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Abstract

Due to difficulties in accurately predicting the emergency timing and the magnitude of a

disaster, operations for perishable emergency inventory planning often encounter expiration

and shortage problems. In order to ease the expiration problem in emergency medicine

preparation inventories, this paper investigates an emergency medicine closed-loop supply

chain for returning unused items from an ERC (Emergency Reserve Center) to a hospital.

To assure that the return strategy is meaningful, we propose a critical parameter that we

term the latest return time, after which the remaining emergency medicine in the ERC can-

not be returned to the hospital. In addition, the short lifetime of emergency products and

uncertainty about demand time and demand quantity are also considered in this emergency

inventory planning system. In analyzing the optimal ordering policies, we find that the two

threshold values for the predefined return time, which affect the total costs, are not monoto-

nous; rather, the direction of their effect is first down, then up, and then down again, which

means that a better predefined value of the latest return time can be determined by minimiz-

ing total costs. By studying and comparing decentralized and centralized decisions, we find

that the centralized decision system works better to control expiration and costs. Therefore,

we design a coordination mechanism for the cooperation between the ERC and the hospital.

Our analysis shows that we should not ignore the emergency uncertainty and perishability

of emergency items.

1. Introduction

To prepare for man-made or natural disasters, many cities maintain an emergency reserve

center (referred to hereafter as ERC) to store key emergency items, like food, water, and medi-

cine. In this paper, we focus on emergency medicine, which is important and indispensable.

The emergency medicines typically stored in an ERC include anti-flu drugs and vaccines,

which are time-sensitive and have short lifetimes. In China, investment in emergency supplies

is significant, because of the many serious disasters that occur. This investment causes
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financial concern related to the problems of medicine expiration and shortage, and the

expense of storage (Meng et al., 2017) [1]. As a consequence of this, senior managers go to

great lengths to implement strategies that balance the need for high fulfillment levels of

demand from affected populations with the need to minimize costs. Furthermore, although

the lifetime of some kinds of emergency items may be as long as several years (e.g., gloves and

first aid kits), the probability of a disaster is low enough that most emergency items in the ERC

expire before being used, particularly products that are time-sensitive and have short lifetimes

(Guide et al., 2006) [2]. Given these difficulties and the significance of emergencies, it is imper-

ative to propose ways in which emergency medical supplies can be managed. Analyzing how

to deal with the expiration problem in the emergency inventory planning system, and how to

contain the expiration problem using the proposed closed-loop emergency supply chain, is

necessary and significant.

Management must also overcome limited product disposition options, which can lead to

substantial losses in product value recovery. Referring to the achievement of Zhou and Olsen

(2017) [3], and observing hospitals’ regular demand, we propose a closed-loop supply chain

that includes the ERC, the hospital and the supplier. In our system, both the ERC and the hos-

pital order from the supplier at the beginning of the period. Then, the ERC sends its remaining

stock to the hospital before it expires at the predefined latest return time or at the end of the

emergency response period, and the ERC replenishes its emergency inventory with new items

at the same time. There are two questions we should examine: why the hospital should receive

the unused medicines from the ERC, and when the ERC should adopt the closed-loop supply

chain strategy. The first question can be solved easily, since the holding value of the emergency

medicine decays as time passes, and the hospital pays less money for the unused medicines,

which have the same value as compared with new medicines from suppliers. The second ques-

tion is more complicated, and in this paper, we seek to establish a balance between return costs

and return benefits, in order to effectively reduce waste.

Given our efforts to reduce the expiration problem for short lifetime emergency supplies

with uncertainties about occurrence time and the closed-loop emergency supply chain, we

develop quantitative models to answer the following research questions:

1. What are the effects of introducing a closed-loop strategy for the emergency inventory plan-

ning system? Moreover, does the closed-loop strategy reduce both the expiration losses and

the shortage losses experienced by a particular emergency inventory system during a

disaster?

2. To the best of our knowledge, the emergency preparation process is constrained by uncer-

tain occurrence time and perishability. Therefore, what are the impacts of stochastic occur-

rence time and emergency medicine perishability?

3. What are the differences between decentralized and centralized decisions on the optimal

emergency inventory level of the ERC and the ordering quantity of the hospital?

To answer these research questions, we develop models under newsboy settings using a

closed-loop supply chain for a hospital, an ERC and a supplier for perishable emergency sup-

plies. The two distinctive features of these kinds of perishable emergency supplies are: (i) lim-

ited warehousing time, and (ii) uncertainties in demand time and demand quantity. Motivated

by insights about uncertainties on occurrence time and demand quantity in a perishable emer-

gency supplies inventory system, our proposed return process is seen as uncertainty, because

in this system, the return quantity is equal to the remaining quantity after an emergency

response, and the return time is equal to the ending time of the emergency response. There-

fore, the closed-loop supply chain for emergency medicines proposed in this paper is different
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from other traditional inventory systems in its basic assumptions, and it is also different from

the rotation system proposed in the work of Zhou and Olsen (2017) [3] for an uncertain return

process.

Derived from the emergency medicine inventory system, this paper tries to make sense of

operational insights for emergency medicine ordering policies of ERCs and hospitals. The

operational insight we note here includes specifically how to implement an effective inventory

system for a closed-loop emergency medicine supply chain and when to use this closed-loop

strategy. To better understand the practical operations of an emergency inventory system, we

analyze equilibrium solutions that balance risk costs and reserve costs. Risk costs include

shortage costs, while reserve costs include expiration costs, return costs and storage costs.

Thus, this paper makes three contributions. First, this study extends the scope of the existing

literature by synthesizing prior research issues, namely perishable inventory control and emer-

gency management. Second, this article offers a closed-loop perishable emergency supply

chain strategy derived from the uncertainties about occurrence time and severity of damage.

Third, our study is combined with both the decentralized and centralized decision models and

illustrates an integrated, efficient perishable emergency inventory system.

The reminder of this paper is organized as follows. Section 2 reviews the relevant literature

pertaining to perishability return and the emergency medicine inventory system. Section 3

presents assumptions about the emergency medicine supply chain abstracted from real world

situation to simplify research problems, and builds inventory models for the ERC and the hos-

pital. Section 4 characterizes and discusses optimal ordering policies. Section 5 develops a cen-

tralized model for the ERC and the hospital, and compares the results with those of a

decentralized system. Section 6 conducts numerical case studies to intuitively test our results

and describe the sensitivity of key factors on the optimal policies. Finally, relevant conclusions

and implications are drawn in Section 6.

2. Literature review

Research on inventory systems is quite comprehensive; therefore, extending this work

becomes a matter of intensive work on a specific aspect; our work focuses on the topics of an

emergency item inventory system, a perishable item inventory system and an inventory return

system.

