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Abstract: The primary goal of precision genomics is the identification of causative genetic variants in
targeted or whole-genome sequencing data. The ultimate clinical hope is that these findings lead to an
efficacious change in treatment for the patient. In current clinical practice, these findings are typically
returned by expert analysts as static, text-based reports. Ideally, these reports summarize the quality
of the data obtained, integrate known gene–phenotype associations, follow allele segregation and
affected status within the sequenced samples, and weigh computational evidence of pathogenicity.
These findings are used to prioritize the variant(s) most likely to cause the given patient’s phenotypes.
In most diagnostic settings, a team of experts contribute to these reports, including bioinformaticians,
clinicians, and genetic counselors, among others. However, these experts often do not have the
necessary tools to review genomic findings, test genetic hypotheses, or query specific gene and
variant information. Additionally, team members often rely on different tools and methods based
on their given expertise, resulting in further difficulties in communicating and discussing genomic
findings. Here, we present clin.iobio—a web-based solution to collaborative genomic analysis that
enables diagnostic team members to focus on their area of expertise within the diagnostic process,
while allowing them to easily review and contribute to all steps of the diagnostic process. Clin.iobio
integrates tools from the popular iobio genomic visualization suite into a comprehensive diagnostic
workflow, encompassing (1) genomic data quality review, (2) dynamic phenotype-driven gene priori-
tization, (3) variant prioritization using a comprehensive set of knowledge bases and annotations,
(4) and an exportable findings summary. In conclusion, clin.iobio is a comprehensive solution to
team-based precision genomics, the findings of which stand to inform genomic considerations in
clinical practice.

Keywords: genomics; clinical; software; visualization; collaboration; diagnostics; genetics; rapid
sequencing; NICU; undiagnosed disease; reanalysis

1. Introduction

As genomic sequencing continues to decrease in cost, its use as a powerful, cost-
effective clinical test has been established [1,2]. This is especially true for the diagnosis of
suspected genetic conditions in rare diseases and critically ill newborn settings [3–5]. Bioin-
formatic pipelines to map a patient’s genomic data to a reference genome and determine
high-confidence variant calls have become increasingly standardized, and can be deployed
with relative ease in both academic and commercial settings. However, the path to di-
agnosis remains complex, and expert, team-based interpretation of potentially causative
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candidate variants remains a significant bottleneck. Reaching a diagnostic decision often
requires the collaboration of bioinformatics analysis teams, genetic counselors, and clinical
geneticists, spanning a diverse range of expertise. While each case is unique and workflows
differ between clinical settings, the following steps are essentially always required: (1) as-
sessment of data quality; (2) identification of candidate genes, based on relevant phenotype
and disease terms; (3) interpretation of candidate diagnostic variants, within the context
of both computationally prioritized and phenotype-prioritized genes; and (4) reporting
variant findings to clinical teams for final diagnostic decisions. Based on these universal
workflow steps, we have developed a web-based tool, clin.iobio, to support a team-based
approach to genomic diagnostics, focusing on ease of use, accessibility, and collaboration.

Data quality assessment is an often overlooked but critical component of all genomic
analyses, and is typically performed by bioinformaticians. In many clinical diagnostic
settings, these quality metrics are buried within reports or omitted entirely. However,
data deficiencies can dramatically affect downstream analyses. Important sequencing
data quality metrics typically include the overall sequencing coverage/depth across target
sequence regions (exome or genome) and the distribution of the types of variants called.
Following data quality assessment, a differential clinical diagnosis approach, often per-
formed by medical geneticists or genetic counselors, is typically employed to carefully
review patient (and family member) phenotypes. These phenotype terms are then coded
into standardized Human Phenotype Ontology (HPO) terms in order to generate a high-
confidence list of phenotype-associated genes [6]. Variants within these genes have a higher
likelihood of explaining the patient’s phenotype and, consequently, require thorough in-
vestigation. Depending on the clinical setting, patients may also present with a large
number of non-specific phenotypes where the input of multiple team members can help
to refine clinical diagnoses and prioritize the most objective and specific phenotypes [7].
Additionally, proband phenotypes may change over time, requiring revisions to patient
phenotype terms; thus, it is necessary that phenotype terms and prioritized genes can be
dynamically reviewed and updated.

