatocyte-specific Jnk2 deletion
did not significantly influence liver damage and fibrosis
following BDL.
3vol. 5 j 100854
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Fig. 1. JNK activation in human cholestasis. (A) Liver paraffin sections from healthy patients (n = 5) and patients with cholestasis with PSC (n = 37) and PBC (n =
29) stained with H&E show the typical histological pattern of human PSC and PBC. (B) Representative immunohistochemistry staining for pJNK of the same
human liver sections. Scale bar = 100 lm. Black arrows indicate pJNK-positive hepatocytes, whereas red arrows indicate positive NPCs. (C) The percentage of
pJNK-positive stained areas was measured using ImageJ® software (National Institutes of Health, Bethesda, MD, USA). (D) Liver extracts from individuals with PSC
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Generation of hepatocyte-specific Jnk1/Jnk2 double knockout
mice
Mice with constitutive combined Jnk1 and Jnk2 deletion die
during embryonal development.14 To test the hypothesis that
Jnk1 and Jnk2 compensate for each other, we generated
hepatocyte-specific Jnk1/Jnk2 knockout mice (Jnk1Dhepa/2Dhepa)
using Alb-Cre transgenic mice as confirmed on the DNA and RNA
level as well as on the protein level by Western blot analysis
(Fig. S2A–C). Hepatic parameters did not significantly differ be-
tween Jnk1Dhepa/2Dhepa mice and their WT control (Jnk1f/f/2f/f)
littermates under basal conditions or in animals that underwent
sham surgery, indicating that there was no hepatic phenotype up
to 4 months of age (data not shown), supporting previously
published findings.11

Loss of Jnk1 and Jnk2 in hepatocytes aggravates BDL-induced
acute and chronic liver damage
Next, we examined the relevance of hepatocytic Jnk1/2 defi-
ciency for acute liver injury after BDL treatment. When
compared with their WT littermates (Jnk1f/f/2f/f), Jnk1Dhepa/2Dhepa

mice displayed significantly higher blood ALT and aspartate
aminotransferase (AST) levels 48 h after BDL (Fig. 2E). Moreover,
BDL triggered necrotic areas in the hepatic parenchyma of Jnk1f/f/
2f/f livers, which was significantly exacerbated in Jnk1Dhepa/2Dhepa

livers, coinciding with the observed bile infarcts on the liver
surface (Fig. 2F). SR staining, and asma and Col1A1 mRNA levels
were used to study liver fibrosis, and they revealed a tendency
towards higher expression in Jnk1Dhepa/2Dhepa livers than in Jnk1f/
f/2f/f livers (data not shown).

Selective expression of Alb-Cre transgene in hepatocytes but
not in cholangiocytes of Jnk1Dhepa/2Dhepa livers was tested in se-
rial liver sections from BDL-treated mice by immunostaining for
pJNK or CK19 (Fig. S3A and B). Of note, BDL in Jnk1f/f/2f/f livers
was associated with JNK activation as indicated by positive pJNK
staining in different hepatic cell types including hepatocytes,
cholangiocytes, and NPCs surrounding CK19-positive chol-
angiocytes (Fig. S3A). By contrast, almost no pJNK-positive he-
patocytes were detected in Jnk1Dhepa/2Dhepa livers but in other
cells (Fig. S3B). Strikingly, CK19 immunostaining of serial liver
sections of Jnk1Dhepa/2Dhepa livers revealed that CK19-postive
cells overlapped mostly with pJNK-positive cells (Fig. S3B),
showing JNK activation in cholangiocytes of Jnk1Dhepa/2Dhepa

livers. These results suggest that the Alb-Cre promotor mediates
efficient excision of floxed genes in hepatocytes but not in
cholangiocytes, supporting previously reported findings.15