The emergency inventory system has received considerable attention from researchers, and

Ozguven and Ozbay (2014) [4] provided a comprehensive review on emergency inventory

management for disasters. Most studies focus on operating issues: the pre-positioning, distri-

bution and scheduling of the reserved emergency resources prepared for an emergency

response (Duran et al., 2011; Anaya-Arenas et al., 2014; Ruth and Erhan, 2016) [5–7]. In terms

of emergency situations, the process is stochastic. Stochastic demand, capacity, lead-time,

price, effectiveness and cost are the most common stochastic variables in optimization prob-

lems (Louly et al., 2008; Charles, 2012) [8–9]. However, in this article, we consider the occur-

rence time and demand as stochastic variables, following the example of Pan et al. (2015) [10]

and Meng et al. (2017) [1] did. Pan et al. (2015) [10] considered the risks of expiration and

items being out of stock because of stochastic occurrence time and demand, and, using CVaR

(conditional value at risk), they studied how decision-makers managed emergency inventories

with different risk attitudes. Meng et al. (2017) [1] studied how to control expiration and costs

for emergency inventory management. In our study, we complement the efforts of these earlier

studies by incorporating the uncertainty or randomness of occurrence time, as well as limited

warehousing times in emergency preparations, using a stochastic mathematical model derived
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from commonly used newsboy theories (Kabak and Schi, 1978; Gallego and Moon, 1993) [11–

12].

Since we also consider short lifetime emergency products, we briefly review perishable

inventory studies. Nahmias (1975) [13] and Fries (1975) [14] contend with the short lifetime

problem and both conclude that the product age distribution affects optimal inventory polices.

To our knowledge, few papers study the perishable problem for emergency medical resources

inventory management. Shen, Dessouky, and Ordonez (2011) [15] proposed a modified EMQ

model for studying the expiration problem in the national medical reserve with a minimum

volume constraint. However, the many different kinds of emergency products and different

age distributions for each product create complexity, and later researchers have concluded

approximate equilibriums that do not consider age distribution (Zhou and Olsen, 2017) [3].

Some researchers went on to analyze the perishable inventory system by simplifying age distri-

bution by looking at a unique inventory product or at only one period (Pan et al., 2015; Meng

et al., 2017) [10, 1]. In our emergency inventory system, given that many emergency materials,

such as alcohol, blood and plasma have short life cycles (Guo et al., 2018) [16], it is imperative

that efforts are made to improve emergency product inventory management processes by

combining a return strategy with a stochastic programming approach.

Referring to the return strategy, most prior research on this issue of a closed-loop return

supply chain concentrates on commercial products (Wang et al., 2007; Subulan et al., 2015)

[17–18], particularly those with short life cycles (Xu at al., 2015; Li at al., 2016) [19–20]. In this

perspective, Hasani et al. (2012) [21] proposed a stochastic model that deals with the issues of

limited warehousing times and closed-loop supply chain network designs for the high-tech

and food industries. Fortunately, in an emergency management system, Meng et al. (2017) [1]

might be the first study to adopt two replacement mechanisms (based on remaining lifetime

and remaining quantity) for dealing with the problem of emergency material expiration. Zhou

and Olsen (2017) [3] proposed a rotation system between a national medical reserve and a hos-

pital to solve the expiration problem in the emergency inventory system. An assessment of

these studies shows that a successful replacement strategy can help to reduce the costs and

risks level associated with the management process. On the basis of these prior achievements,

we propose an emergency medicine closed-loop supply chain in which the return process is

uncertain, especially in emergency situations.

A more secure and efficient inventory management system for disasters can be built by

integrating emergency smart technologies, such as Ratio Frequency Identification Devices

(RFIDs), for commodity tracking and logistics; such devices can also be used for an online

emergency inventory control system [22–25]. This paper makes a unique contribution by

studying the emergency inventory plan, which should be decided before a disaster strikes,

rather than focusing on emergency inventory control during a disaster response. We further

involve smart technologies in our emergency inventory planning systems, which can utilize

real data and incorporate the transformation laws of disasters to develop more efficient and

scientific emergency inventory systems. An analysis of the literature about offline inventory

management shows that having an emergency inventory system is an important issue, espe-

cially for addressing the perishable problem and the return strategy design. However, little

empirical effort has been used to examine the emergency medicine closed-loop supply chain

and the effect of the stochastic return process on optimal ordering policies. Our study builds

on the efforts of existing studies by introducing a stochastic return process that utilizes the

newsboy approach to effectively control expiration and shortage problems. The main contri-

bution of our work is proposing optimal policies for the ERC and the hospital in decentralized

and centralized settings when facing a stochastic return process.
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3. Assumptions and models

3.1. Assumptions

We consider the ordering problem from the view of single period in a short lifetime product

inventory system with an Emergency Reserve Center (ERC), a hospital and a supplier. The

ERC orders only from the supplier, and keeps certain emergency medicines to prepare for an

emergency response but does not stock products that are in regular (non-emergency) demand.

When the demand for an emergency response is lower than the stock levels, the remaining

emergency medicines are returned to the hospital at the end of an emergency response time t;
when there is no demand, all emergency medicines in the ERC are returned to the hospital

before the expiry date at a predefined time θT, and the ERC immediately replenishes inventory

up to the decided stock level.

The hospital receives emergency items from the supplier and the ERC; however, the

received quantity and time of receipt is uncertain. That is to say, the process of returning the

stock to the hospital is uncertain, because of the stochastic occurrences of time and demand.

The return quantity equals the remaining quantity after an emergency response, and the return

time equals the ending time of the emergency response. This assumption means that both the

return quantity and return time are stochastic. The received time from the ERC should occur

before the expiry date, which we call the latest return time θT where 0� θ� 1; it is not mean-

ingful to return expired items that have no value.

Both the ERC and the hospital order from the supplier, and all the orders eventually go to

the supplier. The inventory returned by the ERC to the hospital is replenished by the ERC

from the supplier, so that the ERC maintains its predetermined optimal stock level. The

closed-loop emergency medicine supply chain is presented as Fig 1. Decisions include: how

much emergency medicine the ERC should order from the supplier, i.e., I, and how much

emergency medicine the hospital should order from the supplier, i.e., Q. In this proposed

return system, the interaction of the hospital with the ERC is uncertain, which affects the opti-

mal ordering decisions for both the ERC and the hospital.

We assume that the ERC and the hospital are decentralized and that decisions are made by dif-

ferent decision-makers. Thus, the hospital needs to pay for the returns, even though the price of

emergency medicine is linear, declining as time passes and the medicines age (approach their

expiry date). The ERC should take on costs if transferring inventory (e.g., transportation costs),

and receive the salvage revenue of returns at the same time. All unsatisfied demand at the ERC

and hospital cause shortage losses, while items in the hospital’s inventory that go that expire at the

end of the single period incur expiration costs. Therefore, the total costs of the ERC can be classi-

fied as shortage cost, transport cost, holding cost, and salvage revenue; and the total costs of the

hospital include ordering cost, shortage cost, expiration cost, and holding cost.

The hospital faces regular demand for emergency medicine with demand rate y. Two sce-

narios are considered: scenario 1 is yT � Q
y , and scenario 2 is yT > Q

y . We develop the models

Fig 1. Emergency medicine supply chain.

https://doi.org/10.1371/journal.pone.0205643.g001
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under both scenarios in Section 3.2, and we discuss the case of scenario 2, which is less tracta-

ble when deriving optimal ordering policies. In addition to this difficulty, the hospital will

respond to a more serious shortage risk in scenario 2; therefore, the case of scenario 2 is not as

rigid in the emergency medicine inventory system.

The emergency response is quick, which is feasible, because the time value function requires

a quicker response for a disaster (Meng et al., 2017) [1]. Considering this characteristic of an

emergency response, we assume that the return of unused emergency medicine occurs at the

time that a disaster occurs t. We assume that one or no disaster occurs within the single short

lifetime of a given medicine, because the likelihood of two or more disasters occurring in such

a short time interval is low (Pan et al., 2015) [10]. The case of many disasters happening across

a longer period is discussed in Section 7, in which one shelf life horizon can be divided into

multiple periods based on the occurrence time of disasters.

