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A simple and convenient one-stepmethod for synthesis of acridines and their derivatives from condensation of aromatic aldehydes,
cyclic diketones, and aryl amines using Cu-doped ZnO nanocrystalline powder as a catalyst is reported. The present protocol
provides several advantages such as good yields, short reaction time, easy workup, and simplicity in operation.

1. Introduction

In recent years, an increasing interest has been focused on
the synthesis of 1,4-dihydropyridine compounds owing to
their significant biological activities [1]. Substituted acridines
have been used as antimalarials [2] for many years quite
successfully and several of them have exhibited excellent
results in chemotherapy of cancer [3–6]. These derivatives
are frequently used in industry, especially for the production
of dyes [7, 8]. Beside these properties, analogues of acridine
have also been shown to have very long lasting efficiencies
and have interesting electrochemical behavior [9, 10] of
heterocyclic compounds and in the interaction with DNA
[11].

Some methods are available in the literature for the syn-
thesis of acridine derivatives containing 1,4-dihydropyri-
dines, from dimedone, aldehyde, and different nitrogen
sources like urea [12], methyl amine [13], and different
anilines or ammonium acetate [14] via traditional heating
in organic solvents in the presence of triethylbenzylammo-
nium chloride (TEBAC) [15], p-dodecylbenzenesulfonic acid
(DBSA) [16], Proline [17], Amberlyst-15 [18], ammonium
chloride, Zn(OAc)

2
⋅H
2
O or L-proline [19], and/or under

solvent-free conditions such as under microwave irradia-
tion [20–22], sulfonic acid functionalized silica [23], ZnO

nanoparticles [24], and nano-Fe
3
O
4
[25] and using ionic

liquids [26, 27] such as 1-methylimidazolium trifluoroacetate
([Hmim]TFA) [28] and Bronsted acidic imidazolium salts
containing perfluoroalkyl tails [29]. Furthermore, some of
these procedures suffer from other disadvantages, including
the requirement for an expensive catalyst or the use of an
excess of catalyst. To avoid these limitations and to improve
the reaction conditions available for the synthesis of 1,8-
dioxodecahydroacridines, the discovery of new methodolo-
gies using new heterogeneous and reusable catalysts is still in
demand.

ZnO is considered to be one of the most important oxide
materials owing to its unique features and wide range of
technologically important applications. Moreover,it is cheap
and environmentally friendly as compared to other metal
oxides. Due to these properties, it has found potential appli-
cations in several fields such as gas sensors [30], solar cells
[31], varistors [32], light emitting devices [33], photocatalyst
[34], antibacterial activity [35], and cancer treatment [36].
ZnO lacks center of symmetry, which makes it beneficial
for use in actuators and piezoelectric transducers. Properties
of ZnO can be tuned according to the research interest,
by doping with various metal atoms to suit specific needs
and applications. The metal doping induces drastic changes
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Scheme 1: The synthesis of 1,8-dioxodecahydroacridines in solvent-free conditions.

in optical, electrical, and magnetic properties of ZnO by
altering its electronic structure. Many authors have reported
the changes induced by incorporation of transition metal
ions into ZnO lattice [37–39]. albeit the large number of
reports on transition metal-doped ZnO system, very less
work is done on Cu-doped ZnO. Substitution of copper
into the ZnO lattice has been shown to improve properties
such as photocatalytic activity, gas sensitivity, and magnetic
semiconductivity [40–42].

In continuation of our studies in developing efficient,
simple, and environmentally benign methodologies for or-
ganic synthesis, we reveal herein the synthesis of N-substi-
tuted decahydroacridine-1,8-diones using Cu-doped ZnO
nanocrystalline powder as a catalyst under solvent-free con-
dition (Scheme 1).

2. Materials and Methods

2.1. General. All materials were purchased from Merck. The
reactions were monitored by TLC using silica gel plates, and
the products were purified by flash column chromatography
on silica gel (Merck, 230–400 mesh) and were identified
by comparison of their spectra (1HNMR and 13CNMR)
and physical data with those of the authentic samples. 1H
NMR and 13C NMR spectra were recorded with Brucker
DRX500 AVANCE (400MHz) spectrometers, using CDCl

3

as solvent. The morphology and elemental composition were
characterized by a digital microscopy imaging scanning
equipment VEGA 3 SB (TESCAN Co., s.r.o., Brno, Czech
Republic) and energy dispersive X-ray spectrometer (EDS)
attached to the SEM instrument with the operating voltage of
15 kV.