Following phenotype description, variants are reviewed and interpreted. Typical trio
sequencing results range from hundreds of thousands to millions of variants, in exome or
genome studies, respectively. This number of variants can be significantly reduced by using
computational methods that prioritize variants based on Mendelian modes of inheritance,
population frequency, and predicted impacts on coding proteins [8–11]. However, these
methods remain almost exclusively used by bioinformaticians, and require significant
computational skills and resources; as such, clinical and genetics experts are typically
only provided with static, text-based summaries of candidate variant information for their
review. These summaries are often not sufficient to make a diagnostic decision about the
variant, and this approach limits the ability of team members to contribute to diagnostic
decisions. Lastly, written reports summarizing genomic findings typically require specific
information from multiple team members based on their expertise, requiring additional
communication exchanges.

Many tools have attempted to address specific challenges within this typical clinical
diagnostic workflow. However, these approaches have largely been developed in com-
mercial settings, leaving few options for academic researchers. To date, no academic tools
currently exist that provide a comprehensive, team-based, genomic diagnostic workflow.
Clin.iobio was specifically designed as a solution to this challenging problem of team-based
genomic diagnostics. We identified the major components of a typical genomic analysis
workflow, and developed a framework that allows all team members to contribute their
domain of expertise to diagnostic decisions via an intuitive web app that provides a com-
prehensive, dynamic, and collaborative workflow to potentially guide clinical practice
based on genomic findings.
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2. Results

The development of clin.iobio was guided by our collaboration with clinical teams in
the rapid newborn intensive care unit (NICU) sequencing and undiagnosed disease clinics
at the University of Utah. Rapid NICU sequencing programs rely on identifying diagnostic
variants as quickly as possible, with the hope of impacting newborn clinical care as soon as
possible. In these time-sensitive analyses, it is critical that all team members can review case
information as soon as it is available. Here, we demonstrate the utility of clin.iobio using a
representative case from our University of Utah rapid NICU sequencing program, where
the clinical team achieved a rapid genetic diagnosis that informed clinical management.

Clin.iobio is routinely applied for all Utah NICU patient cases. These cases include
many complex phenotypic presentations for which diagnostic decisions cannot be made
by any available method, including clin.iobio, and remain undiagnosed. However, even
in these undiagnosed cases, clin.iobio facilitates a team-based diagnostic process, allow-
ing the team to confidently conclude that there is no feasible diagnosis at this time. Of
the Utah NICU cases that were able to be diagnosed, clin.iobio prioritized the diagnostic
variant(s) within minutes. Here, we describe a representative diagnostic case to highlight
the clin.iobio analysis process. In this NICU case, a newborn was described to have a
“fetal akinesia sequence” (HP:0001989) phenotype. Additional, less specific phenotypes
included “arthrogryposis multiplex congenita” (HP:0002804), “elevated serum creatine ki-
nase” (HP:0003236), “macrocephaly at birth” (HP:0004488), “nephrolithiasis” (HP:0000787),
and “pulmonary hypoplasia” (HP:0002089). Our in-house variant alignment and calling
pipeline provided clin.iobio with the necessary CRAM, VCF, and PED files for this case, and
allowed our clinical diagnostic team to rapidly review the sequencing data and reach a
diagnostic conclusion.