In vitro, compared with Jnk1f/f/2f/f hepatocytes, isolated he-
patocytes from Jnk1Dhepa/2Dhepa mice showed more susceptibility
to cell death, as indicated by less viability after isolation and
increased transaminases in the culture medium after 3 and 16 h
(Fig. S4A–C). However, treatment of hepatocytes with cholic acid
(CA) or deoxycholic acid (DCA) for 48 h exacerbated cell death in
both groups, which was more prominent in Jnk1Dhepa/2Dhepa
(n = 3) or PBC (n = 3) in addition to healthy control patients (n = 2) were examin
The density of the pJNK bands was quantified and compared with GAPDH intensi
set to 1. (F) Linear regression analysis of pJNK-positive area vs. AP demonstratin
Correlation between pJNK-positive area and stages of fibrotic PSC and PBC liver
followed by post hoc Bonferroni’s test among three or more groups. Comparisons o
are represented as mean ± SEM (n, not significant; *p <0.05; **p <0.01). (H) Correl
PSC and PBC livers. Liver sections from patients with cholestasis were triple sta
(green) followed by immunofluorescence microscopy. Arrows indicate double po
cytokeratin 19; JNK, c-Jun-N-terminal kinase; NPC, non-parenchymal cell; PBC,
phorylated JNK.
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hepatocytes, as indicated by increased dead cells and elevated
medium ALT and AST levels (Fig. S4D–F). Next, we studied the
functional impact of hepatocytic Jnk1/Jnk2 deletion for chronic
cholestasis (28 days after BDL). No significant difference in
weight loss after BDL was found between Jnk1Dhepa/2Dhepa and
Jnk1f/f/2f/f animals (data not shown). However, 28 days after BDL,
serum AST and ALT levels were significantly increased in
Jnk1Dhepa/2Dhepa mice compared with Jnk1f/f/2f/f mice, whereas
sham-treated groups showed no change from baseline (Fig. 3A).
No significant difference in bilirubin serum levels were evident
between BDL-treated groups (Fig. 3A).

Macroscopic examination of Jnk1Dhepa/2Dhepa BDL-treated
livers showed prominent yellowish nodules on their surface,
whereas only small dots were found in controls (Fig. 3B).
Concomitantly, H&E staining showed bile infarcts that vary in
size ranging from areas with few hepatocytes to large areas,
sometimes with a broad subcapsular affection, reflecting the
macroscopic findings. In Jnk1Dhepa/2Dhepa livers, bile infarcts were
typically four times larger. This was connected to a large rise in
CK19-positive cells near the original bile ducts in comparison
with controls, indicating oval cell activation (Fig. 3C and D).

Massive cell death and compensatory proliferation are
characteristics of JNK-deficient livers after BDL
The accumulation of toxic bile salts within the liver occurring
after BDL causes hepatocellular injury via apoptosis and necrosis.
Thus, increased liver injury in Jnk1Dhepa/2Dhepa animals after BDL
raised the question for the mode of cell death. Immunostaining
for cleaved caspase 3 (Cl. Casp-3) revealed a significant increase
of positive cells in Jnk1Dhepa/2Dhepa livers compared with controls
after BDL (Fig. 3E and F). Cl. Casp-3-positive cells were especially
grouped around bile ducts and were not found in respective
sham-treated animals (Fig. 3E and Fig. S5A). Increased apoptosis
in Jnk1Dhepa/2Dhepa livers was associated with a higher rate of cell
proliferation in the vicinity of bile ducts and necrotic areas as
shown by Ki-67 staining compared with that in controls (Fig. 3E
and F and Fig. S5A).

Hepatocytic loss of JNK promotes immune cell infiltration to
the liver
We next analysed the impact of BDL-induced liver injury on
immune cell infiltration. CD45 staining showed a marked
increased recruitment of hepatic leukocytes in Jnk1f/f/2f/f livers,
which was significantly enhanced in Jnk1Dhepa/2Dhepa livers, pre-
dominantly in the periductal area (Fig. 4A and B and Fig. S5B).
Further analysis of liver sections showed that F4/80- and CD11b-
positive macrophages are the prominent cell types, and these
immune cells are significantly increased in Jnk1Dhepa/2Dhepa livers
compared with control livers after BDL (Fig. 4A and B and
Fig. S5B). The increase in immune cell infiltration was consistent
with the increased expression of the inflammatory cytokine
tumour necrosis factor a (Tnfa) and interleukin (il)-6 mRNA found
ed by immunoblot analysis using antibodies against GAPDH, JNK, and pJNK. (E)
ty accordingly. The optical density of pJNK/GAPDH ratio in healthy controls was
g that increased pJNK staining correlates with increased AP serum values. (G)
s. Statistical evaluation was carried out by multicomparison one-way ANOVA
f two groups were analysed using an unpaired, two-tailed Student t test. Values
ation between pJNK-positive cholangiocytes and the different fibrosis stages of
ined for pJNK (red), nuclei with DAPI (blue), and (I) aSMA (green) or (J) CK19
sitive cells. aSMA, alpha-smooth muscle actin; AP, alkaline phosphatase; CK19,
primary biliary cholangitis; PSC, primary sclerosing cholangitis; pJNK, phos-
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in the liver of Jnk1Dhepa/2Dhepa mice compared with Jnk1f/f/2f/f

mice (Fig. S5C).