In the first stage, the ERC decides how many emergency materials should be ordered from

the supplier. In the second stage, the hospital decides how much emergency medicine to be

ordered from the supplier given return uncertainty.

For the purpose of our analysis, the following notations are used:

e: Expired cost per emergency medicine for the hospital

s1: Shortage cost per emergency medicine for the ERC

s2: Shortage cost per emergency medicine for the hospital

h1: Holding cost per time per emergency medicine for the ERC

h2: Holding cost per time per emergency medicine for the hospital

r: Transportation cost from ERC to hospital per emergency medicine

θ: Lifetime ratio of emergency medicine for the second purchase by the hospital from the

ERC, 0� θ� 1

T: Shelf life of emergency products

y: Demand rate of hospital for emergency medicines

x: Stochastic demand of emergency medicines at stage of emergency response

t: Stochastic civil aviation occurrence time

a,b: The lower and upper bounds of stochastic occurrence time t
c,d: The lower and upper bounds of stochastic demand x
f(x): Probability density function of stochastic demand

g(t): Probability density function of stochastic occurrence time

F(x): Cumulative density function of stochastic demand

G(t): Cumulative density function of stochastic occurrence time

I: The optimal inventory level of ERC, a decision variable

Q: The optimal order quantity of hospital from supplier, a decision variable

vt: The value of emergency medicine at time t, which is linear and declines as vt = v − kt. v is

the initial value of the emergency medicine and k is the declining rate.

Q� yT and Q + I� yT, both of which are reasonable, because if Q> yT, then the hospital

always pay for out-of-date and waste losses; if Q + I< yT, then the hospital always pay for

shortage costs.

In emergency practice, comparing the shortage loss and the value of emergency medicine,

it is more reasonable to assume that s1� s2� v� e.

3.2. Models

Scenario 1. yT � Q
y , for the hospital, no shortage would occur before θT, which is the latest

time for the medicine to reach the hospital in the return phase.
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1) When a disaster happens within the θT, and the demand is larger than the optimal inventory

level: the return strategy cannot be conducted by the ERC and the hospital, and the emer-

gency medicine inventories for the ERC and the hospital change, as shown in Fig 2.

For ERC :
R yT
a

R d
I s1ðx � IÞf ðxÞgðtÞdxdt þ

R yT
a

R d
I h1I Tf ðxÞgðtÞdxdt ð1Þ

The first term of Eq (1) is the shortage costs and the second term is the holding costs.

For hospital :
R yT
a

R d
I s2ðyT � QÞf ðxÞgðtÞdxdt þ

R yT
a

R d
I h2

Q
2

Q
y f ðxÞgðtÞdxdt ð2Þ

Similarly, the first term of Eq (2) is the shortage losses and the second term is the holding

costs.

2) When a disaster happens within the θT, and the ERC has unused inventory, the hospital

would receive supplements from the ERC because of the return strategy. These two medi-

cine inventories changes are presented as Fig 3.

Fig 2. Emergency medicine inventories of ERC and hospital.

https://doi.org/10.1371/journal.pone.0205643.g002

Fig 3. Emergency medicine inventories of ERC and hospital.

https://doi.org/10.1371/journal.pone.0205643.g003
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For ERC:

�
R yT
a

R I
c vtðI � xÞf ðxÞgðtÞdxdt þ

R yT
a

R I
c rðI � xÞf ðxÞgðtÞdxdtþ

R yT
a

R I
c h1I Tf ðxÞgðtÞdxdt

ð3Þ

Eq (3) expresses the salvage revenue, the transportation costs and the holding costs.

For hospital:

R yT
a

R I
c vtðI � xÞf ðxÞgðtÞdxdt þ

R yT
a

R I
IþQ� yT s2ðyT � ðQþ I � xÞÞf ðxÞgðtÞdxdtþ

R yT
a

R IþQ� yT
c h2ððQþ I � xÞT �

yT
2
T � ðI � xÞtÞf ðxÞgðtÞdxdtþ

R yT
a

R I
IþQ� yT h2ð

ðQþ Q � ytÞt
2

þ
ðQ � yt þ I � xÞ2

2y
Þf ðxÞgðtÞdxdtþ

R yT
a

R IþQ� yT
c eðQþ I � x � yTÞf ðxÞgðtÞdxdt

ð4Þ

The costs expression of Eq (4) includes ordering costs, shortage losses, expiration losses and

holding costs of the two cases.

3) When no disaster happens within the θT, the hospital receives I emergency medicines from

the ERC in the return process. See Fig 4 to understand the medicine inventories variations

intuitively.

For ERC : �
R b
yT vyTI gðtÞdt þ

R b
yT rI gðtÞdt þ

R b
yT h1I TgðtÞdt ð5Þ

The above Eq (5) consists of salvage revenue, transportation costs and holding costs.

For hospital:

R b
yT vyTI gðtÞdt þ

R b
yT eðI þ Q � yTÞgðtÞdt þ

R b
yT h2ððI þ QÞT � yT2

2
� ItÞgðtÞdt ð6Þ

The inventory costs of the hospital in Eq (6) include ordering costs, expiration losses and

holding costs.

Fig 4. Emergency medicine inventories of ERC and hospital.

https://doi.org/10.1371/journal.pone.0205643.g004
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Therefore, the total expected costs of the ERC are:

CERC ¼
R yT
a

R d
I s1ðx � IÞf ðxÞgðtÞdxdt �

R yT
a

R I
c vtðI � xÞf ðxÞgðtÞdxdt�

R b
yT vyTI gðtÞdt þ

R yT
a

R I
c rðI � xÞf ðxÞgðtÞdxdt þ

R b
yT rI gðtÞdt þ h1I T

ð7Þ

And the total expected costs of the hospital are:

CH ¼
R yT
a

R d
I s2ðyT � QÞf ðxÞgðtÞdxdt þ

R yT
a

R d
I h2

Q
2

Q
y
f ðxÞgðtÞdxdtþ

R yT
a

R I
c vtðI � xÞf ðxÞgðtÞdxdt þ

R yT
a

R I
IþQ� yT s2ðyT � ðQþ I � xÞÞf ðxÞgðtÞdxdt

þ
R yT
a

R IþQ� yT
c eðQþ I � x � yTÞf ðxÞgðtÞdxdt þ

R b
yT eðI þ Q � yTÞgðtÞdtþ

R yT
a

R IþQ� yT
c h2ððQþ I � xÞT �

yT
2
T � ðI � xÞtÞf ðxÞgðtÞdxdtþ

R b
yT h2ððI þ QÞT �

yT2

2
� ItÞgðtÞdt þ

R b
yT vyTI gðtÞdt

ð8Þ

Scenario 2. yT > Q
y , and the hospital may respond to shortage losses within the θT (e.g., the

latest time for emergency medicines to reach the hospital in the return phase), because both

the occurrence time and demand caused by the disaster are uncertain, resulting in the supple-

ment time and quantity being stochastic. In addition, this situation is the same as scenario 1

for the ERC. Therefore, the ERC analyses are omitted in this scenario.

When a disaster happens within the θT, and the demand is higher than the optimal inven-

tory level, the return strategy cannot be operated by the ERC and the hospital.

