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Protocadherin gamma C3: a new player in regulating 
vascular barrier function

Abstract  
Defects in the endothelial cell barrier accompany diverse malfunctions of the central nervous system 
such as neurodegenerative diseases, stroke, traumatic brain injury, and systemic diseases such as 
sepsis, viral and bacterial infections, and cancer. Compromised endothelial sealing leads to leaking 
blood vessels, followed by vasogenic edema. Brain edema as the most common complication caused 
by stroke and traumatic brain injury is the leading cause of death. Brain microvascular endothelial 
cells, together with astrocytes, pericytes, microglia, and neurons form a selective barrier, the so-called 
blood-brain barrier, which regulates the movement of molecules inside and outside of the brain. 
Mechanisms that regulate blood-brain barrier permeability in health and disease are complex and not 
fully understood. Several newly discovered molecules that are involved in the regulation of cellular 
processes in brain microvascular endothelial cells have been described in the literature in recent 
years. One of these molecules that are highly expressed in brain microvascular endothelial cells is 
protocadherin gamma C3. In this review, we discuss recent evidence that protocadherin gamma C3 is 
a newly identified key player involved in the regulation of vascular barrier function.
Key Words: blood-brain barrier; brain microvascular endothelial cells; permeability; protein 
interaction; protocadherin gamma C3; protocadherins; tight junctions

https://doi.org/10.4103/1673-5374.343896

Date of submission: December 4, 2021

Date of decision: January 29, 2022 

Date of acceptance: February 22, 2022 

Date of web publication: April 25, 2022

Introduction 
In the case of neuroinflammatory cerebrovascular diseases such as stroke, 
traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), or others, the 
blood-brain barrier (BBB) is decisively influenced by the proinflammatory 
environment. In the acute stage, the changed dynamics and molecular 
composition of endothelial tight junction (TJ) proteins lead to a significant 
increase in capillary permeability. Brain edema is a common complication 
of capillary leakage. In most cases, acute swelling of the brain leads to a 
craniectomy and, from the point of view of the health system, requires cost-
intensive care. Changes observed in delayed secondary brain injury after 
TBI, stroke, or SAH, such as increased brain edema, acute inflammation, and 
hyperexcitability in the injured part of the brain as a result of endothelial barrier 
leakage, have been attributed to the loss of claudin-5 at the molecular level. 
Claudin-5 is a TJ protein at the BBB with a molecular weight of 23 kDa and an 
important marker for barrier tightness (Greene et al., 2019; Winkler et al., 
2021). After a stroke, TBI or SAH, its protein level first drops within 6 hours and 
then after 3 days, which leads to a biphasic opening of the BBB (Campbell et al., 
2012; Knowland et al., 2014). In addition to TJs and adherens junctions (AJs), 
which are responsible for sealing the BBB, the latest scientific findings highlight 
another molecule, protocadherin gamma C3 (PCDHGC3), a protein with a 
molecular weight of 130 kDa, as an additional important molecular regulator 
of BBB permeability. This review discusses the role of protocadherins (PCDHs) 
and their major influence on the control of BBB tightness in brain microvascular 
endothelial cells (BMECs) and cerebrovascular diseases.

Search Strategy 
Studies cited in this review were searched on PubMed using the following 
keywords: cadherin, protocadherin, protocadherin gamma C3, blood-brain 
barrier, brain microvascular endothelial cells, permeability, signaling pathways, 
tight-junctions. All years were chosen in the search. These searches were 
performed between September and December 2021. Not all studies could be 
cited due to page limitations.