Lack of JNK1/2 expression in hepatocytes triggers increased
fibrogenesis
In Jnk1Dhepa/2Dhepa animals, chronic cholestasis following BDL
resulted in significant liver damage and inflammation. Thus, we
investigated whether this affected fibrogenesis. Jnk1f/f/2f/f SR-
positive areas were used to measure periductal and partially
bridging fibrosis in BDL-treated animals compared with sham-
operated animals. Jnk1Dhepa/2Dhepa livers displayed the most
pronounced increase in SR-positive areas compared with con-
trols following BDL (Fig. 4C and D and Fig. S5D).

This striking result was further confirmed by immunofluo-
rescence for Col1A1, desmin, and aSMA (Fig. 4C–F and Fig. S5D
and E). Col1A1, desmin, and aSMA protein expression analysis
showed a significant increase in their expressions in Jnk1Dhepa/
2Dhepa livers compared with Jnk1f/f/2f/f livers. mRNA transcripts
for fibrosis-related genes, Col1A1, asma, matrix metalloproteinase
(mmp)7, and mmp12, were significantly higher in Jnk1Dhepa/2Dhepa

livers than in WT controls after BDL (Fig. S6A and B).
In summary, Jnk1 and Jnk2 compensate for each other during

experimental cholestasis, although a combined loss in hepato-
cytes is detrimental.

Jnk1/2-dependent gene regulation during cholestatic liver
injury
To investigate Jnk1/2-dependent pathways, we used Affymetrix
GeneChip microarray analysis of Jnk1f/f/2f/f (WT) and Jnk1Dhepa/
2Dhepa livers 28 days after BDL. Apelin and IL-17A were found to
be the two most significantly altered pathways in response to
Jnk1/2 deletion in hepatocytes during cholestatic liver injury as
assessed by Ingenuity Pathway Analysis (−5.0 >fold change >5.0).
Next, we performed hierarchical clustering on genes that are
significantly upregulated or downregulated in Jnk1Dhepa/2Dhepa

livers (Fig. 5A and B). Here, we found that hepatocytic Jnk1 and
Jnk2 ablation dramatically downregulated expression of Cxcl13
and Fmo3 and increased levels of Tff3, Fabp1, Mup1, Ces3, and
Sucnr1 (Fig. 5B).

The validation of mRNA expression in Jnk1Dhepa/2Dhepa and
control livers confirmed significantly upregulated expression of
Cxcl13 and Fmo3 and decreased expression of Tff3, Fabp1, and
Mup1 (Fig. S6C). Mucin 1 (Muc1) was considerably elevated in
Jnk1Dhepa/2Dhepa livers concurrently with Tff3 overexpression
(Fig. 5C). To maintain and restore gastrointestinal mucosal
homoeostasis, it is noteworthy that TFF3 is co-expressed with
mucins.15,16 In addition, Jnk1Dhepa/2Dhepa livers exhibited an
aggravation of reactive oxygen species, particularly 4-
hydroxynonenal (Fig. 5D).

Analysis of microarray data revealed an increased expression
of acute-phase response genes. Therefore, we investigated Saa1,
Saa2, and Saa3 mRNA levels in Jnk1f/f/2f/f and Jnk1Dhepa/2Dhepa

