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Fraction of radiobiologically hypoxic cells in human
melanoma xenografts measured by using single-cell
survival, tumour growth delay and local tumour control
as end points

EK Rofstad and K Miseide
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Summary Four human melanoma xenograft lines (A-07, D-12, R-18, U-25) grown orthotopically in Balb/c nu/nu mice were characterzed
with respect to the fraction of radiobiologically hypoxic cells. The purpose of the study was to establish a firm radiobiological basis for future
use of the lines in the development and evaluation of non-invasive assays of tumour hypoxia. The hypoxic fractions were assessed using
three different assays. the single cell survival assay, the tumour growth delay assay and the local tumour control assay, and the means + s.e.
were found to be 6 ± 30%, 3 ± 1 0 and 5 ± 2%o respectively (A-07), 26 ± 50/0, 25 ± 60/o and 22 + 6%o respectively (D-12), 55 ± 9°o 65 ± 80/o and
48 ± 7°O respectively (R-1 8) and 52 ± 8%, 59 ± 7% and 47 ± 7% respectively (U-25). The three assays gave numerical values for the hypoxic
fraction that were not significantly different for any of the lines. The hypoxic fraction differed significantly among the lines; the R-18 and U-25
lines showed higher hypoxic fractions than the D-12 line (P < 0.05). which in tum showed a higher hypoxic fraction than the A-07 line
(P < 0.05). regardless of the assay. The wide range of the hypoxic fractions and the signfficant differences among the lines suggest that A-07.
D-12. R-18 and U-25 tumours should be useful models in future studies attempting to develop non-invasive assays of tumour hypoxia.
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Manv human tumours develop regions of hxpoxic cells during
gro,wth (Vaupel et al. 1989: 1991: Hockel et al. 1991 ). The fraction
of hxpoxic cells differs substantially among individual tumours of
the same histological tIpe (Nordsmark et al. 1994: Brizel et al.
1995: Wong et al. 1997). Hypoxia may cause resistance to radia-
tion therapy (Coleman. 1988: Gatenbv et al. 1988: Hockel et al.
1993: Nordsmark et al. 1996: Brizel et al. 1997: Fx-les et al. 1997)
and some forms of chemotherapx (Teicher. 1994) and mav
promote the development of metastatic disease (Schwickert et al.
1995: Brizel et al. 1996: Hockel et al. 1996: Walenta et al. 1997).
Non-invasive methods for detecting and quantifying hypoxia in
tumours are needed for prediction of hypoxia-induced treatment
resistance and malignant progression in individual patients (Stone
etal. 1993).

Several new- strate6ies based on macnetic resonance imaging
and spectroscopy. positron emission tomographsy. single photon
emission tomographv. electron paramagnetic resonance spec-
troscopy or phosphorescence imaginc are currentIr being used in
attempts to develop non-invasix e assax s of tumour hvpoxia
(Haw kins and Phelps. 1988: Moonen et al. 1990: Coleman. 1991:
Wilson and Cerniglia. 1992: Negendank. 1992: Baciac et al.
1993). The ultimate aim of these attempts is to arrixe at assavs for
measuring the fraction of the clonocenic cells of tumours that is
hypoxic. i.e. the fraction of radiobiologically hxpoxic cells. as
onl1 the clonogenic cells are of relexance for hypoxia-induced

Received 19 December 1997
Revised 4 March 1998
Accepted 11 March 1998

Correspondence to: EK Rofstad

treatment resistance and malignant progression (Kim et al. 1993:
Fenton et al. 1995). Rodent tumour lines or human tumour
xenograft lines xwith 'known fractions of radiobiologicallx
hypoxic cells are usually used as model systems in the studies.
Successful studies require that the hypoxic fractions of the tumour
models haxe been determined correctly. Most groups inxolved in
the studies haxe derix-ed the hypoxic fractions of their tumour
models from the literature or at best have measured the hypoxic
fractions in their own laboratorx using a sinale radiobiological
technique. These hxpoxic fractions may be misleading. as the
hypoxic fraction of a gixen tumour line may differ significantly
among, laboratories and the use of different radiobiological assay s
may result in substantially different hypoxic fractions ( Moulder
and Rockxxell. 1984: Rockxell and Moulder. 1990).
The fractions of radiobiologically hypoxic cells of four human

melanoma xenograft lines measured by usinc single cell survix al.
tumour grow-th delay and local tumour control as end points are
reported in the present communication. The purpose of the study
>-as to establish a firm radiobiolocical basis for future inxestiga-
tions aiming at exaluating the usefulness of promising non-inva-
siv-e methods for detection and quantification of tumour hypoxia.