Structure of Cell-Cell Junctions at the 
Blood-Brain Barrier 
The special feature of BMECs is the formation of exceptionally dense 
intercellular junctions which enable a significantly lower permeability 
compared to the capillary endothelia in non-neuronal tissue. The paracellular 
transport route is closed by TJs and AJs, which are the major components of 
the physical barrier of the BBB. In the TJs lying on the lateral circumference, 

cell-cell adhesion is mainly mediated by the transmembrane proteins claudins, 
occludin, and representatives of the junctional adhesion molecules, which in 
turn are intracellularly linked to membrane-associated cytoplasmic proteins, 
such as the zonula occludens-1 protein (Greene et al., 2019). Claudin-5 alone, 
as the most important TJ protein, would be sufficient for the formation of 
cell-cell contact. Claudin-1, -3, and -12 as well as occludin, which also form 
perivascular zipper structures that close the intercellular gap, take on other 
important barrier functions (Castro Dias et al., 2019). Intracellularly, TJs bind 
to the zonula occludens proteins, which are connected to the cytoskeleton 
(Figure 1). The connections via AJs are on the abluminal side and are mainly 
formed by the endothelial cell-specific vascular endothelial cadherin (VE-
cadherin) (Castro Dias et al., 2019). VE-cadherin binds intracellularly to the 
connecting molecules p120, β-catenin, and plakoglobin. These molecules 
are ultimately linked to the actin-binding proteins of the cytoskeleton. The 
interaction of cadherins with cytoplasmic catenins and the actin cytoskeleton 
is essential for strong cell-cell adhesion. Deletion or mutations of either 
cadherin or catenin result in morphological defects in the brain (Suzuki and 
Takeichi, 2008). In addition to their barrier functions, TJs and AJs are involved 
in the intracellular signaling pathway of apoptosis as well as in processes of 
cell growth, angiogenesis, and gene expression. Various studies have also 
shown that cerebrovascular pathologies, such as TBI, stroke, or SAH, have a 
decisive influence on the entire neurovascular unit and its complex molecular 
structure (Andjelkovic et al., 2020; Winkler et al., 2021). 

The expression of PCDHs in neuronal tissue has been intensively studied, 
which underscores their important neurobiological role (Schreiner and 
Weiner, 2010). On the other hand, little information was available about the 
function of PCDHs at the BBB. Recently, our group focused in particular on the 
role of PCDHs in BMECs and described their previously unknown molecular 
function concerning BBB tightness (Dilling et al., 2017).

Protocadherin Family
PCDHs, a subgroup within a cadherin family of adhesion proteins, are 
highly expressed in the central nervous system (CNS) and play a role in 
embryogenesis (Sano et al., 1993; Wang et al., 2002). PCDHs are divided 
into clustered and non-clustered PCDHs. Clustered PCDHs are conserved 
across vertebrate species and are encoded by specific gene clusters α, β, 
and γ located on human chromosome 5q31 and mouse chromosome 18 
(Wu and Maniatis, 1999). Mouse PCDH α cluster encodes 14 α-PCDHs, 
while the PCDH β and PCDH γ clusters encode 22 β-PCDHs and 22 γ-PCDHs, 
respectively (Garrett et al., 2019). All three PCDH clusters contribute to neural 
development. Knockout mice lacking the PCDH α and/or PCDH β clusters are 
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viable and fertile (Hasegawa et al., 2016). The PCDH γ cluster is the only one 
required for postnatal viability. The knockout of the entire PCDH γ cluster 
or just the three C isoforms (PCDHGC3-C5) results in neonatal lethality 
and excessive cell death of neurons in the spinal cord and hypothalamus 
(Chen et al., 2012). Thus, the PCDH γ cluster is involved in neuronal survival, 
synaptogenesis, and the branching of dendrites (Garrett et al., 2012). Mice 
with mutated PCDH α cluster showed defects in the olfactory axons, reduced 
visual acuity due to changes in retinal ganglion cells, decreased dendrite 
arborization in hippocampal neurons, and reduced overall density of dendritic 
spine (Peek et al., 2017). No vascular defects were reported in these knockout 
mice. PCDHs consist of six or seven extracellular (EC) cadherin domains, a 
transmembrane domain, and the intracellular C-terminal domain (Figure 1) 
(Morishita and Yagi, 2007; Pancho et al., 2020). There are several similarities 
but also differences between PCDHs and classic cadherins. Some of these 
features are highlighted in Figure 1. Compared with classic cadherins (as well 
as with TJs proteins), PCDHs have different, not fully characterized intracellular 
interaction partners (Pancho et al., 2020). Moreover, PCDH-mediated cell-
cell contacts are only partially dependent on calcium, when comparing i.e. 
with VE-cadherin. In analogy to classic cadherins, they are involved in signal 
transduction and PCDH-mediated cell-cell contacts (Haas et al., 2005; Dilling 
et al., 2017; Gabbert et al., 2020). As classic cadherins, PCDHs determine cell-
type-specific recognition showing homophilic trans interactions between two 
adjacent cells and cis interactions on the same cell membrane forming zipper-
like structures between adjacent cells. The trans interactions are formed by 
EC1 (the most N-terminal cadherin domain) and EC2-4 (Figure 1) while EC5-
6 are involved in cis interactions, as experiments with mutant proteins have 
shown (Schreiner and Weiner, 2010; Rubinstein et al., 2015). The crystal 
structures of the extracellular domains of α, β, and γ PCDHs confirmed 
these trans interactions of EC1-EC4 and a crucial role of EC6 in mediating 
cis interactions between PCDHs, revealing overall similar recognition dimer 
structures (Goodman et al., 2016a, b). Based on these results, a molecular 
mechanism for neuronal recognition has been proposed. However, how these 
interactions contribute to cell-cell contacts and the regulation of paracellular 
permeability in endothelial cells remains to be elucidated in detail. 