mice. In JNK-deficient livers, there was a substantial upregulation
of genes associated with the acute-phase response (Fig. 5E).
indicate pJNK-positive hepatocytes, whereas red arrows indicate positive NPCs. (D
(red), nuclei with DAPI (blue), and CLEC4F (green) followed by immunofluorescen
2Dhepa mice were subjected to 2 days of BDL (n = 6) or sham (n = 3). Serum AST a
(lower panel) appearance (scale bar = 1 cm) and sections of the liver from the sam
Necrotic areas were quantified. Statistical evaluation was carried out by multicom
more groups. Comparisons of two groups were analysed using an unpaired, tw
<0.001). ALT, alanine aminotransferase; AST, aspartate aminotransferase; BDL, bile
non-parenchymal cell; pJNK, phosphorylated JNK; WT, wild-type.
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Ablation of JNK signalling in hepatocytes activates the
Apelin–ApelinR axis
Consistent with the microarray results, the Apelin–ApelinR axis
has been shown to play a crucial role in cholangiocyte prolifer-
ation and fibrogenesis.16 mRNA expression levels of Apelin and its
receptor were strongly increased in Jnk1Dhepa/2Dhepa BDL-treated
livers (Fig. 5F). Immunostaining for Apelin confirmed this
finding. Apelin expression was upregulated in mice livers after
BDL compared with sham-operated mice. However, Jnk1Dhepa/
2Dhepa livers exhibited significantly increased expression of
Apelin. Notably, Apelin-positive cells were mainly cholangiocytes
and NPCs within the portal field but less in hepatocytes (Fig. 6A).

Therefore, we next investigated the expression of Apelin and
ApelinR in different liver cells. We isolated mRNA from hepato-
cytes, HSCs, and KCs of WT mice. Interestingly, significant Apelin
and ApelinR expression was found in KCs (Fig. 6B). Hence, these
results suggested that via a JNK-dependent pathway in NPCs,
Apelin and ApelinR expression is increased when Jnk1 and Jnk2
are deleted in hepatocytes.

To test this hypothesis, Jnk1f/f/2f/f and Jnk1Dhepa/2Dhepa hepa-
tocytes were isolated and cultured in the absence or presence of
CA or DCA (Fig. 6C). Compared with Jnk1f/f/2f/f hepatocytes,
Jnk1Dhepa/2Dhepa non-treated hepatocytes showed enhanced
Apelin expression, which was further enhanced in bile acid (BA)-
treated cells (Fig. 6D), suggesting a crucial role of hepatocytic JNK
in regulating Apelin expression. By contrast, ApelinR expression
was significantly reduced in response to Jnk deficiency in non-
treated hepatocytes compared with Jnk1f/f/2f/f hepatocytes,
which further decreased upon BA treatment in both phenotypes.
Given that Jnk1Dhepa/2Dhepa hepatocytes showed high expression
of Apelin (Fig. 6D), we tested whether hepatocytic JNK contrib-
utes to the upregulation of Apelin expression in KCs via a para-
crine manner. Primary hepatocytes were isolated from Jnk1Dhepa/
2Dhepa and Jnk1f/f/2f/f livers and cultured with or without CA and
DCA for 48 h, and then the supernatant was transferred into the
primary culture of KCs (Fig. 6C). Strikingly, we found that the
supernatant from Jnk1Dhepa/2Dhepa hepatocytes stimulated by CA
or DCA promoted the expression of Apelin and ApelinR in KCs
compared with that from BA-treated WT and non-treated con-
trols (Fig. 6E). These results strongly suggested that probably
Apelin and/or other secretory factors from BA-stimulated Jnk-
deficient hepatocytes promote Apelin expression in KCs.

Next, we investigated whether increased Apelin expression in
response to hepatocyte Jnk deficiency is specific to cholestatic
models or is also prominent in toxic injury models such as car-
bon tetrachloride (CCl4). We found that compared with Jnk1f/f/2f/f

CCl4-treated mice, Jnk1Dhepa/2Dhepa CCl4-treated mice exhibited a
significant increase in Apelin and ApelinR mRNA expression and
Apelin staining (Fig. 6F and G). However, Apelin and ApelinR
expression were more prominent in Jnk1Dhepa/2Dhepa BDL-treated
than in Jnk1Dhepa/2Dhepa CCl4-treated mice (Fig. S6D).