MATERIALS AND METHODS

Mice and tumours

Adult female Balb/c nu/nu mice (8-12 weeks old). bred at our
research institute. xwere used as host animals for tumours. The
mice W-ere maintained under specific pathogen-free conditions
at constant temperature (24-26 C) and humiditv (30-60%).
Sterilized food and tap A ater were gix en ad libitum.
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The study was perfomied using the A-07. D-12. R-18 and U-25
human melanoma xenograft lines (Rofstad. 1994). Tumours were
initiated from monolayer cultures in exponential growth. Monolayer
cells. cultured in RPMI-1640 medium (25 rrm Hepes and L-gluta-
mine) supplemented with 13% fetal calf serum. 250 mg [' penicillin
and 50 mg 1' streptomycin. were detached by trypsinization (treat-
ment with 0.05% trypsin/0.02% EDTA solution at 37°C for 2 min).
Approximately 3.5 x 105 cells in 10 gl of Ca'+- and Mg2+-free
Hanks balanced salt solution (HBSS) were inoculated intra-
denmally in the flanks of mice using a 100-jl Hamilton syringe. The
cells were verified to be free from Mvcoplasma contamination.
The tumours were deposited above the subcutaneous muscle

tissue in the deeper part of the dermis. The dermis and the subcu-
taneous muscle were infiltrated and gradually replaced by malig-
nant tissue during tumour growth. The infiltration of host cells in
the tumours was sparse: leucocytes. macrophages and fibroblasts
constituted less than 1% of the total number of cells. The growth
and histological appearance of the tumours have been described in
detail previously (Rofstad. 1994).

Irrdiation

A Siemens Stabilipan X-ray unit operated at 220 kV. 19-20 mA.
and with 0.5-mm Cu filtration. was used for iradiation. The tumours
were irradiated at a dose rate of 5.1 Gy min-'. A 15 x 15 mm hole
through a 2-cm-thick lead block served as beam defining aperture.
To ensure uniformn doses throughout the tumour volume. the tumours
were exposed to radiation by two opposing tratmnent fields through
each of which 50% of the dose was delivered.
Tumour volume (V). calculated as V = il6ab2 (a and b are the

longer and the shorter of two perpendicular diameters respec-
tively), was within the range of 200-400mm3 at irradiation.
Tumour diameters were measured with callipers. Hypoxic condi-
tions were obtained by occluding the tumour blood supply with a
clamp 5 min before radiation exposure. The mice were kept under
anaesthesia during irradiation. Ketamine (Parke Davis. Barcelona.
Spain) and azaperone (Janssen Pharmaceutika. Beerse, Belgium)
were diluted in phosphate-buffered saline and administered intra-
muscularly in doses of 33 mg kg-' body weight and 25 mg kg-'
body weight respectively. The body core temperature of the mice
was kept at 36-380C using a heating pad.

Single cell survival assay

Single cell suspensions were prepared from tumours immediately
after irradiation using a standardized mechanical and enzymatic
procedure. The tumour tissue was minced with crossed scalpels in
cold HBSS before enzymatic treatment at 370C for 2 h. The
enzyme solution consisted of 0.2% collagenase. 0.05% pronase
and 0.02% DNAase in HBSS. The resulting suspensions were
filtered through 30-im nylon mesh, centrifuged and resuspended
in culture medium. Cell concentrations were determined by
counting trypan blue-excluding cells in a haemocytometer. The
fraction of cells showing trypan blue exclusion was always higher
than 80%. The fraction of doublets was always lower than 3%.
Larger cell aggregates were not seen.

Fraction of surviving cells was measured in vitro using a plastic
surface colony assay. Aliquots of 1 ml of cell suspension were
plated in 25-cm2 tissue culture flasks. The flasks contained 1 x I0W
lethally irradiated (30 Gy) feeder cells in 4 ml of culture medium.
The feeder cells were derived from monolayer cultures and were

plated 24 h before the tumour cells were plated. It was verified
experimentally that the use of feeder cells increased the plating
efficiency of the tumour cells. Moreover. a linear relationship
between the number of colonies and the number of cells plated
was ensured by the use of feeder cells. The use of feeder cells also
inhibited migration of viable tumour cells. hence causing dense
and easily scorable colonies.
The cells were incubated at 37°C for 7-21 days in a humidified