Protocadherin Gamma C3 as One Newly 
Discovered Regulator of Vascular Permeability
Vascular cells from different tissues (e.g. of the brain, heart, umbilical vein) 

all express various PCDH isoforms from the γ PCDH cluster (PCDHGs). RT-
PCR showed the expression of all 22 PCDHGs in the primary BMEC as well as 
in the BMEC cell lines cEND and cerebEND (Dilling et al., 2017). In cEND and 
cerebEND BMEC cell lines, knockout of PCDHGC3, one of the PCDH γ isoforms, 
leads to changes in the BBB endothelium, which are indicated by higher 
paracellular permeability and lower values of the transendothelial electrical 
resistance (Dilling et al., 2017; Gabbert et al., 2020; Figure 2). Interestingly, 
increased protein levels of the TJs proteins claudin-5, claudin-3, and zonula 
occludens-1 and increased mRNA levels of VE-cadherin were measured in 
PCDHGC3 knockout cells, which indicates an activation of unknown molecular 
mechanisms by the knockout, leading to this unexpected result. However, 
occludin has been shown to be downregulated in these knockout cells on 
both mRNA and protein levels (Figure 2), suggesting that PCDHGC3 and 
occludin both have a significant impact on BBB properties. In addition, further 
experiments by our group demonstrated an interaction of these two proteins 
by immunoprecipitation of overexpressed or endogenous proteins (Kaupp, 
2021). Further studies to refine the role of PCDHGC3 at the BBB and to break 
down the exact mechanisms including occludin involvement are ongoing. 
Concerning the higher proliferation rate of PCDHGC3 knockout compared to 
wild-type cells, we were able to draw a possible connection with the growth-
promoting effect of PCDHGC3.

Figure 1 ｜ Schematic representation of the organization of cell-cell contacts within an 
endothelial cell. 
Cell-cell contacts between two adjacent endothelial cells are formed by a tight junction 
(TJ) and adherens junction (AJ) proteins. The major representatives of AJs are the vascular 
endothelial (VE)-cadherin and protocadherin gamma C3 (PCDHGC3). TJ molecules are 
located at the apical circumference, while cadherins are located at the more abluminal 
site of an endothelial cell. TJ molecules like claudins and occludin are organized by four 
transmembrane (TM) domains. The C-terminal tail interacts with the zonula occludens (ZO) 
proteins, which bind directly to actin filaments. VE-cadherin, as a classic cadherin, is built 
up from cis- and trans-interacting extracellular (EC) cadherin domains, a transmembrane, 
and an intracellular domain. Cadherins can associate with one another and form dimers 
by cis-interaction at the same membrane or by trans-interaction with a cadherin molecule 
from another adjacent cell. These interactions form zipper-like structures and are the 
basis for homophilic cell recognition mechanisms. VE-cadherin is intracellularly connected 
to the actin-binding proteins (p120, β-catenin, and placoglobin). While protocadherins 
built up zipper-like structures by cis- and trans-interactions through their EC domains, they 
have different, not fully characterized intracellular interaction partners. 

