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Abstract 

Background:  Metastasis is a major cause of failed colorectal cancer (CRC) treatment. While lung metastasis (LM) is 
observed in 10–15% of patients with CRC, the genetic mechanisms that cause CRC to metastasize to the lung remain 
unclear.

Methods:  In this study, we employed whole exome sequencing (WES) of primary CRC tumors and matched isolated 
LM lesions to compare their genomic profiles. Comprehensive genomic analyses of five freshly frozen primary tumor 
lesions, five paired LM lesions, and matched non-cancerous tissues was achieved by WES.

Results:  An integrated analysis of somatic mutations, somatic copy number alterations, and clonal structures 
revealed that genomic alterations were present in primary and metastatic CRCs with various levels of discordance, 
indicating substantial levels of intertumor heterogeneity. Moreover, our results suggest that the founder clone of the 
primary tumor was responsible for the formation of the metastatic lesion. Additionally, only a few metastasis-specific 
mutations were identified, suggesting that LM-promoting mutations might be pre-existing in primary tumors.

Conclusions:  Primary and metastatic CRC show intertumor heterogeneity; however, both lesions were founded by 
the same clone. These results indicate that malignant clones contributing to disease progression should be identified 
during the genetic prognosis of cancer metastasis.

Keywords:  Colorectal cancer, Lung metastasis, Whole exome sequencing, Somatic single nucleotide variation, 
Somatic copy number alteration, Clonal evolution

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Colorectal cancer (CRC) is a leading cause of cancer-
related death worldwide and the number of patients 
being diagnosed with CRC is growing in China [1, 2]. 
Metastasis is a major cause of failed colorectal cancer 
(CRC) treatment. Approximately 50% of CRC patients 
that undergo radical resection of the primary tumor go 
on to develop metastatic disease, with the most com-
mon metastatic sites being the liver and lung [3, 4]. Can-
cer metastasis to distant organs is thought to occur via 

lymphatic or vascular drainage; disseminated colon and 
upper-rectal tumor cells enter the portal vein and arrive 
at the liver. Thus, clinically, the liver is the most com-
mon site of distant metastases [5]. Clinically, CRC with 
isolated lung metastasis (LM) is less common and is 
observed in 10–15% of CRC patients [6]. Isolated LM is 
characterized by the absence of extrapulmonary metas-
tasis [7]. Approximately 35% of CRC patients with LM 
develop isolated initial tumors, and patients with colon 
cancer have a lower incidence of initial LM than patients 
with rectal cancer have [7].

The specific molecules involved in CRC LM have been 
investigated. For example, NDRG1 plays an important 
role in MORC2-mediated CRC cell migration and inva-
sion in vitro, and promotes LM of CRC cells in vivo [8]. 
Elevated FOXC1 expression is significantly associated 
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with CRC metastasis, recurrence, and reduced survival 
[9]. In  vitro, FOXC1 up-regulation enhances CRC inva-
sion and LM, while its down-regulation has the oppo-
site effects [9]. In a mouse model, SMAD4-deficient 
CRC cells were found to secrete CCL15, which can 
recruit CCR1+ tumor-associated neutrophils, result-
ing in metastasis to the lung [10]. PP4C expression is 
frequently increased in CRC, and it’s up-regulation is 
correlated with CRC cell proliferation, migration, and 
invasion in vitro, as well as tumor growth and LM in vivo. 
PPC4 promotes cell invasion by up-regulating MMP-2 
and MMP-9 via Akt phosphorylation [11]. Through an 
integrated analysis of mutation, copy number, and gene 
expression data, Fang et al. [12] identified a JAZF1 muta-
tion with a copy number gain in a primary colon tumor 
and its matched LM, suggesting its oncogenic potential 
in both the colon to the lung.

Metastatic progression from the primary tumor 
requires multiple factors, such as the accumulation of 
genetic and epigenetic changes, and the capacity to colo-
nize distant organs [13]. Accordingly, genetic aberrations 
and underlying mechanisms can influence the frequency 
and biological characteristics of CRC LM. However, 
beyond the function of the above-mentioned molecules 
in CRC LM, the genetic mechanisms underlying CRC 
metastasis to the lung remain unclear. It is possible that 
studies based on a small number of genes may misinter-
pret the extent of genetic alterations involved in primary 
and metastatic tumors.

To overcome this, we performed whole exome 
sequencing (WES) of primary CRC tumors and matched 
LM pairs to compare their genomic profiles. Specifi-
cally, WES was performed on five freshly frozen primary 
tumor lesions, five paired lung metastatic lesions, and 
matched non-cancerous tissues. We analyzed the somatic 
mutations, copy number variation, and clonal evolution 
in these patients. Our results identified intertumor het-
erogeneity and suggest that the founder clone from the 
primary tumor also formed the metastatic lesion. These 
results indicate that malignant clones contributing to dis-
ease progression should be identified during the genetic 
prognosis of cancer metastasis.

Materials and methods
Tumor specimens
This study included five CRC patients synchronously or 
metachronously diagnosed with LM who underwent 
tumor resection at the Department of Gastrointesti-
nal Surgery IV, Peking University Cancer Hospital & 
Institute. Written informed consent was obtained from 
all patients. Clinical sample use was approved by the 
Research Ethics Committee of Peking University Can-
cer Hospital & Institute, Beijing, China (No. 2019KT93). 