For hospital:

R Q=y
a

R d
I s2ðyT � QÞf ðxÞgðtÞdxdt þ

R yT
Q=y

R d
I s2ðyT � QÞf ðxÞgðtÞdxdtþ

R Q=y
a

R d
I h2

Q
2

Q
y
f ðxÞgðtÞdxdt þ

R yT
Q=y

R d
I h2

Q
2

Q
y
f ðxÞgðtÞdxdt

ð9Þ

The first and second terms of Eq (9) are the shortage losses in the two cases, as shown in Fig

5. The third and fourth terms are the holding costs in the same two cases.

Fig 5. Emergency medicine inventory of hospital for two cases.

https://doi.org/10.1371/journal.pone.0205643.g005
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When a disaster happens within the θT, and inventory remains, the hospital would receive

supplements from the ERC because of the return strategy.

For hospital:

R yT
a

R I
c vtðI � xÞf ðxÞgðtÞdxdt þ

R Q=y
a

R I
IþQ� yT s2ðyT � ðQþ I � xÞÞf ðxÞgðtÞdxdtþ

R yT
Q=y

R I� yðT� tÞ
c s2ðyt � QÞf ðxÞgðtÞdxdt þ

R Q=y
a

R IþQ� yT
c eðQþ I � x � yTÞf ðxÞgðtÞdxdt

þ
R yT
Q=y

R I
I� yðT� tÞ s2ððyt � QÞ þ yðT � tÞ � ðI � xÞÞf ðxÞgðtÞdxdtþ

R yT
Q=y

R I
I� yðT� tÞ eðI � x � yðT � tÞÞf ðxÞgðtÞdxdtþ

R Q=y
a

R IþQ� yT
c h2ððQþ I � xÞT �

yT
2
T � ðI � xÞtÞf ðxÞgðtÞdxdtþ

R Q=y
a

R I
IþQ� yT h2ð

ðQþ Q � ytÞt
2

þ
ðQ � yt þ I � xÞ2

2y
Þf ðxÞgðtÞdxdtþ

R yT
Q=y

R I� yðT� tÞ
c h2ð

Q
2

Q
y
þ
ðI � xþ I � x � yðT � tÞÞðT � tÞ

2
Þf ðxÞgðtÞdxdtþ

R yT
Q=y

R I
I� yðT� tÞ h2ð

Q
2

Q
y
þ
I � x

2

I � x
y
Þf ðxÞgðtÞdxdt

ð10Þ

This expression of Eq (10) is complicated for the four possible situations. Thus, the first

term is the ordering costs, and the second to fourth terms are the expected shortage losses in

situations 2, 3, 4, as presented in Fig 6. Similarly, the fifth and sixth terms are expiration losses

in situations 1 and 3. The last four terms express the holding costs, representing situations 1, 2,

3 and 4, respectively.

When no disaster happens within the θT, the hospital receives I emergency medicines from

the ERC in the return process.

For hospital:

R b
yT vyTI gðtÞdt þ

R b
yT s2ðyyT � QÞgðtÞdt þ

R b
yT eðI � yðT � tÞÞgðtÞdtþ

R b
yT h2ð

Q
2

Q
y
þ
ðI þ I � yðT � yTÞÞðT � yTÞ

2
ÞgðtÞdt

ð11Þ

Fig 6. Emergency medicine inventory of hospital for four cases.

https://doi.org/10.1371/journal.pone.0205643.g006
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As shown in Fig 7, the hospital takes on the ordering costs and shortage losses within the

θT, the expiration losses at the end of the shelf life period, and the holding costs.

Therefore, the total expected costs of ERC, which is the same with Eq (7):

CERC ¼
R yT
a

R d
I s1ðx � IÞf ðxÞgðtÞdxdt �

R yT
a

R I
c vtðI � xÞf ðxÞgðtÞdxdt �

R b
yT vyTI gðtÞdt

þ
R yT
a

R I
c rðI � xÞf ðxÞgðtÞdxdt þ

R b
yT rI gðtÞdt þ h1I T

And the total expected costs of hospital:

CH ¼
R yT
a

R d
I s2ðyT � QÞf ðxÞgðtÞdxdt þ

R yT
a

R d
I h2

Q
2

Q
y
f ðxÞgðtÞdxdtþ

R yT
a

R I
c vtðI � xÞf ðxÞgðtÞdxdt þ

R Q=y
a

R I
IþQ� yT s2ðyT � ðQþ I � xÞÞf ðxÞgðtÞdxdtþ

R yT
Q=y

R I
c s2ðyt � QÞf ðxÞgðtÞdxdt þ

R yT
Q=y

R I
I� yðT� tÞ s2ðyðT � tÞ � ðI � xÞÞf ðxÞgðtÞdxdt

þ
R b
yT s2ðyyT � QÞgðtÞdt þ

R Q=y
a

R IþQ� yT
c eðQþ I � x � yTÞf ðxÞgðtÞdxdtþ

R yT
Q=y

R I
I� yðT� tÞ eðI � x � yðT � tÞÞf ðxÞgðtÞdxdt þ

R b
yT eðI � yðT � tÞÞgðtÞdtþ

R b
yT vyTIgðtÞdt þ

R Q=y
a

R IþQ� yT
c h2ððQþ I � xÞT �

yT
2
T � ðI � xÞtÞf ðxÞgðtÞdxdtþ

R Q=y
a

R I
IþQ� yT h2ð

ðQþ Q � ytÞt
2

þ
ðQ � yt þ I � xÞ2

2y
Þf ðxÞgðtÞdxdtþ

R yT
Q=y

R I� yðT� tÞ
c h2ð

Q
2

Q
y
þ
ðI � xþ I � x � yðT � tÞÞðT � tÞ

2
Þf ðxÞgðtÞdxdtþ

R b
yT h2ð

Q
2

Q
y
þ
ðI þ I � yðT � yTÞÞðT � yTÞ

2
ÞgðtÞdt

ð12Þ

4. The optimal policies

This section derives optimal solutions for the models built in section 3. The process begin by

solving for the optimal order quantity Q� for the hospital, and then searching for the optimal

inventory level I� of the ERC, which is contrary to the decision sequence, such that this method

is a hysteron-protoron scheme.

In Scenario 2 where Q� yθT, it is found that the optimal solutions are affected by the dis-

tributed functions of stochastic demand and the occurrence time is affected more seriously

than in Scenario 1. The above finding is intuitive, because the likelihood that the hospital may

run out of stock within the θT depends on the stochastic demand and occurrence time. That is

to say, the hospital would take on more shortage losses, even though it would reduce holding

costs. However, comparing the shortage losses and the holding costs in emergency situations,

the hospital would take the shortage problem more seriously. In addition to this, governments

usually require the ERC to maintain a high minimum stock level, so that it may complete a

higher target of demand fulfillment for the affected population after a disaster occurs.

Therefore, in the following analysis, we only consider the situation in which Q� yθT; that

is, we confine the feasible interval to yθT� Q� yT for the ordering quantity of the hospital.