Figure 2 ｜ Protocadherin gamma C3 (PCDHGC3) knockout leads to an impaired 
barrier in brain microvascular endothelial cells (BMECs). 
Wild-type BMECs express high levels of PCDHGC3 at the mRNA and protein levels 
(wild-type PCDHGC3). This correlates with intact barrier properties and an endothelial 
phenotype. PCDHGC3 knockout BMECs (PCDHGC3 knockout) show reduced barrier 
function, increased proliferation, and motility. This phenotype correlated with various 
mRNA and protein expression changes within the tight junction proteins, cellular 
receptors, transporter, and chemokines. Bcrp: Breast cancer resistance protein (Abcg2); 
Ccl2: CC-chemokine ligand 2; Ccl5: CC-chemokine ligand 5; Cdh5: cadherin 5; Cldn3: 
claudin-3; Cldn5: claudin-5; Glut-1: glucose transporter type 1 (SlcA1); Lrp1: low-density 
lipoprotein receptor-related protein 1; Mct1: monocarboxylate transporter 1 (Slc16A1); 
Mrp4: multidrug resistance-associated protein 4 (Abcc4); Ocln: occludin; RAGE: receptor 
for advanced glycosylation end products; TEER: transendothelial electrical resistance; 
Tfrc: transferrin receptor; Tjp1: tight junction protein 1. Horizontal arrows: No expression 
changes; “-“ downregulation; “+” upregulation; +: low; ++: medium; +++: high.

Because of its tightness, the BBB prevents various substances from crossing 
the blood capillaries and entering the CNS. However, through active 
transport, some essential nutrients (e.g. glucose or amino acids) and other 
molecules can pass through the BBB and maintain brain homeostasis. In 
addition to the restricted paracellular and unspecific transcellular transport 
(diffusion, facilitated diffusion, ion channels), multiple substances can pass 
through the BBB via carrier-mediated transport (solute carriers, Slc), receptor-
mediated transport, or transcytosis, which can be bidirectional (Wong et al., 
2013). Under normal culture conditions, BMEC cell lines used to generate 
knockouts express high levels of various transporters and junctional proteins 
that respond to various drug treatments and conditions (Helms et al., 2016; 
Kaiser et al., 2018; Burek et al., 2020; Gerhartl et al., 2020; Rosing et al., 
2020; Salvador et al., 2021; Schick et al., 2021). In this context, studies on 
the endothelial PCDHGC3 knockout showed differential mRNA and protein 
expression changes of molecules involved in transport through the BBB 
(Gabbert et al., 2020). Several genes for solute carrier (Slc) transporters 
(Slc2a1, Slc7a1, Slc7a5, and Slc16a1) were downregulated compared to 
wild-type cells (Figure 2). This fact indicated a lower transcellular transport 
via solute carriers in knockout cells. However, Slc-mediated transport is 
essential for brain metabolism. In addition, the loss of solute carriers in the 
brain microvasculature is associated with the breakdown of the BBB and 
consecutive neuronal impairment, as shown e.g. for Glut1 (Zheng et al., 2010; 
Winkler et al., 2015; Veys et al., 2020). We also found that RAGE (receptor for 
advanced glycation end products) was significantly upregulated at the mRNA 
and protein level, while mRNA and protein levels of other receptor-mediated 
transporters (low-density lipoprotein receptor-regulated protein (Lrp1), 
transferrin receptor) were regulated in a reciprocal manner (Figure 2). RAGE 
is known to play a crucial role in the deposition of amyloid-beta and BBB 
impairment in Alzheimer’s disease (Deane et al., 2003; Kook et al., 2012; Wan 
et al., 2015). It is still unclear whether PCDHGC3 can have a clinically relevant 
influence on RAGE expression. However, this interesting aspect needs further 
investigation. Active efflux pumps of the ATP-binding cassette superfamily are 
either up- or downregulated in PCDHGC3 knockout BMECs, whereby different 
regulatory mechanisms are assumed for these transporters (Figure 2). The 
expression of ATP-binding cassette-pumps such as P-glycoprotein and breast 
cancer resistance protein (Bcrp) in BMECs is influenced by many different 
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pathways (Miller, 2015), and PCDHs, in turn, could be involved in this complex 
regulatory process.