Apelin’s relevance in human cholestasis has been recently
proposed.17 As a result, we stained liver sections of patients with
PSC and PBC for Apelin. Apelin was significantly highly expressed
) Liver sections from Mdr2-/- and BDL-treated mice were triple stained for pJNK
ce microscopy. Arrows indicate double positive cells. (E) Jnk1f/f/2f/f and Jnk1Dhepa/
nd ALT levels were determined. (F) Macroscopic (upper panel) and microscopic
e mice were stained with H&E (lower panel). The scale bar represents 100 lm.
parison one-way ANOVA followed by post hoc Bonferroni’s test among three or
o-tailed Student t test. Values are represented as mean ± SEM (*p <0.05; ***p
duct ligation; JNK, c-Jun-N-terminal kinase; Mdr2, multidrug resistance 2; NPC,
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in biliary cells and NPCs of PSC and PBC livers compared with
hepatocytes, as shown in Fig. 7A. By contrast, Apelin expression
was nonexistent or barely visible in healthy control livers
(Fig. 7A).

Inhibiting of Apelin signalling mitigates BDL-induced liver
injury and fibrosis in Jnk-deficient mice
Our results strongly indicate that the Apelin–ApelinR pathway is
involved in aggravating BDL-induced liver injury and fibrosis.
Therefore, we aimed to inhibit Apelin signalling using an ApelinR
antagonist (ML221). Jnk1f/f/2f/f and Jnk1Dhepa/2Dhepa mice were i.v.
injected thrice weekly with ML221, and BDL was performed for 7
days (Fig. S7A). The ML221 inhibitor did not cause any relevant
histopathological, serum biochemistry, or body weight alter-
ations in sham-operated Jnk1f/f/2f/f and Jnk1Dhepa/2Dhepa mice
(Fig. 7B–E and Fig. S7B–D). However, ML221 treatment reduced
fibrosis (Fig. 7B–D) and mitigated cholestatic liver damage
caused by BDL in Jnk1f/f/2f/f mice (Fig. 7B–E). More importantly,
this effect was more prominent in Jnk1Dhepa/2Dhepa mice, result-
ing in a significant reduction of ductular fibrosis (Fig. 7B and C).
ML221 also improved liver architecture (Fig. 7D) and signifi-
cantly restored serum AST, ALT, and AP levels in Jnk1Dhepa/2Dhepa

BDL-treated mice to WT levels (Fig. 7E and Fig. S7C and D). These
results strongly indicate the importance of the JNK–Apelin axis
in promoting BDL-induced cholestatic liver injury.

Jnk1/2 knockdown in WT mice recapitulates the Jnk1Dhepa/
2Dhepa phenotype after BDL treatment
Hepatocyte-specific inhibition of JNK expression has a strong
effect on acute and chronic cholestasis. Thus, we sought to alter
Jnk1/2 expression selectively in hepatocytes to see whether co-
ordinated targeting of two different targets in vivo is feasible. The
effective simultaneous knockdown of Jnk1/2 at both the mRNA
and protein levels in hepatocytes was first investigated. A single
i.v. injection of siRNA against Jnk1 and Jnk2 that was LNP-
encapsulated (siJnk1/2; 2:1 ratio; 0.75 mg/kg body weight) was
given to WT mice. The same dose of siRNA against GFP was
administered to the corresponding control group (siGFP).
Importantly, compared with mice given the same dose of siGFP,
mice given a single i.v. injection of siJnk1/2 showed a consider-
able downregulation of JNK1 and JNK2 mRNA and protein
expression (Fig. S7E and F).