atmosphere of 5% carbon dioxide in air. One half of the culture
medium (2.5 ml) was removed and replaced with fresh medium
every seventh day. The cells were fixed in 100% ethanol and
stained with methylene blue. Colonies containing more than 50
cells were counted using a stereomicroscope. Plating efficiency
was calculated from the number of colonies counted and the
number of trypan blue-excluding cells plated and was corrected
mathematically for multiplicity (Gillespie et al. 1975). The cell
surviving fraction of an irradiated tumour was calculated from the
plating efficiency of the cells of the tumour and the mean plating
efficiency of the cells of six unirradiated control tumours. The
plating efficiencies of unirradiated control tumours were within
the ranges of 30-50% (A-07. D-12. U-25) and 50-70% (R-18).

Survival curves were fitted to the data by linear regression
analysis to determine the Do values and extrapolation numbers for
clamped and unclamped tumours. Only data points at doses judged
to be beyond the shoulder region of the survival curve (clamped
tumours) and data points at doses eliminating oxic cells
(unclamped tumours) were included in the analysis. Fraction of
radiobiologically hypoxic cells (RHF) was determined from the
vertical displacement of the curves pertaining to clamped and
unclamped tumours as

RHF = exp [In n(unclamped) - In n(clamped)] =
n(unclamped)/n(clamped) (1)

and the s.e. of the RHF [s.e. (RHF)] as

s.e.(RHF) = RHF x t s.e. [In n(unclamped)]' +
s.e. [In n(clamped)] } 12

where n(clamped) and n(unclamped) represent the extrapolation
numbers for clamped and unclamped tumours respectively.

Tumour growth delay assay

Tumour volume was measured twice weekly after irradiation as
described above. Tumour growth delay. i.e. the time after irradia-
tion at which an irradiated tumour reached twice its volume at irra-
diation minus the median time required for unirradiated control
tumours to double their volumes, was determined and plotted vs
radiation dose in a semilogarithmic plot. Dose-response curves
were fitted to the data by linear regression analysis. Fraction of
radiobiologically hypoxic cells was determined from the hori-
zontal displacement of the curves pertaining to clamped and
unclamped tumours as

RHF = exp {[D(unclamped) - D(clamped)]/D0}

and the s.e. of the RHF as

s.e.(RHF) = RHF x lIDo x {s.e.[L(unclampedl]2
+ s.e. [D(clamped)])Il/2

(3)

(4)

where D(clamped) - DLunclamped) represents the horizontal
displacement of the curves. The mean of the Do values for clamped
and unclamped tumours deternined from the single cell survival
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Table 1 Do and TCD, values of human melanoma xenografts

Melanom DO(unclamped) (Gy) D0(clamped) (Gy) TCD50(uncIamped) (Gy) TCD50(clamped) (Gy)

A-07 2.39±0.09 2.46±0.07 33.0±0.7 40.1 +0.4
D-12 2.17+0.05 2.14±0.08 30.0±0.5 33.3±0.3
R-18 2.69±0.05 2.77±0.09 46.2±0.3 48.2±0.3
U-25 2.51 + 0.06 2.49 ± 0.05 39.2 ± 0.3 41.1 ± 0.2

WMean + s.e.

Table 2 Fraction of radiobiologically hypoxic cells of human melanoma
xenografts

Hypoxic fraction (%

Melanoma Single cell Tumour growth Local tumour
survival delay control

A-07 6 3 3 1 5 ± 2
D-12 26+5 25±6 22_6
R-18 55_9 65±8 48_7
U-25 52 8 59±7 47_7

aMean ± s.e.

data was used in the calculations of the fraction of radiobiolo,gi-
callv hvpoxic cells.

Local tumour control assay

Tumours were examined twice weekly after irradiation and scored
as locally controlled if regrowth was not observed within 180 days
after treatment. Mice with recurrent tumours were killed when the
tumour diameters reached 10-12 mm. Cured mice were killed at
day 180 after irradiation and subjected to necropsy and histolog-
ical examinations for residual tumour tissue. Mitotic figures.
morphologically intact tumour cells or any other signs of viable
melanoma tissue were never seen in the histological sections.
The percentage of locally controlled tumours was plotted vs

radiation dose. and TCD., ± s.e.. i.e. the radiation dose that results

in 50%7 local tumour control. was determined by probabilit)
regression analysis. Fraction of radiobiologically hvpoxic cells
was calculated as

RHF = exp { [TCD,( unclamped) - TCD O(clamped)I/D. } (5)

and the s.e. of the RHF as

s.e.(RHF) = RHF x lIDo x { s.e. [TCD 0(unclamped)]'
+ s.e. [TCD- (clamped)]}l (6)

The mean of the Do values for clamped and unclamped tumours
determined from the single cell survival data was used in the
calculations of the fraction of radiobiologically hypoxic cells.