In CNS inflammation, the BBB is severely compromised. At the same time, 
BBB leakage triggers further neuroinflammation and thus contributes to the 
initiation and progression of numerous neurological and psychiatric diseases 
(Stolp and Dziegielewska, 2009; Ortiz et al., 2014; Takeda et al., 2014; 
Hurtado-Alvarado et al., 2016; Sorby-Adams et al., 2017; Sonar and Lal, 2018; 
Welcome, 2020). In addition, peripheral and/or systemic inflammation can 
disrupt an intact BBB by upregulating inflammatory factors and increasing 
the migration of immune cells across the BBB (Varatharaj and Galea, 2017; 
Curtaz et al., 2020a; Huang et al., 2021). Our in vitro studies have shown that 
wild type BMECs express various inflammatory molecules and can respond 
to treatment with diverse inflammatory factors (Burek and Forster, 2009; 
Blecharz-Lang et al., 2018; Curtaz et al., 2020b; Gerhartl et al., 2020; Ittner 
et al., 2020). Contrary to our expectations, the PCDHGC3 knockout in BMECs 
led to decreased levels of variously known mediators that are involved in 
neuroinflammatory processes (Figure 2). Decreased levels of inflammatory 
mediators appear to contradict a stronger response of PCDHGC3 knockout 
cells to stress conditions (tumor necrosis factor α and oxygen-glucose 
deprivation treatment); however, other pathways are likely to be implicated 
here and may affect the results. Hence, the role of PCDHs concerning 
inflammation at the BBB needs to be fully elucidated shortly. 

In conclusion, based on our experimental data, we propose a central 
regulatory role of PCDHs, especially PCDHGC3, in maintaining BBB 
homeostasis. Due to their clear influence on various signaling pathways, 
PCDHs may contribute in particular to the control of several BBB-specific 
properties such as permeability, active transport, and the induction of 
inflammatory mediators in BMECs. We expect to expand our incomplete 
knowledge of the importance of these molecules through further 
experiments.

Effects of Protocadherin Gamma C3 on Signaling 
Pathways Involved in Maintaining Permeability 
in Brain Microvascular Endothelial Cells
The mechanistic target of rapamycin (mTOR) is a serine-threonine protein 
kinase that is highly conserved from yeast, where it was originally identified, 
to mammals (Boutouja et al., 2019). Two mTOR complexes with partly 
overlapping, partly distinct components have been identified so far (Boutouja 
et al., 2019). mTOR complex 1 (mTORC1), which contains either mTOR1 
or mTOR2, is rapamycin-sensitive and is activated, for example, via the 
PI3K-Akt-pathway through several mitogenic signals (e.g. growth factors, 
nutrients, and changes in cellular energy status). The activated mTORC1 
then translates these signals into cellular reactions by activating downstream 
cascades and thus influences the cellular energy balance and metabolism 
(transcription, ribosome biogenesis, translation, nutrient uptake and storage, 
cell growth, autophagy regulation) and tissue proliferation (Fingar and Blenis, 
2004; Dobashi et al., 2011). mTOR complex 2 (mTORC2), which contains 
only mTOR2, is activated via association with ribosomes and has a positive 
effect on protein translation and cotranslational modifications (Oh et al., 
2010; Zinzalla et al., 2011). It also processes signals for actin cytoskeleton 
polarisation and cell survival in a rapamycin-insensitive manner (Loewith et 
al., 2002; Wedaman et al., 2003; Jacinto et al., 2004; Sarbassov et al., 2004). 