Next, we assessed whether a Jnk1/2 knockdown in WT mice
recapitulates the phenotype as found in Jnk1Dhepa/2Dhepa mice
after BDL treatment. WT mice were injected with LNP siJnk1/2 or
siGFP followed by BDL for 2 days (Fig. S7G). siGFP BDL-treated
livers showed JNK activation in almost all hepatic cell types
including hepatocytes and cholangiocytes (Fig. S7H). By contrast,
pJNK-positive hepatocytes but not cholangiocytes were absent in
siJnk1/2 BDL-treated mice (Fig. S7I) as presented by pJNK and
CK19 immunostaining in serial sections (Fig. S7H and I). These
data indicate that our lipid-encapsulated siRNA to knock down
panel and 10× in the lower panel; scale bar = 200 lm). Arrows indicate necrotic
Frozen sections from Jnk1f/f/2f/f and Jnk1Dhepa/2Dhepa livers (n = 5) were stained for
indicate positive cells. Relative CK19-positive stained areas were quantified us
Representative immunohistochemistry staining for Cl. Casp-3 (upper panel) and K
(n = 5–6), 28 days after BDL. Scale bar = 100 lm. Arrows indicate positive cells
quantified in the same livers using ImageJ® software (National Institutes of Health
one-way ANOVA followed by post hoc Bonferroni’s test among three or more group
***p <0.001; ****p <0.0001). ALT, alanine aminotransferase; AST, aspartate amino
caspase 3; JNK, c-Jun-N-terminal kinase.
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JNK is efficient and hepatocyte-specific. Compared with that in
untreated controls, BDL significantly increased the mRNA
expression of Jnk1 and tends to increase the expression of Jnk2 in
siGFP BDL livers (Fig. S7E). Interestingly, BDL in siJnk1/2 mice
showed elevated serum ALT, AST, AP, and GLDH levels compared
with those in siGFP WT mice (Fig. 7F). Additional analysis of
siJnk1/2 BDL mice revealed that they had more biliary infarcts
than siGFP BDL mice (Fig. 7G and H).

These findings demonstrate that it is possible to modify the
course of cholestatic liver disease by combined modulating JNK1/
2 expression selectively in hepatocytes.
Discussion
The physiological and pathological functions of JNK signalling vary,
and in part, contradictory functions in promoting not only cell
survival andproliferationbut also cell deathhavebeen reported.3 In
addition, JNKs regulate important biological functions, including
liver regeneration, although this pathway can also be detrimental,
for example, during carcinogenesis. Preclinical studies in animal
models or human cells indicated that JNK inhibitors might be used
to treat patientswithdifferent liverdiseases.17–20However, thefirst
human studies, for example, a phase II study to treat non-alcoholic
steatohepatitiswith theoralpan-JNK inhibitorCC-90001, failedand
werestoppedatanearly stage. It is very likely that thebalanceof the
cell-specific role was not specifically addressed, and major unde-
sirable side effects occurred.

Another example is SP600125, the most commonly used ATP-
competitive pan-JNK inhibitor in vitro and in vivo. SP600125
displayed cytotoxic and off-target effects and has been shown to
lack specificity owing to its ability to randomly inhibit phos-
phorylation of all JNK substrates.21 These data suggest that
general JNK inhibition might generate major side effects and
more likely a cell-type-specific JNK approach might be effective.

Recently, a specific effort has been made, not only to better
understand the cell-specific role of JNKs but also to differentiate
between combined and/or unique functions of Jnk1 and Jnk2
genes. We and others showed that JNK activation is not only
limited to hepatocytes but also found in pro-fibrotic and in-
flammatory cells during liver disease progression in humans and
mice.5,7,22

In the current study, we demonstrated that strong JNK acti-
vation is a conserved mechanism across species in cholestatic
liver disease. We found in patients with cholestasis (namely,
patients with PBC and PSC), as well as in murine models of
cholestasis (Mdr2-/- mice and WT mice after BDL), JNK activation
in not only hepatocytes and BECs but also in NPCs. These results
strongly suggested that JNKs play a pivotal role in different cell
compartments during cholestatic liver injury. However, func-
tional studies addressing distinct cell types during liver disease
are needed before targeted approaches modulating JNK activity
on a therapeutic level can be recommended.
areas. Number and size of bile infarcts in the same mice were quantified. (D)
CK19 followed by immunofluorescence microscopy. Scale bar = 100 lm. Arrows
ing ImageJ® software (National Institutes of Health, Bethesda, MD, USA). (E)
i-67 (lower panel) of paraffin sections from Jnk1f/f/2f/f and Jnk1Dhepa/2Dhepa livers
. (F) Percentage of positive area per view field for Cl. Casp-3 and Ki-67 were
, Bethesda, MD, USA). Statistical evaluation was carried out by multicomparison
s. Values are represented as mean ± SEM (n, not significant; *p <0.05; **p <0.01;
transferase; BDL, bile duct ligation; CK19, cytokeratin 19; Cl. Casp-3, cleaved
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Here, we aimed to define the role of JNKs in hepatocytes. In
our earlier study, we showed that Jnk1 deletion in hepatocytes
has no impact on liver disease progression in the BDL model.7