Statistical analysis

Statistical comparisons of mean values were performed under
conditions of normality and equal variance by using the Student's
t-test for single comparisons and one-way analysis of vaniance and
the Student-Newman-Keuls test for multiple comparisons. All P-
values were determined from tw-o-sided tests. A significance crite-
rion of P < 0.05 was used. The statistical analysis was performed
using SigmaStat statistical softx-are (Jandel Scientific. Erkrath.
Germany ).

RESULTS

Cell survival curves for clamped and unclamped tumours irradi-
ated in vivo and assayed in vitro are presented in Figure 1. The D
values describing the terminal slopes of the curves differed among
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Figure 1 Cell surving fraction vs radiation dose for human melanoma xenografts irradiated under unclamped ( ^ ) or clamped (A) condions. The curves were
fitted to the data by regression analysis. Points and bars represent geometric mean + s.d. of six tumours
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Figure 2 Tumour growth delay vs radiation dose for human melanoma xenografts irradiated under uncdamped ( ) or clamped (A) conditions The curves were
fitted to the data by regression analysis. Points and bars represent geometnc mean + s.d. of 30 tumours
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Figure 3 Local tumour control vs radiation dose for human melanoma xenografts irradiated under unclamped ( ) or clamped (A) conditions. The curves were
fitted to the data by regression anatysis. Points are based on 40 tumours

the melanoma lines by a factor of 1.2-1.3. but wvere not signifi-
cantl different for clamped and unclamped tumours in any of the
lines (P > 0.05) (Table 1). The fractions of radiobioloaicallx
hvpoxic cells were determined to be 6 + 3% (A-07). 26±5%
(D-12). 55±+9k (R-18) and 5'2+ 8%- (U-5) (Table2).

Figure 2 shows growth delay cunres for tumours irradiated
under clamped and unclamped conditions. Tumour growth delay
increased exponentially w ith radiation dose. i.e. linear curs es gave

excellent fits to the data sets when the data were plotted in semi-

logarithmic diagrams. The slopes of the curves for clamped and
unclamped tumours were not significantly different in any of the
melanoma lines (P > 0.05). The fractions of radiobiologicallv
hypoxic cells w-ere determined to be 3 ± 1%r (A-07). 25 6C
(D-2) 65 + 8%e (R-18) and 59± 7%7 (U-5) (Table 2).

Local control curses for tumours irradiated under clamped and
unclamped conditions are presented in Fiuure 3. The TCD values
differed amonc the melanoma lines by factors of 1.4-1.5 (clamped
tumours) and 1.5-1.6 (unclamped tumours) (Table 1). The slopes of
the curves for clamped and unclamped tumours were not sgnimfi-
cantly different in any of the lines (P> 0.05). The fractions of radio-
biologicalhv hvpoxic cells were determined to be 5 ± 2% (A-07).
22 6%7 (D-1'). 48 + 7% (R-18) and 47± 7c7% (U-25) (Table2).

The fraction of radiobiologically hy poxic cells differed amona
the melanoma lines (Table 2): R-18 and U-25 show-ed significantlv
higher hypoxic fractions than D-1' (P < 0.05). w-hich in turn
showed a siunificantly higher hy poxic fraction than A-07
(P < 0.05). regardless of w hether single cell sursix al. tumour

growth delay or local tumour control w as used as end point. The
hypoxic fractions determined for R-18 and U-'5 were not signifi-
cantly different for any of the end points (P > 0.05). The fractions
of radiobiologically hypoxic cells determined from the single cell
sursix al assay. the tumour grow-th delay assay and the local tumour
control assay w-ere not significantly different in any of the
melanoma lines (P > 0.05).