Qualitative and quantitative changes within the mTOR cascade were found in 
differential diseases such as cancer, neurodegenerative diseases, autoimmune 
and inflammatory reactions, and age-related diseases (Perl, 2015; Lan et 
al., 2017; Boutouja et al., 2019; Murugan, 2019; Suto and Karonitsch, 2020; 
Chrienova et al., 2021). As a result, mTOR inhibitors (such as rapamycin = 
sirolimus, everolimus, and temsirolimus) have been developed to treat several 
types of cancer, to prevent in-stent restenosis after coronary angioplasty, and 
to manage organ transplant rejection (Costa and Simon, 2005; Giordano and 
Romano, 2011; Qi et al., 2013; Fine and Kushwaha, 2016; Hua et al., 2019). 
Other drugs with influence on mTOR, such as metformin, are currently being 
investigated for their effects on mTOR-mediated diseases (Amin et al., 2019).

The role of mTOR at the BBB was also mostly reported in connection with 
diseases (van Vliet et al., 2016a, b; Van Skike et al., 2018; Zhang et al., 2020; 
Chi et al., 2021; Xiong et al., 2021; Yang et al., 2021). In cerebral ischemia-
reperfusion injury, Alzheimer’s disease, or epilepsy, BBB properties could be 
rescued by inhibiting mTOR signal transmission.  

The first correlation between mTOR and PCDHs was made by Dallosso et al. 
(2012) who showed that PCDHGC3 has a tumor-suppressive effect on colon 
epithelia and that this effect is partly mediated by a suppression of  mTOR and 
Wnt. PCDHGC3, the most highly expressed PCDH isoform in colon epithelia, 
is unmethylated (active) in normal colon and adenoma cells, and PCDHGC3 
hypermethylation (inactivation) is a marker of adenoma-to-carcinoma 
transition. This role of PCDHGC3 as a tumor suppressor in colon epithelia can 
be attributed to the modification of the mTOR and Wnt signaling. PCDHGC3 
overexpression leads to mTOR and Wnt inhibition, while the mTOR and Wnt 
cascades are stimulated by PCDHGC3 suppression (Dallosso et al., 2012). 
Several other studies have also found associations between the expression of 
certain PCDH isoforms and mTOR-mediated cell proliferation in cancer cells (Wu 
et al., 2015; Wang et al., 2016; Ye et al., 2021). In PCDHGC3 knockout BMECs, 
mTOR and p62/Seqestome-1, which is involved in the mTOR signaling pathway, 
were downregulated compared to wild-type BMECs (Dilling et al., 2017). 

Wound healing assay showed a significantly higher migration rate of PCDHGC3 
knockout cells compared to wild-type cells, which could be effectively 
suppressed by treatment with the mTOR inhibitor Torin-2. The faster migration 
rate of knockout cells correlated with increased proliferation, measured by 
5-bromo-2′-deoxyuridine (BrdU) incorporation (Gabbert et al., 2020).

Mitogen-activated protein kinase (MAP kinase) pathways are involved in a 
variety of physiological processes and seven MAP kinase pathways have been 
identified to date. One of the best studied is the Ras-Raf-Mek-Erk cascade, 
which is stimulated by growth factors, mitogens, and cytokines (Chang et al., 
2003; McCubrey et al., 2007) and consequently activates various substrates 
through phosphorylation (Courcelles et al., 2013) and downstream activation 
of MAP kinase-activated protein kinases (Gaestel, 2015). The stimulation of 
this signaling pathway can influence numerous cellular functions, especially 
growth-related processes such as cell proliferation, differentiation, and 
survival (Cargnello and Roux, 2011). The Ras-Raf-Mek-Erk cascade is changed 
in many diseases such as cancer, genetic syndromes, liver fibrosis, polycystic 
kidney disease, and vascular malformations (Niemeyer, 2014; Foglia et 
al., 2019; Guo et al., 2020; Pang et al., 2020; Parker et al., 2020). Since 
dysregulation in the Ras-Raf-Mek-Erk pathways occurs particularly during 
malignant transformation, tumor growth, and resistance acquisition, kinase 
inhibitors have been developed that interfere at different levels of the Ras-
Raf-Mek-Erk cascade and successfully have found their way into clinical 
cancer therapy (Asati et al., 2016; Degirmenci et al., 2020; Barbosa et al., 
2021). A prominent example of the clinical use of such kinase inhibitors is the 
pharmacological treatment of malignant melanoma (Savoia et al., 2019). 