Our iobio suite comprises tools to perform specific focused analyses. For example,
gene.iobio provides methods to interrogate individual variants in genes of interest. Clin.iobio
differs from these existing tools, as it integrates the tools together into a comprehensive web-
based diagnostic workflow, seamlessly passing information between steps and generating
a final findings report. Each step in the clin.iobio workflow—and the tools used to power
them—is described here for the representative NICU case. Stepwise within clin.iobio, the
first step of data quality review revealed that all three individuals displayed the expected
Poisson distribution of sequencing coverage, with median read coverages exceeding the
minimum expected for this sequencing experiment (Figure 1A). In the second step of
clin.iobio, clinically relevant HPO terms were entered into a freeform text box, where
clin.iobio automatically interpreted the HPO syntax and generated a list of phenotype-
associated genes (Figure 1B). In the initial analysis, the number of phenotype-associated
genes was filtered to include only genes associated with three or more of the six provided
HPO terms. As these genes were associated with multiple phenotypes present in the patient,
they represented the genes most likely to explain the patient’s specific disease presentation.
This dynamic filtering within clin.iobio resulted in 19 genes, limiting the number of variants
for initial review to a manageable number. The dynamic design of clin.iobio allows this
gene list to be expanded if the initial review results in no plausible candidate variants. The
next step within clin.iobio is to review candidate variants (Figure 2A); this includes the
variants in the 19 phenotypically prioritized genes, as well as candidate variants identified
using upstream variant prioritization tools, e.g., Slivar [8] (see Materials and Methods).
This integration with variant prioritization tools is critical in order to ensure that clin.iobio
supports both phenotype- and gene-based approaches, as well as variants in genes not
previously associated with the patient’s phenotypes. This variant review step is powered
by our previously published gene.iobio [12] tool, whereby variants in all provided genes are
annotated with a comprehensive set of annotations, including ClinVar [13], gnomAD [14],
and REVEL [15] for missense variants. This variant prioritization step also provides
OMIM-associated [16] genetic disorders and PubMed publications associated with the
selected gene. Importantly, this clin.iobio workflow step also provides patient-specific
gene–phenotype associations, as provided in the previous workflow step. Integrating this
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information in a single view enables team members to use primary sources and always up-
to-date information in their interpretation of genetic variants. Within seconds, the Review
variants step of clin.iobio annotated all variants within the provided gene list, prioritizing and
prominently highlighting compound heterozygous variants in the LGI4 gene. These were
two missense variants (REVEL scores 0.716 and 0.767), where one variant was annotated
as “likely pathogenic” in ClinVar and was associated with “arthrogryposis multiplex
congenita” and “fetal akinesia sequence”—the most objective phenotypes provided for our
patient. The sequence coverage of each variant was shown for all members of the pedigree,
establishing that both variants were high-quality heterozygous variants and were present
in the proband and one parent. Specifically for the missense variant in Figure 2A, the
number of observations of the reference and alternate alleles was 42 and 37, respectively;
the father had 21 and 27 observations, while the mother had 0 and 43, providing ample
confidence in the called genotypes. The IGV [17] browser is integrated into this variant
review step of clin.iobio to allow further read-level review if desired. Within clin.iobio, these
variants were marked as significant, automatically populating the final report with this
potentially diagnostic information (Figure 2B).

This representative case demonstrates how clin.iobio supports diagnosis in whole-
genome sequencing data. The diagnostic workflow is largely the same when using whole-
exome sequencing data, with the addition of extra quality control checks to account for
the variable coverage in exome data. The minimum, median, and mean coverage in each
exon are determined, and active warnings are provided for exons that fall outside of
predefined and customizable thresholds. In exome data, the diagnostic team performs
the same variant-level quality control checks as with genome data, but additionally can
ensure that all exons in genes of interest are sufficiently covered, allowing team members
to potentially identify false negatives due to low or absent coverage.

In this representative case, clin.iobio enabled a collaborative diagnostic approach that
identified compound heterozygous LGI4 variants. The patient’s clinical presentation began
prenatally with polyhydramnios, arthrogryposis, and limited movement of fetal extremities.
Pathogenic LGI4 variants are associated with autosomal recessive arthrogryposis multiplex
congenita, which the diagnostic team reviewed in conjunction with all other available
information, including literature sources provided by clin.iobio, in the context of the patient.
After comprehensive review, the team determined that these compound heterozygous LGI4
variants were likely pathogenic, and were sufficient to return a genetic diagnosis to the
family. Importantly, these genomic findings informed clinical care, including sparing the
proband from additional invasive procedures and moving the patient towards palliative
treatment. Additionally, this crucial prognostic and genetic information empowered the
parents’ future family planning decisions. This real-world example demonstrates how
clin.iobio provides an accessible team-based interface to enable the rapid identification of
causative genetic variants and potentially inform clinical management.
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Figure 1. The first two steps in the clin.iobio web app, with the workflow shown at the top of the
figure. This workflow is always present at the top of the page, with step-specific information (e.g.,
the number of identified significant variants) shown with each task. This workflow is not linear;
rather, users can jump to whichever step they desire. (A) Basic overall quality control metrics for the
patient and family members show that sequencing coverage has expected distributions, with median
coverages above the required threshold. (B) A candidate gene list is generated and refined based on
patient phenotypes. Here, a set of HPO terms was selected, and interactive charts limit the list to
genes that are associated with at least 3 HPO terms.
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figure. (A) The variant review process includes all candidate variants in the left panel (variants
that conform to a set of predefined filters). All variants in the selected LGI4 gene are shown in the
middle panel; one of the LGI4 compound heterozygous variants is selected, showing variant-specific
annotations in the bottom panel. This shows that the variant is listed as “likely pathogenic” in ClinVar,
and is associated with relevant phenotypes; the gene–phenotype associations integrate information
from the previous phenotype step. (B) The final step in the workflow summarizes information on
the variants that have been marked as Significant or of Unknown Significance; this step acts as the
starting point for a quick review of the case.