Some characteristics of the optimal ordering policies in Scenario 2 are presented and explained

in our numerical simulations.
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First, we calculate the optimal policy of the hospital for the optimal ordering quantity from

the supplier, considering the known information of ERC inventory level I.

dCH

dQ
¼ �

R yT
a

R d
IþQ� yT s2f ðxÞgðtÞdxdt þ

R yT
a

R d
I h2Q=yf ðxÞgðtÞdxdtþ

R yT
a

R IþQ� yT
c ef ðxÞgðtÞdxdt þ

R yT
a

R I
IþQ� yT h2ðQþ I � xÞ=yf ðxÞgðtÞdxdt

þ
R yT
a

R IþQ� yT
c h2Tf ðxÞgðtÞdxdt þ

R b
yT egðtÞdt þ

R b
yT h2TgðtÞdt

ð13Þ

d2CH

dQ2
¼
R yT
a s2f ðI þ Q � yTÞgðtÞdt þ

R yT
a ef ðI þ Q � yTÞgðtÞdt

þ
R yT
a

R d
IþQ� yT h2=yf ðxÞgðtÞdxdt

ð14Þ

From Eq (14), it is obvious that d2CH/dQ2� 0, which illustrates that the unique optimal solution for

the hospital’s ordering policy from the supplier exists if yT� Q� � yθT. Therefore, the unique optimal

solution can be derived by the decreasing or increasing trend of CH with Q, as shown in Fig 8.

For simplicity, Eq (13) is expanded by Eq (15).

dCH

dQ
¼ eð1 � GðyTÞÞ þ h2Tð1 � GðyTÞÞ þ s2ðFðI þ Q � yTÞ � 1ÞGðyTÞ

þh2

Q
y
GðyTÞð1þ

R I
IþQ� yT FðxÞdxÞ þ eFðI þ Q � yTÞGðyTÞ

ð15Þ

Fig 7. Emergency medicine inventory of hospital for one case.

https://doi.org/10.1371/journal.pone.0205643.g007

Order policy for emergency medicine

PLOS ONE | https://doi.org/10.1371/journal.pone.0205643 October 25, 2018 12 / 24

https://doi.org/10.1371/journal.pone.0205643.g007
https://doi.org/10.1371/journal.pone.0205643


Proposition 1. Confining Q� θyT, the optimal ordering quantity for hospital is:

1. If eF(I)G(θT) + e(1 − G(θT)) + h2T� s2(1 − F(I))G(θT), then Q� = yT.

2. If s2ð1 � FðI � ð1 � yÞyTÞÞGðyTÞ � h2Tð1 � GðyTÞÞ þ h2yTGðyTÞ þ eð1 � GðyTÞÞ þ eFðI � ð1 �

yÞyTÞGðyTÞ þGðyTÞh2=y
R I
I� ð1� yÞyT FðxÞdx, then Q� = θyT.

3. If the both of above two conditions ((1)-(2)) are not satisfied, the Q� could be derived from

the following equations:

s2ð1 � FðI þ Q� � yTÞÞGðyTÞ ¼ eð1 � GðyTÞÞ þ eFðI þ Q� � yTÞGðyTÞ

þh2Tð1 � GðyTÞÞ þ h2Q�=yGðyTÞ þ h2=yGðyTÞ
R I
IþQ�� yT FðxÞdx

The statements in Proposition 1 are intuitive, and the proofs follow the above process of

solving and analysis. The optimal ordering quantity must balance the shortage cost, expiration

cost and holding cost, and the optimal solution is not affected by the ordering cost of the

returns.

The first statement suggests that the system order yT to meet all demand in the hospital,

because the expected shortage losses are so large that no shortage is admitted. As indicated by

the first statement, the marginal shortage cost is larger than the marginal costs of expiration

and holding at the near interval of yT. However, reducing the order quantity from the supplier

would increase the likelihood that the hospital may run out of stock and decrease the possibil-

ity that the emergency medicines may expire. Thus, reducing one unit of order quantity from

yT will increase the total costs of hospital by s2(1 − F(I))G(θT) − (eF(I)G(θT) + e(1 − G(θT)) +

h2T). In contrast, according to the expression shown in the second statement, the marginal

costs of expiration and holding are larger than the marginal shortage cost at the near interval

of θyT. Increasing the order quantity from the supplier would decrease the likelihood that the

hospital may run out of stock and increase the possibility that the emergency medicines may

expire. Thus, enhancing one unit of order quantity from θyT will increase the total costs.

Therefore, in this second situation, the optimal ordering quantity of the hospital from the sup-

plier is θyT. Similar analysis is done for the third statement, and the results show that enhanc-

ing one unit of order quantity from θyT will decrease the total costs of hospital, and reducing

one unit of order quantity from yT will decrease the total costs. In the third situation, the opti-

mal ordering quantity of the hospital is Q�, as expressed in the third statement.

Second, we study the optimal policy of ordering quantity for the ERC from the supplier,

given the known parameters, including the latest time for return θ.

Fig 8. The trends of hospital costs with the order quantity from supplier.

https://doi.org/10.1371/journal.pone.0205643.g008
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dCERC

dI
¼ � s1ð1 � FðIÞÞGðyTÞ � ðv � kyTÞFðIÞGðyTÞ � kFðIÞ

R yT
a GðtÞdt

þrFðIÞGðyTÞ � ðv � yTÞð1 � GðyTÞÞ þ rð1 � GðyTÞÞ þ h1T
ð16Þ

d2CERC

dI2
¼ ðs1 � vþ kyT þ rÞf ðIÞGðyTÞ � kf ðIÞ

R yT
a GðtÞdt ð17Þ

From Eq (17), which refers to the mean value theorem of integrals, it can be understood

that d2CERC/dI2� (s1 − v + ka + r)f(I)G(θT)� 0 based on reasonable assumptions. Therefore,

for the ERC, there is a unique optimal inventory policy I�, which can be derived from Eq (16):

FðI�Þ ¼ maxð0;minð
s1GðyTÞ � ðv � kyTÞGðyTÞ þ rGðyTÞ þ ðv � kyTÞ � r � h1T

s1GðyTÞ � ðv � kyTÞGðyTÞ þ rGðyTÞ � k
R yT
a GðtÞdt

; 1ÞÞ

Proposition 2. The optimal inventory policy of the ERC

(1) When ðv � kyTÞ � r � h1T � � k
R yT
a GðtÞdt, then I� = b. (2) When (s1 − (v − kθT) + r)G

(θT) + v – kθT − r − h1T� 0 then I� = a.

(3) When � ðs1 � ðv � kyTÞ þ rÞGðyTÞ < ðv � kyTÞ � r � h1T < � k
R yT
a GðtÞdt, then

I� ¼ F� 1ð
s1GðyTÞ� ðv� kyTÞGðyTÞþrGðyTÞþðv� kyTÞ� r� h1T

s1GðyTÞ� ðv� kyTÞGðyTÞþrGðyTÞ� k
R yT
a GðtÞdt

Þ.

The ordering decision depends on the size of the parameters, and it is clear that the optimal

ordering decision seeks the balance between risk level and costs; a lower risk level brings

higher costs and vice versa. Because 0 � ðs1 � vþ kaþ rÞGðyTÞ � ðs1 � vþ kyT þ rÞ
GðyTÞ � k

R yT
a GðtÞdt, the analysis only considers the situation of whether the term of the

numerator is positive or negative. In addition, ðs1 � ðv � kyTÞ þ rÞGðyTÞ � k
R yT
a GðtÞdt,

demonstrating that the third statement is feasible and possible.