Analyses of the role of MAP kinase pathways, in particular the Ras-Raf-Mek-
Erk cascade, at the BBB have given different results. On the one hand, some 
studies indicate that cascade activation protects the BBB tightness either by 
TJs in endothelial cells (Uddin et al., 2012; Haupt et al., 2020) or by pericytes 
(Wu et al., 2020). On the other hand, numerous other studies showed that 
the upregulated elements of the Ras-Raf-Mek-Erk signaling pathway were 
associated with increased BBB permeability under different experimental 
conditions (Fischer et al., 2005; Maddahi and Edvinsson, 2010; Stephan et al., 
2013; Üllen et al., 2013; Walter et al., 2015; Fujimoto et al., 2016; Yang et al., 
2016; Zhu et al., 2018; Lan et al., 2019). 

The role of PCDHs in MAP kinase cascades has been described by Zhou et al. 
(2017b) who have shown that in non-small cell lung cancer overexpression 
of PCDH7 (a non-clustered PCDH) induces tumorigenesis by activating the 
MAP kinase signaling and thus leads to poor clinical outcome in patients. 
In PCDHGC3 knockout BMECs, the MAP kinase signaling pathway inhibitor 
SL327 inhibited an increased migration rate of knockout BMECs. In agreement 
with these results, a significantly higher phospho-Erk level was detected 
in knockout cells after serum starvation, which suggests highly active MAP 
kinase signaling under stress conditions in these cells (Gabbert et al., 2020).

The Wnt/β-catenin signaling pathway (so-called “canonical Wnt pathway”) 
is another well-studied cascade involved in many processes during 
embryogenesis, especially in neuronal development. In the absence of 
Wnt ligands, β-catenin phosphorylation, ubiquitination, and proteasome 
degradation, mediated by a β-catenin destruction complex, leads to low 
cytoplasmic β-catenin levels (Liebner and Plate, 2010). In the presence of 
Wnt ligands, these ligands bind to a receptor complex containing receptors 
of the Frizzled family and Lrp5/6, which inactivates the β-catenin destruction 
complex with the help of the cytoplasmic protein Disheveled. This leads to 
a cytoplasmic β-catenin accumulation, a translocation to the nucleus, and 
a transcription factor-mediated activation of the Wnt/β-catenin -dependent 
gene expression (Liebner and Plate, 2010). The Wnt/β-catenin signaling 
pathway is important for BBB development and is involved in the breakdown 
of the BBB under pathophysiological conditions (Laksitorini et al., 2019). 
BMECs express all known Wnt ligands and receptors, as shown for the 
hCMEC/D3 cell line (Laksitorini et al., 2019). The inhibition of Wnt/β-catenin 
signaling in hCMEC/D3 cells by a Wnt ligand (Wnt3a) improves the BBB 
phenotype, which leads to lower permeability and increased transporter 
activity (Laksitorini et al., 2019).  

Colorectal cancer was the first human disease correlated with a dysregulation 
of the canonical Wnt/β-catenin cascade and remains the model disease for 
studies on the role of Wnt/β-catenin signaling in carcinogenesis (Segditsas and 
Tomlinson, 2006). In the past twenty years, however, aberrant canonical Wnt/
β-catenin signaling has been found in numerous other human cancer entities 
(Zhan et al., 2017). The specific properties of the canonical Wnt/β-catenin 
signaling pathway are decisive for CNS angiogenesis and the formation of the 
BBB (Liebner et al., 2008; Lim et al., 2008; Stenman et al., 2008; Daneman et 
al., 2009; Harati et al., 2013). However, the function and maintenance of the 
BBB in the adult brain also seem to depend on intact Wnt/β-catenin signaling 
(Wang et al., 2012; Tran et al., 2016; Corada et al., 2019). The dysfunction of 
this cascade is a pathogenetic process that is observed in many neurological 
diseases with impaired BBB, such as Alzheimer’s disease (Jia et al., 2019; 
Aghaizu et al., 2020), multiple sclerosis (Lengfeld et al., 2017), stroke (Jean 
LeBlanc et al., 2019; Jin et al., 2019), glioblastoma multiforme (McCord et 
al., 2017), vascular malformations (Kim, 2016) and neuropsychiatric diseases 
(Gozal et al., 2021). 