3. Discussion

As genomic testing increasingly becomes a first-line diagnostic technique in many
clinical settings, analysis and interpretation of genomic testing results demand significant
effort from a multidisciplinary team of experts [18]. This team-based approach guarantees
that the genomic data are comprehensively reviewed and all findings are discussed by
bioinformaticians, geneticists, and clinical experts. However, this is a high-effort and low-
throughput process, where all experts in the team are already extremely time-limited. As
such, tools that enable team-based genomics but do not increase the workload of individual
team members are urgently needed. We expect that this challenge will become increasingly
apparent as the number of patients undergoing genetic testing continues to increase.

Clin.iobio was specifically designed to address the growing need to implement team-
based genomic medicine. Clin.iobio is best suited for the analysis of monogenic Mendelian
diseases, while providing a method for diagnostic teams to investigate all hypotheses in
patient cases. Complex disorders—for example, those with multiple causative variants in
multiple genes, especially when these include variants of unknown significance—remain
challenging to interpret using any genomic diagnostic tool, including clin.iobio. Clin.iobio
integrates a common set of analysis steps in a typical genomic diagnostic workflow into
a single, easy-to-use, and visual web-based application that allows all team members to
contribute their expertise to the diagnostic process, without imposing a significant time
burden. The flexible design of clin.iobio allows for a comprehensive genomic analysis using
both phenotype-driven and variant-driven prioritization approaches.

Within a phenotype-based analysis, clin.iobio allows for on-demand updating of phe-
notype terms and gene lists. This allows team members to dynamically expand or refine
phenotype and gene lists. For example, in the case we described here, a user could have
been more permissive, and only required genes to be associated with two or more HPO
terms. This less stringent filtering would have expanded the gene list to 45 genes. In addi-
tion to HPO, users can also utilize the integrated GTR [19] and Phenolyzer [20] resources to
generate phenotype-associated gene lists—an approach we published previously [21]. This
flexibility allows clin.iobio to go beyond a linear workflow, and provides the opportunity for
revision, exploration, and reanalysis of previously negative cases. In conclusion, clin.iobio
provides a comprehensive, web-based genomic analysis platform that enables team-based
diagnostic decisions that have the potential to significantly impact clinical practice and
patient care.

4. Materials and Methods
4.1. System Overview

Clin.iobio utilizes and coordinates multiple components and tools within the iobio suite
of visual web-based genomics tools. These include tools for reviewing data quality metrics
(based on bam.iobio [22] and vcf.iobio), generating lists of genes associated with specific
phenotypes and genetic disorders (based on genepanel.iobio [21]), and variant prioritization
and interpretation (based on gene.iobio [12]). Combining these code bases, clin.iobio passes
the outputs from individual steps to subsequent steps, resulting in a complete start-to-
finish diagnostic workflow. Critically, the final step of clin.iobio produces a research report,
summarizing the case and the findings that were noted during the analysis.
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4.2. File Input/Output

Clin.iobio accepts file-format-compliant PED files, indexed BAM/CRAM files, and
indexed (unannotated or annotated) VCF files. These files can be provided via a publicly
accessible URL or from a user’s local machine, or from a combination of the two locations.
As with all iobio apps, clin.iobio streams relevant portions of the data and displays the data
visually in a web browser; no data are uploaded and no genomic data are stored on iobio
servers. Clin.iobio is a JavaScript application that interfaces with cloud-based iobio backend
services (https://github.com/iobio/iobio-gru-backend, accessed on 17 September 2021).
Iobio backend services utilize application programming interface (API) methods to en-
sure the data and annotations displayed are up-to-date. Furthermore, this architecture
delineates application and data processing logic, with the clin.iobio front-end displaying
visualizations and coordinating secure HTTPS requests to the backend. Clin.iobio provides
an exportable PDF research report that summarizes the user’s findings. Clin.iobio has
also been integrated into Mosaic—a commercial and collaborative genomic data platform
developed by Frameshift Labs (https://frameshift.io/, accessed on 5 January 2022). With
this Mosaic integration, clin.iobio analyses can be saved and relaunched at any time.