Therefore, we generated Jnk2Dhepa and combined Jnk1Dhepa/
2Dhepa animals. Interestingly, only Jnk1Dhepa/2Dhepa animals, but
not Jnk2Dhepa animals, developed a clearly pronounced pheno-
type, after acute and chronic BDL. These results demonstrate that
Jnk1 and Jnk2 have redundant protective functions in hepato-
cytes during chronic cholestasis and can compensate for each
other. However, if both genes are deleted specifically in hepa-
tocytes, this results in an increased oxidative stress response
triggering severe liver injury. Interestingly, we identified genes
involved in energy metabolism (fat and glucose), which showed
the strongest regulation. Hence, increased damage in Jnk1Dhepa/
2Dhepa hepatocytes after BDL may trigger a strong metabolic
response very likely to cope with exacerbated liver injury.

BA accumulation as a result of cholestasis triggers an
enhanced ductular reaction associated with increased levels of
growth factors, reactive oxygen species, and cytokines contrib-
uting to the pathological condition.16 IL-6 signalling is implicated
in regulating the physiological and pathological function of BECs.
Moreover, IL-6 promotes BEC protection by controlling mucin-
associated proteins and trefoil factors (TFFs).23,24 Consistently,
our microarray analysis pointed towards increased oxidative
stress burst and overexpression of the IL-6 pathway in response
to hepatocytic JNK1/2 deletion, as we previously reported.10

More importantly, our data demonstrated the protection of the
mucosal epithelium as mucin and trefoil family members were
strongly upregulated in the absence of hepatocytic JNK1/2. TFF
peptides in the gastrointestinal tract increase the viscosity of
mucins and help to protect epithelial linings from insults.
Concomitantly, TFF1/3 are constitutively expressed and
increased in pathologic biliary ducts.25 Thus, strong TFF1/3 and
Muc1 expression likely is a mechanism of repair in biliary neo-
ductogenesis, which is exacerbated after loss of JNK1/2 in
hepatocytes.

The Apelin/ApelinR system is expressed in various tissues
including liver and has been shown to promote liver fibrosis,
cholestasis, and cholangiocarcinoma.16,26,27 Recently, Chen
et al.16 showed increased serum Apelin level in patients with PSC
and demonstrated that the Apelin–ApelinR axis promotes
increased oxidative stress and extracellular signal-regulated ki-
nase signalling pathways triggering biliary epithelial prolifera-
tion and liver fibrosis. In line with these findings, we found
increased Apelin expression in human PSC and PBC livers. In
addition, our results showed increased 4-hydroxynonenal levels,
a marker of lipid peroxidation and oxidative stress, as well
as expression of Apelin and its receptor after BDL and CCl4
treatment.

Interestingly, the cellular source of Apelin expression seems
to be different in the two models. Although Apelin staining in
CCl4-treated Jnk1Dhepa/2Dhepa livers was identified in hepatocytes
and fibrous septa and wasmore intense in the fibrotic tissue most
likely in HSCs as previously reported,28,29 increased Apelin
expression after BDL was prominent in cholangiocytes and NPCs
sham-operated mice, BDL-treated, and ML221 + BDL-treated mice were calculated
siJnk1/2mice (n = 6), 2 days after BDL. (G) Macroscopic and (H) microscopic appear
the liver surface. Necrotic areas were quantified. Statistical evaluation was carried
among three or more groups. Comparisons of two groups were analysed using an
<0.05; **p <0.01; ***p <0.001; ****p <0.001). ALT, alanine aminotransferase; AP, alka
c-Jun-N-terminal kinase; ML221, ApelinR antagonist; PBC, primary biliary cholan
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of Jnk1Dhepa/2Dhepa livers. This finding is supported by the obser-
vation that the Apelin–ApelinR axis is activated in different liver
cell types during the progression of liver diseases,30 suggesting
that hepatocytic JNK regulates Apelin expression. Our in vitro
results confirmed our hypothesis; thus, hepatocytes lacking JNK
signalling exhibited increased Apelin expression in non-treated
cells, which was further enhanced upon BA stimulation.