As described above, it could be shown that suppression of the Wnt/β-catenin 
signaling pathway is involved in the role of PCDHGC3 as a tumor suppressor 
in colon epithelia (Dallosso et al., 2012). Mah et al. (2016) showed through 
transient transfection of various protocadherin constructs that the PCDHGC3 
isoform inhibits the Wnt/β-catenin pathway uniquely, while other isoforms 
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upregulate it. The variable cytoplasmic domain of PCDHGC3 interacts directly 
with Axin1, a key component of the β-catenin destruction complex, to stabilize 
Axin1 on the plasma membrane and thus to inhibit Lrp6 phosphorylation, 
resulting in decreased Wnt/β-catenin signaling (Mah et al., 2016). Several 
other PCDHs also have tumor-suppressive effects in various cancer entities 
by negatively regulating Wnt/β-catenin signaling (Dallosso et al., 2009; Zhao 
et al., 2014; Chen et al., 2015; Lv et al., 2015; Xu et al., 2015; Yin et al., 2016; 
Zhou et al., 2017a; Zong et al., 2017; Weng et al., 2018; Wong et al., 2020). 
For individual PCDH isoforms in certain malignancies, however, contradicting 
results were found (Yang et al., 2005; Terry et al., 2006), which supports the 
idea that the effects of PCDHs on the Wnt/β-catenin pathway are context and 
tissue-specific. 

In PCDHGC3 knockout cells, the inhibition of Wnt/β-catenin signaling by a 
selective inhibitor, XAV939, suppressed the higher migration rate of knockout 
cells in the wound healing assay. In addition, genes involved in this signaling 
pathway such as Axin-1, Gsk3b, Lrp5, and Pard3 were downregulated, while 
Axin-2, Ctnnb1, and Frizzled-1 were upregulated, which indicates differential 
changes in Wnt/β-catenin signaling in PCDHGC3 knockout BMECs (Dilling et 
al., 2017; Gabbert et al., 2020).

Conclusion and Perspectives
Changes in the expression status of only one protocadherin, as it has been 
shown for PCDHGC3, lead to multiple phenotypic changes in BMECs such 
as increased proliferation and migration rate, accompanied by lower barrier 
properties and therefore higher transcellular permeability and reduced 
transendothelial electrical resistance values. Under physiological conditions, 
a PCDHGC3 knockout in BMECs leads to the activation of mTOR, MAP 
kinase, and Wnt/β-catenin signaling cascades, and, conversely, responds to 
selective inhibitors, resulting in an inhibition of these signaling pathways 
(Dilling et al., 2017; Gabbert et al., 2020). Wnt/β-catenin plays a critical 
role in the development and management of BBB function. In addition, 
PCDHs are highly expressed in the developing brain, suggesting that the 
interaction of PCDHGC3 and Wnt/β-catenin signaling pathway activity 
in the development might be worth examination, too. Our results so far 
specified a strong activation of the signal cascades described above by the 
PCDHGC3 knockout and are consistent with the idea that PCDHGC3 acts 
as an antiproliferative factor, in accordance with recent studies by other 
authors (Dallosso et al., 2012; Mah et al., 2016). In terms of the involvement 
of mTOR, MAP kinase, and Wnt/β-catenin signaling pathway in numerous 
physiological and pathological processes, PCDHGC3 could play an important 
role in maintaining BBB homeostasis by regulating these signaling pathways in 
BMECs. Correspondingly, the further scientific effort is required to elucidate 
detailed knowledge about the mechanism of interaction between PCDHGC3 
and intracellular signal cascades at the BBB. 
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