2.2. Synthesis of Cu-Doped ZnONanocrystalline Powder. Syn-
thesis of Zn

1−xCuxO (1%Cu-doped) nanopowder was carried
out using the same technique followed by Cadar et al.
[43] with some modifications after optimization of reaction
conditions. The targets in the experiment were specifically
designed using high purity of zinc nitrate hexahydrate
(99.99%) and copper sulfate pentahydrate (99%) powders.
The copper-doped ZnO catalyst was prepared by a two-step
procedure: (1) preparation of precursor by coprecipitation
method; (2) formation of Cu/ZnO nanopowder by thermal
decomposition. The method has been considered to be fast,

Table 1: Optimization of the reaction conditionsa.

Entry Solvent Time (h) Yield (%)b

1 Ethanol 6 30
2 H2O 5 30
3 CH2Cl2 4 20
4 DMF 6 40
5 — 1.5 90
aReactions were carried out with dimedone, aniline, and benzaldehyde in
2 : 1 : 1 molar ratio.
bYields refer to isolated pure products.

Table 2: Effect of amount of catalyst on the synthesis of N-
substituted Decahydroacridine-1,8-dionesa.

Entry Catalyst (mol%) Time (h) Yield (%)b

1 5 3.5 90
2 10 1.5 90
3 15 1.5 90
aReactions were carried out with dimedone, aniline, and benzaldehyde with
molar ratio of 2 : 1 : 1.
bYields refer to isolated pure products.

simple, and inexpensive, allowing for the production of
fine, homogeneous crystalline powders without the risk of
contamination.

The stoichiometric quantities of zinc and copper salts
were dissolved in 100mL deionized double distilled water
(solution A). Separately, a solution was prepared by dissolv-
ing appropriate amounts of sodium hydroxide and sodium
carbonate in deionized double distilled water (solution B).
The solution A was heated to 85∘C and the solution B was
mixed dropwise into this solution with constant stirring.
During the whole process, temperature was maintained at
85∘C. This mixing was done for 1 h while refluxing through
water condenser 85∘C. Final solution was allowed to cool
at room temperature and greenish precipitate that formed
was washed three times with 20mL deionized water in order
to remove unnecessary impurities and dried overnight at
50∘C under vacuum. Finally, the precursors were calcined
at a temperature of 450∘C for 90min in the muffle furnace
under air atmosphere to obtain the nanocrystalline Cu/ZnO
powder.
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Table 3: Synthesis of N-substituted decahydroacridine-1,8-diones using Cu-doped ZnO nanocrystalline powder (10mol%) as a catalyst in
solvent-free conditiona.

Entry Amines Aldehydes Productb Time (h) Yields (%)c References

1

NH2 CHO

4a 1.5 90 [18]

2

NH2

OMe

CHO

4b 2 85 [44]

3

NH2

Cl

CHO

4c 1.5 95 [45]

4

NH2

CN

CHO

4d 1.5 90 [46]

5

NH2

CHO

NO2

4e 1.5 89 [47]

6

NH2

CH3

CHO

4f 1.5 91 [48]

7

NH2

CH3

CHO

Cl

4g 1.5 94 [49]

8

NH2

CH3

CHO

Cl
4h 2 90 [18]
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Table 3: Continued.

Entry Amines Aldehydes Productb Time (h) Yields (%)c References

9

NH2

CH3

CHO

Cl

4i 1.5 93 [18]

10

NH2

CH3

CHO

CH3

4j 1.5 95 [49]

11

NH2

CH3

CHO

CN

4k 1.5 92 [48]

12

NH2

CH3

CHO

NO2

4l 1.5 85 [50]

13

NH2

CH3

CHO

OMe

4m 2 80 [51]

14

NH2

CH3

CHO

OH

4n 2 87 [52]

15

NH2

CH3

CHO

OH

4o 2 83 [19]
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Table 3: Continued.

Entry Amines Aldehydes Productb Time (h) Yields (%)c References

16

NH2

Br

CHO

4p 1.5 88 [44]

17

NH

Br

2

OH

CHO

4q 1.5 90 [52]

18

H2N CHO

4r 1.5 89 [53]

a
Reactions were carried out with dimedone, amine, and benzaldehyde in 2 : 1 : 1 molar ratio.

bproducts were characterized with 1H, 13C-NMR, mp.
cYields refer to isolated pure products.