Yoshiya et al.31 showed that Apelin signalling is expressed in
KCs and inhibits liver regeneration in mice. Supporting this
finding, our analysis of NPCs demonstrates increased expression
of Apelin and ApelinR on KCs. We propose that Apelin signalling
in KCs promotes hepatic cholestasis by inducing cholangiocytes.
Interestingly, our results using supernatant transfer from hepa-
tocytes to KC suggest a role of JNK signalling in hepatocytes in
promoting Apelin expression in KCs via a paracrine manner, most
likely by regulating Apelin expression in hepatocytes and/or by
enhancing secretary factors release from JNK-deficient hepato-
cytes that induce Apelin expression in KCs.

Along with enhanced Apelin expression in KCs, increased
hepatic macrophage infiltration was prominent in the periductal
area of JNK-deficient mice. This is in agreement with a recent
study from Guillot et al.32 reporting that BA-activated macro-
phages promoted BEC proliferation and macrophage depletion
reduced cholestasis and fibrogenesis after acute BEC injury.
Collectively, Apelin-mediated crosstalk between KCs and BECs
seems to be mediated by increased oxidative stress, and Apelin
expression is triggered by JNK loss in hepatocytes during
cholestasis.

Functionally, we demonstrated that inhibition of Apelin sig-
nalling by ML221 treatment ameliorated BDL-induced liver
injury and fibrosis in Jnk1f/f/2f/f mice, whereas this effect was
more prominent in Jnk1Dhepa/2Dhepa mice, indicating the impor-
tance of the JNK–Apelin axis during cholestasis progression.

By defining the mode of cell death, we observed that JNK
deficiency in hepatocytes triggers increased cell death. Specif-
ically, we found that apoptotic cell death was increased in
Jnk1Dhepa/2Dhepa livers and hepatocytes after BDL or BA treatment,
respectively. These data suggested that during cholestatic liver
injury, JNK1 and JNK2 activate anti-apoptotic signals most likely
related to caspase-8-dependent cell death, as we recently
showed that hepatocyte-specific caspase 8 deletion reduced JNK-
derived apoptotic cell death after BDL33 and further support the
role of the Apelin–JNK axis in promoting Fas-induced liver
injury.34 In addition, Jnk1Dhepa/2Dhepa mice displayed elevated
compensatory proliferation, hepatic fibrogenesis, and inflam-
mation after cholestatic-induced surgery. Altogether, these re-
sults suggest that targeting and modulating JNK1 and JNK2
function, specifically in hepatocytes, during cholestasis could be
a promising therapeutic approach as already shown for JNK2.35

Finally, we aimed to interventionally modulate combined JNK
expression in hepatocytes. Earlier, pharmacological JNK inhibitors
improved disease progression in experimental models.17,19 How-
ever, this approach lacks specificity on a cell-type and kinase-
specific level.18,21 Therefore, we established a combined Jnk1/2
knockdownvia siRNA. Jnk1/2 siRNA-mediatednanodelivery inWT
. (F) Serum AST, ALT, GLDH, and AP levels were determined in siGFP (n = 6) and
ance of livers from the same mice. Arrows indicate yellow dots (bile infarcts) on
out by multicomparison one-way ANOVA followed by post hoc Bonferroni’s test
unpaired, two-tailed Student t test. Values are represented as mean ± SEM (*p
line phosphatase; AST, aspartate aminotransferase; BDL, bile duct ligation; JNK,
gitis; PSC, primary sclerosing cholangitis; SR, Sirius Red.
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BDL-treated mice increased liver injury as found in Jnk1Dhepa/
2Dhepa mice after BDL. Hence, both approaches, in contrast to the
results by pharmacological inhibition, demonstrate that JNK1/2
have a pivotal protective role in hepatocytes during BDL-induced
cholestatic liver injury. As we also found increased Jnk1/2
expression after BDL in WT livers, we hypothesised that
enhancing JNK1/2 expression in hepatocytes during cholestatic
liver injury is likely an attractive therapeutic approach.
JHEP Reports 2023
In summary, we defined the hepatocyte-specific protective
role of JNK-dependent pathways during acute and chronic
cholestatic liver injury via regulating the Apelin axis. Lack of
combined JNK1/2 expression in hepatocytes triggers increased
oxidative stress and pathways involved in energy metabolism
and biliary repair. As dual targeting of JNK1/2 selectively in he-
patocytes is feasible, future strategies to increase JNK1/2
expression in hepatocytes is likely beneficial.
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