The first statement illustrates that the ERC should order b units of emergency medicine

from the supplier. Simplifying the expression in the first statement, we obtain ðv � kyTÞþ
k
R yT
a GðtÞdt � r þ h1T; that is, the marginal net expected benefit from the return salvage is

larger than the cost of transportation and inventory management. Thus, choosing a higher

stock level can increase the salvage revenue. Contrarily, if the marginal shortage cost is less

than the costs of value decay, transferring and inventory management, choosing the minimum

stock level a is a viable option. Otherwise, an equilibrium must be found to balance shortage

losses, transferring costs, inventory management costs and salvage revenue, as described in the

third statement.

Third, by substituting the parameter I in the expression of Q� with I�, we obtain the optimal

ordering quantity for the hospital from the supplier as expressed by known and fixed parameters.

Simplify, we define D ¼
s1GðyTÞ� ðv� kyTÞGðyTÞþrGðyTÞþðv� kyTÞ� r� h1T

s1GðyTÞ� ðv� kyTÞGðyTÞþrGðyTÞ� k
R yT
a GðtÞdt

,

FðIÞ ¼
dCH

dQ
jQ¼yyT ¼ h2Tð1 � GðyTÞÞ þ h2yTGðyTÞ þ GðyTÞh2=y

R I
I� ð1� yÞyT FðxÞdx

þ eð1 � GðyTÞÞ þ eFðI � ð1 � yÞyTÞGðyTÞ � s2ð1 � FðI � ð1 � yÞyTÞÞGðyTÞ
, and

CðIÞ ¼ dCH
dQ jQ¼yT ¼ eFðIÞGðyTÞ þ eð1 � GðyTÞÞ þ h2T � s2ð1 � FðIÞÞGðyTÞ in the following

analysis. In addition, we demonstrate that dF(I)/dI� 0 and dC(I)/dI� 0.
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Theorem 1. Since Q is confined to θyT� Q� yT, the optimal stock policies for the ERC

and the hospital by decision sequence are:

1. If Δ� 1, then I� = b. Thus, Q� = θyT when F(b)� 0, and Q� 2 (θyT,yT) as shown in follow-

ing when F(b)� 0.

s2ð1 � Fðbþ Q� � yTÞÞGðyTÞ ¼ h2Tð1 � GðyTÞÞ þ h2Q�=yGðyTÞ

þh2=yGðyTÞ
R b
bþQ�� yT FðxÞdxþ eð1 � GðyTÞÞ þ eFðbþ Q� � yTÞGðyTÞ

2. If Δ� 0, then I� = a. So, Q� = θyT when F(a)� 0, Q� = yT when C(a)� 0, and Q� is

expressed as following when F(a)� 0 and C(a)� 0.

s2ð1 � Fðaþ Q� � yTÞÞGðyTÞ ¼ h2Tð1 � GðyTÞÞ þ h2Q�=yGðyTÞ

þh2=yGðyTÞ
R a
aþQ�� yT FðxÞdxþ eð1 � GðyTÞÞ þ eFðaþ Q� � yTÞGðyTÞ

3. If 0< Δ< 1, then I� = F−1(Δ). Therefore, Q� = yT when C(F−1(Δ))� 0, Q� = θyT when F

(F−1(Δ))� 0, and Q� is derived from the following expression when F(F−1(Δ))� 0 and C

(F−1(Δ))� 0.

s2ð1 � FðF� 1ðDÞ þ Q� � yTÞÞGðyTÞ ¼ h2Tð1 � GðyTÞÞ þ h2Q�=yGðyTÞ

þh2=yGðyTÞ
R F� 1ðDÞ

F� 1ðDÞþQ�� yT FðxÞdx þ eð1 � GðyTÞÞ þ eFðF� 1ðDÞ þ Q� � yTÞGðyTÞ

As shown in Theorem 1, there are three cases for the ERC’s ordering policy from the

supplier in situations that involve occurrence time and demand uncertainties: ordering

for the largest amount of demand, ordering for the minimum amount of demand, and

ordering for a balanced amount of demand. The hospital’s optimal ordering policies also

involve three cases with a stochastic return quantity and return time: ordering the maxi-

mum stock level—the hospital orders all supplies from the supplier to meet all demand;

ordering the minimum stock level—the hospital orders the required minimum stock level

θyT from the supplier and any other (1 − θ)yT demands are satisfied by the return strategy

or are unsatisfied; ordering the equilibrium amount—the hospital orders the decided

equilibrium quantity from the supplier to meet some demand (greater than θyT) and the

remaining demand is met by means of the return policy, or it is lost. However, if the ERC

has ordered the largest amount of demanded supplies from the supplier, then the hospital

would not order the maximum amount of supplies from the supplier. Since the highest

stock level in the ERC means that the ERC has unused emergency medicines after an

emergency response, then there must be expired items in the hospital at the end of the

period if the hospital orders the maximum amount; thus, it is better for the hospital to

seek an equilibrium order amount in all circumstances.

5. Centralized decisions

To find the best possible result in this closed-loop supply chain, we develop a decision setting

by which the ERC and the hospital are centralized. In the centralized setting, the ERC would

not charge the hospital for returns, it would take on the costs of transferring inventory. This

centralized setting can be accomplished through some practical contracts, and this problem

should be researched in greater depth in future work.
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Combining Eqs (7) and (8), we get the following expression:

Cc ¼
R yT
a

R d
I s1ðx � IÞf ðxÞgðtÞdxdt �

R yT
a

R I
c vtðI � xÞf ðxÞgðtÞdxdt�

R b
yT vyTI gðtÞdt þ

R yT
a

R I
c rðI � xÞf ðxÞgðtÞdxdt þ

R b
yT rI gðtÞdt þ h1I T

R yT
a

R d
I s2ðyT � QÞf ðxÞgðtÞdxdt þ

R yT
a

R d
I h2

Q
2

Q
y
f ðxÞgðtÞdxdtþ

R yT
a

R I
c vtðI � xÞf ðxÞgðtÞdxdt þ

R yT
a

R I
IþQ� yT s2ðyT � ðQþ I � xÞÞf ðxÞgðtÞdxdtþ

R yT
a

R IþQ� yT
c eðQþ I � x � yTÞf ðxÞgðtÞdxdt þ

R b
yT eðI þ Q � yTÞgðtÞdtþ

R yT
a

R I
IþQ� yT h2ð

ðQþ Q � ytÞt
2

þ
ðQ � yt þ I � xÞ2

2y
Þf ðxÞgðtÞdxdtþ

R yT
a

R IþQ� yT
c h2ððQþ I � xÞT �

yT
2
T � ðI � xÞtÞf ðxÞgðtÞdxdtþ

R b
yT h2ððI þ QÞT �

yT2

2
� ItÞgðtÞdt þ

R b
yT vyTI gðtÞdt

ð18Þ

@Cc

@I
¼ � s1ð1 � FðIÞÞGðyTÞ þ rFðIÞGðyTÞ þ rð1 � GðyTÞÞ

þ h1T þ eð1 � GðyTÞÞ þ h2T � h2bþ h2

R b
yT GðtÞdt

ð19Þ

@Cc

@Q
¼ eð1 � GðyTÞÞ þ h2Tð1 � GðyTÞÞ þ s2ðFðI þ Q � yTÞ � 1ÞGðyTÞ

þ h2

Q
y
GðyTÞ þ eFðI þ Q � yTÞGðyTÞ þ

h2

y
GðyTÞ

R I
IþQ� yT FðxÞdx

ð20Þ

Since @2Cc
@I2 � 0 and @2Cc

@Q2 � 0, the optimal solutions of I and Q can be derived from Eqs (19)

and (20). However, from these two expressions, we find that Eq (20) is same as Eq (15).