Figure 1 shows scanning electron micrograph of nano-
crystalline Zn

1−xCuxO sample. In order to confirm the
presence of Cu in the synthesized ZnO nanoparticles, the
compositional analysis and purity of the as-synthesized
nanocatalyst was obtained using EDS. Figure 2 shows the
representative EDX spectra of nanocrystalline sample that
the estimated amount of Cu dopant was nearly 1%. From the
similarity of the Zn and Cu peak intensity line traces, it is
clear that after the synthesis process, zinc and copper were
homogenously distributed inside the nanoparticle.

2.3. General Experimental Procedure for N-Substituted Deca-
hydroacridine-1,8-diones Formation Catalyzed by Cu-Doped
ZnO Nanocrystalline Powder (Table 3, Entry 1). A mixture of
dimedone 1 (2mmol), aromatic amine 2 (1mmol), aromatic
benzaldehyde 3 (1mmol), and 10mol% of Cu-doped ZnO
nanocrystalline powder was heated in an oil bath at 90∘C for
1.5 or 2 h. The reaction process was monitored by TLC (n-
Hexane: EtOAc, 1 : 1). Upon completion of the transforma-
tion, the reaction mixture was cooled to room temperature
and hot ethanol (15mL) was added. This resulted in the
precipitation of the catalyst, which was collected by filtration.
The filtrate was distilled to dryness to give the crude product,
which was recrystallized from amixture of EtOH andH

2
O to

give compounds 4 in high to excellent yields (Scheme 1).

3. Results and Discussion

At first, to optimize the reaction condition, we studied the
reaction of dimedone (2mmol), aniline (1mmol), and ben-
zaldehyde (1mmol) as model compounds in the presence

of Cu-doped ZnO nanocrystalline powder (10mol%) as a
catalyst in solvent-free condition. We evaluated the effect
of different solvents such as ethanol, H

2
O, DMF, CH

2
Cl
2
,

and solvent-free condition on the reaction rate under the
same reaction conditions. Solvent-free condition afforded the
products in higher yield and shorter reaction time (Table 1).

We next investigated the other amounts of Cu-doped
ZnO nanocrystalline powder (5 and 15mol%) for this reac-
tion.The optimum yield of theN-substituted decahydroacri-
dine-1,8-diones was obtained when 10mol% of Cu-doped
ZnO nanocrystalline powder was used (Table 2).

Therefore, in an optimized reaction condition dimedone
(2mmol), amine (1mmol), and benzaldehyde (1mmol) in an
oil bath at 90∘C were mixed with Cu-doped ZnO nanocrys-
talline powder (10mol%) for 1.5 or 2 h (Table 3).

Subsequently, a variety of N-substituted decahydroacri-
dine-1,8-diones were prepared from dimedone, various ben-
zaldehyde derivatives, aniline derivatives, and benzylamine
using the optimized reaction conditions and the results are
summarized in Table 3.

As shown in Table 3 when the electron withdrawing sub-
stituents are present in benzaldehyde, the reaction rate in-
creases, whereas the effect is reversed in the case of ben-
zaldehyde with strong electron-donating substituents such as
–OMe and –OH, of course with lower yields (entries 2, 13,
14, and 15). Orthosubstituted benzaldehyde also required rel-
atively long reaction time towards para- and metasubstituted
benzaldehydes (entries 7, 8, 9), because of its steric effect.

A plausiblemechanism for the formation of the 1,8-dioxo-
decahydroacridine products using Cu-doped ZnO nano-
crystalline powder as a catalyst has been depicted in Scheme 2.
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Scheme 2: The proposed mechanism of synthesis of 1,8-dioxodecahydroacridines.

Figure 1: SEM photo of 1% Cu-doped ZnO nanocrystalline powder.
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Figure 2: Representative EDX spectra of 1% Cu-doped nanocatalyst
sample.
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We propose that the nanoparticle induces the polarization
of the carbonyl groups and facilitates the formation of the
intermediates that subsequently react together to give the
final products 4a–4r.

4. Conclusion

We have developed a new catalytic method for synthe-
sis of 1,8-dioxodecahydroacridines using Cu-doped ZnO
nanocrystalline powder as a catalyst in solvent-free condi-
tion by one-pot three-component condensation of aromatic
aldehydes, dimedone, and aromatic and aliphatic amines.The
simple experimental, workup procedure and catalyst prepa-
ration, high to excellent yields and using catalytic amount of
Cu-doped ZnO nanocrystalline powder, are notable advan-
tages of the method.
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