Individual tumours of the same melanoma line also differed in

the fraction of radiobiologically hvpoxic cells: the standard dexvia-
tions of the cell sun iving, fractions and the tumour growth delays
w-ere usually larger for unclamped than for clamped tumours of the
same line. as illustrated by the bars in Figures 1 and 2. The coeffi-
cient of variation w as calculated at each dose level of each curse

and the data xere subjected to statistical analysis. The coefficient
of variation wxas significantly larger for unclamped tumours than
for clamped tumours in all lines (P < 0.05). regardless of wxhether
single cell surs ival or tumour growth delay w-as used as end point.
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DISCUSSION

Non-invasive methods to determine the fraction of radiobioloci-
cally hvpoxic cells in tumours are needed for prediction of
hypoxia-induced malignant progression and treatment resistance
in individual patients (Stone et al. 1993). The development of such
assays requires the use of tumour models that are well character-
ized with respect to the fraction of radiobiologically hypoxic cells.
The hvpoxic fractions of the human melanoma xenograft lines
A-07. D-12. R-18 and U-25 were measured here using single cell
surVival. tumour growth delay and local tumour control as end
points. The purpose of the work was to characterize the lines with
respect to radiobiological hypoxia and hence to establish the radio-
biolocical basis for future use of the lines in the evaluation
of potentially useful non-invasive assays of tumour hypoxia. The
experimental procedures and the methods of calculation were
similar to those used previously by others in studies of the fraction
of radiobiologyically hypoxic cells in experimental tumours
(Moulder and Rockwell. 1984: Grau et al. 1990: Rockwell and
Moulder. 1990). The novel feature of the w-ork is that the three
major assays of hypoxic fraction were applied to the same tumour
lines and that the assavssoave similar results.
The assessment of the hypoxic fraction of tumours using radio-

biological techniques is based on certain assumptions (Moulder
and Rockwell. 1984). Some of these assumptions are common for
the three major assays. They assume that (a) the sun-isval curves for
naturally and artificially hypoxic cells have the same slope and
intercept. (by the majority of the tumour cells are either fully oxic
or fully hypoxic. (c) the method of clamping, leaves no oxygenated
tumour regions and (d) the tumour cells rendered artificially
hypoxic are no less viable than the cells in unclamped tumours. In
addition. special assumptions are associated with each of the
assays. Thus. the single cell survival assay is based on the assump-
tion that no tumour cell subpopulation is selectively enriched or
lost during the preparation of single cell suspensions. The tumour
growth delay assay requires that the same level of cell inactivation
in clamped and unclamped tumours results in the same growth
delay. Finally. the local tumour control assay assumes that the
same level of cell inactivation is required to control clamped and
unclamped tumours. Some of the assumptions can be tested exper-
imentallv as described by Mioulder and Rockwell (1984). These
assumptions have been found to be valid for the tumour lines
studied here. Other assumptions cannot be tested experimentally.
and the validity of these assumptions is therefore questionable.
However. as the hvpoxic fractions determined by the sinole cell
survival assay. the tumour _rowth delay assay and the local tumour
control assay were not significantly different. the assumptions that
these assays do not have in common were probably adequately met
by the A-07. D- 12. R- 18 and U-25 tumour lines.
The main conclusion of our work is that the fraction of radio-

biologically hypoxic cells differs significantly among the human
melanoma xenooraft lines subjected to investigaation: the R- 18 and
U-25 lines showed a higher hypoxic fraction than the D- 12 line.
which in tum showed a higher hypoxic fraction than the A-07 line.
This conclusion is indisputable as the three major assays of
hypoxic fraction not only ranked the lines in the same order but
also gave numerical values for the hypoxic fraction that were not
significantly different for any of the lines. Another important
conclusion is that the fraction of radiobiolooically hypoxic cells
differs substantially among individual tumours of the same line.
This conclusion is based on the observation that the coefficients of

variation for cell survi'ving fraction and tumour growth delay were
significantly larger for unclamped than for clamped tumours.
The A-07. D-12. R-18 and U-25 tumour lines should be useful

models for developing and evaluating non-invasive assays of
tumour hypoxia for several reasons. Firstly. the tumour lines have
been well characterized with respect to the fraction of radiobiolog-
ically hvpoxic cells. Secondly. the hypoxic fractions of the lines
cover a broad range. from approximately 5%i to more than 50%-.
Thirdly. the fact that the hvpoxic fraction differs substantiallv
amonc individual tumours of the same line. particularly in the A-
07 line. may be used to assess to what extent a non-invasive assay
of tumour hypoxia is influenced by the biochemical properties of
the tumour cells in addition to the hypoxic fraction. Moreover.
previous studies have shouwn that several biolog-ical characteristics
of the donor patients tumours have been retained in these tumour
lines. including anggiogenic potential: growth. histopathological
and pathophysiological parameters: organ-specific metastatic
pattern: and sensitivity to dacarbazine. heat and radiation treat-
ment (Rofstad. 1994).
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