4.3. Sequencing Data Coverage and Alignment

Clin.iobio displays sequencing data coverage visualizations based on the data returned
from iobio backend services. This coverage-based iobio backend service utilizes SAM-
tools [23] for region-based queries of CRAM/BAM alignment files, and to determine
coverage across a gene or a given region, such as an exon. This coverage information is
visualized in both the Review case and Review variants steps.

4.4. IGV Integration

The web-based JavaScript version of the Integrative Genomics Viewer (IGV) [17],
called igv.js (https://github.com/igvteam/igv.js/, accessed on 17 September 2021), is
integrated into the Review variants step (within gene.iobio).

4.5. Variant Annotation

Variant annotation is performed in the variant review step of clin.iobio (using gene.iobio),
in a region-specific manner, with the data streamed back to clin.iobio. This variant an-
notation service includes tabix [24] (for region-based querying of indexed VCF files),
vt [25] (for sample subsetting, variant decomposition, normalization, and transforma-
tion), VEP [26] (for transcript-aware annotation of variants with functional consequence,
impact, ClinVar [13] significance, REVEL [15] score, HGVS [27], and dbSNP [28] ID),
and bcftools (for determining variant population allele frequency in gnomAD) (https:
//github.com/samtools/bcftools, accessed on 5 January 2022). GnomAD [14] population
allele frequencies, as well as heterozygous and homozygous allele counts, are provided.
The phlyoP [29] conservation scores and multiple-species sequence alignment visualiza-
tions rely on UCSC [30] genome tracks to display multiple-organism sequence alignments
surrounding a given variant.

4.6. Gene–Disease Association

The GENCODE [31] and RefSeq [32] are used to provide gene name typeahead and
autocomplete functionality. The Select phenotypes step (based on genepanel.iobio) integrates
Phenolyzer [20], ClinPhen [33], and the HPO [6], allowing the user to enter a phenotype
term and automatically generate a list of genes associated with that phenotype. Up-to-date
gene–disease association data from OMIM [34] are retrieved via their web API, while
PubMed articles associated with a particular gene are retrieved using the web API NCBI
E-utils [35].

https://github.com/iobio/iobio-gru-backend
https://frameshift.io/
https://github.com/igvteam/igv.js/
https://github.com/samtools/bcftools
https://github.com/samtools/bcftools
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4.7. External Resources and Databases

Numerous public datasets are utilized to present up-to-date gene and variant annota-
tions to the user. These external resources and databases are kept up-to-date using iobio
backend services built around the individual data type. For instance, the ClinVar resource
is maintained via a backend service that retrieves the latest ClinVar VCF on a weekly
basis. Numerous other external links are provided at the gene- and variant-specific levels,
including MARRVEL [36], VarSome [37], OMIM [34], DECIPHER [38], GeneCards [39],
GTEx [40], HumanMine [41], PubMed, UniProt, the Human Protein Atlas [42], and the
UCSC Browser [30].

4.8. Deployment, Usage and Availability

Clin.iobio is publicly available and free to use for academic purposes at https://clin.
iobio.io/, accessed on 5 January 2022. Commercial use is licensed through Frameshift
Labs, Inc., Cambridge, MA, USA (https://frameshift.io/, accessed on 5 January 2022). The
University of Utah and the Utah Center for Genetic Discovery maintain an institutional
version of clin.iobio for use by our clinical teams and genetics researchers at our institute.
Clin.iobio was developed and optimized for the Chrome browser, with additional support
for the Firefox and Safari browsers.

5. Conclusions

Genomic testing is increasingly becoming a first-line diagnostic approach for critically
ill newborns as well as patients with rare and undiagnosed diseases. In both of these
settings, experts from many specific disciplines contribute their unique expertise to a genetic
and clinical diagnosis for the patient. Clin.iobio is an approachable diagnostic genomic
analysis workflow specifically designed to engage all members of the clinical diagnostic
team, and serves to accelerate the incorporation of genomic findings into patient care.
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