Theorem 2. In this centralized setting, the optimal ordering policies of the ERC and the

hospital are:

1. The optimal ordering policy for the hospital Qc� would be same as that in the decentralized

setting (Theorem 1) when Ic� ¼ a or Ic� ¼ b.

2. Let r ¼
s1GðyTÞ� rð1� GðyTÞÞ� h1T� eð1� GðyTÞÞ� h2Tþh2b� h2

R b
yT GðtÞdt

s1GðyTÞþrGðyTÞ
, and if Ic� ¼ F� 1ðrÞ,

then Qc� ¼ yT when C(F−1(r)) � 0, Qc� ¼ yyT when F(F−1(r)) � 0, and

when F(F−1(r)) � 0 together with C(F−1(r)) � 0, Qc� can be derived by

s2ð1 � FðF� 1ðrÞ þ Qc� � yTÞÞGðyTÞ ¼ h2Tð1 � GðyTÞÞ þ h2Qc�=yGðyTÞ

þh2=y GðyTÞ
R F� 1ðrÞ

F� 1ðrÞþQc�� yT FðxÞdxþ eð1 � GðyTÞÞ þ eFðF� 1ðrÞ þ Qc� � yTÞGðyTÞ
.

The proof of Theorem 2 is straightforward when we let Eqs (19) and (20) equal zero. Note

that the first statement illustrates that it may not be beneficial to design certain coordination

contracts to make ordering decisions in the centralized setting, which is counter intuitive.

Rather, the designed contracts may incur extra costs, and the total costs in the centralized set-

ting are not less than the total costs as a whole in the decentralized setting, which results in the

extra costs outweighing the benefit of the designed contracts.

Proposition 3. When the optimal ordering policy for the ERC in the centralized setting is

I� = F−1(r), and I� = F−1(Δ) in the decentralized setting, we have:
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1. If � eð1 � GðyTÞÞ � h2T þ h2b � h2

R b
yT GðtÞdt � ðv � kyTÞ þ k

R yT
a GðtÞdt, thenr� Δ.

2. Ifrððv � kyTÞ þ k
R yT
a GðtÞdtÞÞ > � eð1 � GðyTÞÞ � h2ðT � bþ

R b
yT GðtÞdtÞ, thenr� Δ.

To find the difference between centralized and decentralized settings, we comparer with

Δ, and solve for the equilibrium solutions of the ERC in centralized and decentralized settings

separately. Note that 0<r< 1 and 0< Δ< 1 mean that � ðs1 þ rÞGðyTÞ < � r � h1T �

eð1 � GðyTÞÞ þ h2ðb � T �
R b
yT GðtÞdtÞ < 0 together with � ðs1 þ rÞGðyTÞ < � r � h1Tþ

ðv � kyTÞð1 � GðyTÞÞ < � ðv � kyTÞGðyTÞ � k
R yT
a GðtÞdt. Being confined to these condi-

tions, the value interval of parameter θ must be restricted. The condition � eð1 � GðyTÞÞ þ

h2ðb � T �
R b
yT GðtÞdtÞ < ðv � kyTÞð1 � GðyTÞÞ guarantees that the marginal benefit is larger

than the marginal costs of expiration and inventory in the hospital, so the optimal stock level

in the decentralized setting is higher than that in the centralized setting.

Since @Q/@I< 0 given the implicit function derivation, a lower stock level at the ERC

means a larger ordering quantity for the hospital in the centralized setting, which is intuitive.

Therefore, the total ordering quantity for emergency medicines from the supplier in this cen-

tralized setting may decrease for two different reasons: (1) the ERC’s inventory is high enough

to lessen the hospital’s ordering quantity; and (2) higher costs of expiration and inventory

management.

6. Numerical cases study

We apply a numerical case study to our proposed closed-loop emergency medicine supply

chain, aiming to intuitively present the optimal ordering policies for the ERC and the hospital

in the decentralized and centralized settings. Both scenarios are considered in this case study,

and we find some interesting conclusions.

This numerical case study is conducted as an experiment focusing on earthquake disasters

in China using our proposed model. The disaster data is taken from the earthquake website

[26] for the period from 1999–2017; there were 8 large-scale disasters (larger than M7) in these

18 years. In addition to this data, the occurrence time can be estimated by a uniformly distrib-

uted function, and the probability density function is g(t) = 0.036. The demand data is esti-

mated according to the data provided by Rawls and Turnquist (2011) [27], and the cumulative

density function of the stochastic demand is F(x) = (x – 360)/(9500 – 360) with an interval of

[360,95000], as presented in Fig 9. Other parameters are estimated as the work of Mete and

Zabinsky (2010) [28] suggested. The initial value of emergency medicine is v = 140 dollars, and

the shelf life of the emergency medicine is 12 months; thus, we can derive a value of k = 11.67

dollars/month (140/12). Based on the work of Sheu (2007) [29] and the different prices in

urban and rural areas, the holding cost in the ERC is 4 dollars/unit/month and 6 dollars/unit/

month in the hospital, and the transportation cost is 15 dollars/unit. In this paper, the penalty

for shortages in the ERC is 5 times that of the value of the emergency medicine; however, the

shortage penalty for the hospital is less—only 4 times the value of the medicine. The first rea-

son for this is related to the natural characteristics of emergency medicine that is used for pre-

liminary rescues in emergency situations, and the second reason is that demand that exceeds

the inventory in one hospital can be met by the transfer of inventory from other hospitals.

Referring to the background from Zhou and Olsen (2017), we estimate that the demand rate

for emergency medicine in China every day is 340 units—that is, 10,200 units per month. The

estimated values for parameters are displayed in Table 1.

First, we compute the optimal ordering policies for the ERC and the hospital and discuss

how the predefined latest return time affects emergency medicine inventory decisions. Our
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results show a complex relationship between the predefined latest return time and the optimal

ordering quantity. Several observations arise from these results, as presented in Fig 10.

One observation is that the predefined return time does matter in deciding the stock levels

of emergency medicines with short a lifetime. From Fig 10, we see that the hospital’s optimal

ordering quantity is up; that is to say, the later the return time, the larger the demand before

that return time. However, for the ERC, the trend is first down and then up, which is counter-

intuitive, given that if there is a lengthy period of time before the predefined latest return time,

this most likely means that the disaster was quite significant. Therefore, the possible objective

reason is that there is a threshold for the designed return time. When the θT is smaller than

the threshold—that is, the probability that a disaster will occur is relatively low—if the

designed return time is lengthy, then the holding time will increase. In such a case, the ERC

will decrease the inventory level to decrease holding and transportation costs. Whereas, when

the θT exceeds the threshold—that is, the likelihood that a disaster will occur is relatively high,

the ERC will maintain a higher inventory level to decrease expected shortage costs.

Our second observation is that the optimal ordering quantity for the hospital from the sup-

plier in a centralized setting is less than in a decentralized setting, but the optimal stock level of

the ERC is not the same; rather, the ERC’s inventory is first higher and then lower than it

would be in a decentralized setting. From Fig 10, we can see that there is a threshold for the

predefined return time of between 3 and 4 in this numerical case. When the predefined return

time is earlier than the threshold, the likelihood that the reserved emergency medicines in the

Fig 9. The density functions for demand in disasters.

https://doi.org/10.1371/journal.pone.0205643.g009

Table 1. The estimated values of parameters.

V T k r s1 s2 h1 h2 e y g(t) f(x)

140 12 11.67 15 700 560 4 6 30 10200 0.036 1.057×10−5

https://doi.org/10.1371/journal.pone.0205643.t001
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Fig 10. The optimal ordering policies for ERC and hospital.

https://doi.org/10.1371/journal.pone.0205643.g010

Fig 11. The optimal ordering policies in the case of h1 = 10 and h2 = 20.

https://doi.org/10.1371/journal.pone.0205643.g011
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ERC will be used is small. In addition, the holding costs for the hospital are much higher (1.5

times) than the holding costs for the ERC. Therefore, in a centralized setting, the optimal

ordering quantity of the hospital in a centralized setting is lower, and the ERC will select a

higher inventory level to decrease total holding costs. However, when the predefined return

time is later than the threshold value, which means that the probability that return activities

will happen is low, the hospital will need to store at least as much emergency medicine as it

would in a decentralized setting.

Second, we study another case in which the expected shortage costs are less than the costs

of inventory management and transfer. We conduct this case by means increased holding

costs, because the shortage costs cannot be decreased easily. Comparing the results shown in

Fig 11 to those shown in Fig 10, we find that the results found in the centralized and decentral-

ized settings are similar, except that the threshold value of the predefined return time is larger.

Further, the effect of the predefined return time on the optimal ordering quantity of the hospi-

tal increases, and the effect on the optimal stock level of the ERC also increases. This phenome-

non can be explained as follows: the holding and transfer costs are larger, so it is viable to

select the lowest stock level when the predefined return time is relatively shorter, and the opti-

mal stock level increases with the extension of the predefined return time.

Third, to illustrate the difference between centralized and decentralized systems, we calcu-

late the total costs of the two systems separately, as shown in Fig 12. We obtain the same con-

clusion as the general research on the coordination mechanisms for the supply chain; namely,

the centralized decisions perform better than the decentralized decisions. Also, when the pre-

defined return time is brief, the difference in the two total costs increases; however, the differ-

ence size decreases when the predefined return time is relatively long. This finding can be

made clear by the threshold value of the predefined return time, which is similar to the expla-

nation of the second result in Fig 10.

Fig 12. The total costs in centralized and decentralized settings.

https://doi.org/10.1371/journal.pone.0205643.g012

Order policy for emergency medicine

PLOS ONE | https://doi.org/10.1371/journal.pone.0205643 October 25, 2018 20 / 24

https://doi.org/10.1371/journal.pone.0205643.g012
https://doi.org/10.1371/journal.pone.0205643


Fourth, in order to intuitively reveal the optimal ordering policies in Scenario 2 in which Q
� yθT, we simulate the optimal ordering policies for the hospital and compute the total costs

in Scenario 2. Fig 13 shows the comparisons between both scenarios. One conclusion is that

the optimal ordering quantity is lower and the total costs are much higher. Further, in Scenario

2, the optimal ordering quantity increases with the increase of the predefined return time,

which is same as in Scenario 1, and the increment decreases, which is different from Scenario

1. Also, in Scenario 1, the total costs of the hospital decrease with the increase in the predefined

return time, because the longer the predefined return time, the lower the likelihood of a short-

age in emergency medicines, which reduces the expected shortage costs. In all, the above con-

clusions indicate that the decisions in Scenario 2 are not viable options, so it is reasonable to

omit the analysis of the results of Scenario 2.

7. Conclusions

In this research, we investigate a system of an emergency medicine closed-loop supply chain

with an ERC, a hospital and a supplier, and derive the optimal ordering policies for the ERC

and the hospital. In this study system, the return process is stochastic, since the occurrence

time of a disaster and the demand for emergency medicines are uncertain. We first build mod-

els for the inventory ordering problem in a decentralized setting, and we then consider the

problem in a centralized setting. We design a contract to reduce total costs by coordinating the

ordering mechanisms of the ERC and the hospital. The analytical optimal policies show that

the emergency medicine closed-loop supply chain is an applicable method to control emer-

gency medicine expiration costs and waste.

By addressing the expiration problem and the ERC’s and hospital’s risk-averse behavior

through an analysis of the uncertainties related to occurrence time and disaster severity, this

study makes several important theoretical and practical contributions to the field of manage-

ment. First, this research has furthered the application of the emergency inventory model. In a

decentralized setting, models are built for all possible scenarios, which can divided into two

scenarios: Q� yθT and Q� yθT. Scenario 2 Q� yθT does perform better than Scenario 1.

Intuitively, the optimal ordering quantity of the hospital from the supplier increases with the

return time, but the increment first increases and then remains constant. Less intuitively, we

find that the optimal stock level at the ERC first decreases and then increases as the return

time lengthens; therefore, we find that there is a threshold value for the predefined return time

that affects the optimal decisions differently.

Fig 13. The optimal results of the hospital in Scenario 1 and Scenario 2.

https://doi.org/10.1371/journal.pone.0205643.g013
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Further, we find that in a centralized system, like a nationalized health system, the hospital

and the ERC may be interested in cooperating with each other to reduce total costs, including

expiration costs, holding costs and shortage costs. However, a challenge with implementing a

centralized system is that the total amount of reserved emergency medicines at the ERC and

the hospital may be lower than they would be in a decentralized system, which increases the

risk that demand may exceed stock. Thus, a coordination contract should be designed to moti-

vate the hospital and the ERC to make inventory decisions together to control the risk of

shortage.

Our theoretical study has also drawn a number of practical implications that warrant fur-

ther analysis. First, from our study, we find that decision-makers of ERCs need to better define

the latest return time and decline appropriate values for the return cost using hard technologi-

cal skills or soft training skills; for example, shifting efforts away from singular gain toward

cross-sectorial collaboration to improve closed-loop supply chain performance. Therefore, to

enhance emergency service levels by using a closed-loop strategy, ERC managers should try to

shorten the latest return time, which requires a coordinated approach, and address positive

externalities and efficiencies across the closed-loop supply chain.

An online emergency inventory system should be built that provides access to rich data

sets, which can help researchers investigate decision-maker behavior related to emergency

supply issues [22–25, 30]. This data would help managers better evaluate the possibility for

losses in disasters or accidents; this can also help managers adopt more appropriate risk man-

agement practices and make more reliable decisions. Finally, when compared with a decentral-

ized closed-loop strategy, the centralized closed-loop strategy provides a more reliable means

of dealing with the uncertainties of occurrence time and demand. Therefore, establishing a

resilient and centralized emergency supply value chain based on the remaining lifetime of

products is a more efficient and productive means of managing emergency supplies.

Our work can be extended in several ways for future research. A natural extension of our

study is to consider the emergency medicine closed-loop supply chain in a multi-horizon per-

spective, in which one shelf life horizon can be divided into multiple periods based on the

occurrence time of disasters. Such an examination would provide an opportunity to develop

models that evaluate the coordination mechanisms and relationships that exist between the

hospital and the ERC to conduct optimal centralized policies. In addition, more complicated

factors should be introduced into the emergency medicine inventory system, including investi-

gating different product types of emergency supplies with different costs, and further exploring

how demand parameters may affect optimal inventory policies.
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