All surgically resected tumor tissues were freshly frozen 
and stored at − 80 °C. For each metastatic tumor pair, a 
matched normal non-cancerous colorectal tissue sample 
was used as a germline control.

DNA extraction
Genomic DNA was extracted from frozen tissue with a 
standard phenol/chloroform extraction. Briefly, tissue 
samples were fully ground with liquid nitrogen and the 
nuclei were suspended in extraction buffer (1 M sodium 
chloride, 100 mM Tris, and 50 mM EDTA [pH 8.0]) con-
taining 2% sodium dodecyl sulfate (SDS) and proteinase 
K (2 mg/ml final concentration). Suspended nuclei were 
incubated at 56  °C for 2 h and DNA was first extracted 
with phenol:chloroform:isoamyl alcohol (25:24:1 vol-
ume), then with chloroform:isoamyl alcohol (24:1 vol-
ume), and precipitated with 0.7 volumes of isopropyl 
alcohol at − 20  °C for 40  min. DNA precipitates were 
washed twice with ice-cold 80% ethanol, collected by 
centrifugation (12,000  rpm, 15  min, 4  °C), dried under 
vacuum, and resuspended in 100  μl of EB (10  mM Tris 
hydrochloride [pH 8.0]) (Qiagen, Hilden, Germany). 
DNA quantity and quality were assessed using a Nan-
oDrop One (ND-ONE-W; Thermo Fisher Scientific Inc., 
Waltham, MA) and with 1% agarose gel electrophoresis.

Whole exome sequencing
Exome enrichment was performed with the xGen Exome 
Research Panel v1.0 (Integrated DNA Technologies, 
Inc., Coralville, IA) according to the xGen hybridization 
capture of DNA libraries protocol for next generation 
sequencing (NGS) target enrichment. Sequencing was 
performed on a HiSeq X Ten system (Illumina, Inc., San 
Diego, CA) according to the manufacturer’s instructions.

Sequence alignment
Data were preprocessed using fastp (Version: 0.19.5) [14]. 
Clean reads were generated with the following filter-
ing steps: (1) adapter sequences were removed; (2) reads 
with five or more N (non-AGCT) bases were removed; 
(3) a 4-base sliding window was set and used to remove 
regions with an average base quality value of less than 20; 
and (4) reads shorter than 75  bp or with quality values 
of less than 15 were removed. Clean reads were aligned 
to the hg19 reference genome using Burrows–Wheeler 
Aligner (BWA) (Version 0.7-6a) [15]. The Sequence 
Alignment/Map (SAM) software SAMtools (Version 
1.4) was used to align sequences and convert the data to 
Binary Alignment/Map (BAM) format. Redundant infor-
mation and noise were removed using Picard (Version 
2.18.25).
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Variant calling
The HaplotypeCaller module of the genome analysis 
toolkit GATK (Version 4.1.0.0) was used to recalibrate 
the base quality score for single nucleotide variations 
(SNVs) and insertion/deletions (indels). Somatic SNVs 
and somatic indels were called with MuTect (version 
2.0) by comparing the sequencing reads of the tumor 
and matched normal tissue [16]. Functional annota-
tion of mutation sites was performed using ANNOVAR 
(Version 14 Dec 2015) [17].

Determination of significantly mutated genes (SMGs)
Significantly mutated genes (SMGs) include genes with 
a significantly higher mutation rate than the back-
ground mutation rate (BMR). With the somatic muta-
tions of all tumor samples as background, MuSiC 
(Version 0.4.1-1) [18] was used to detect genes with 
significantly higher mutation rates than the BMR. The 
SMG test was performed with three methods, including 
the convolution test (CT), Fisher’s combined P-value 
test (FCPT), and the likelihood ratio test (LRT). Genes 
with a false discovery rate (FDR) ≤ 2 in any two of the 
three tests were considered SMGs. Pathway enrichment 
analysis of SMGs was performed using PathScan [19].

Analysis of somatic copy number alteration (SCNA)
Control-FREEC (Version 11.3) [20] was used to detect 
SCNAs. GISTIC [21] (Version 2.0) was used to identify 
significant copy number gains and losses. Each varia-
tion was assigned a G value after considering the muta-
tion frequency and variation extent. The FDR q-value 
was then calculated, and q-values ≤ 0.25 were consid-
ered significant copy number gains and losses.

Analysis of tumor clonality and construction 
of phylogenetic trees
SCNAs, SNVs, and indels were combined to obtain 
the input for PyClone (Version 0.13.1) [22], which was 
used to estimate the clonal cell fraction and construct 
the clonal structures of primary and metastatic tumors. 
The Bayesian model and Dirichlet process clustering 
were applied for grouping and estimating cellular prev-
alence. Next, ClonEvol (Version 2017) [23] was applied 
for clonal ordering and clonal evolution visualization.

Gene ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG), and protein–protein interaction 
(PPI) analyses for LM‑specific mutations
For GO analysis, all protein coding genes were used as 
the background list and genes with LM-specific muta-
tions were used as the candidate list. The significance 
of GO function sets in the selected gene lists was 

calculated by hypergeometric distribution test. GO 
terms with more than two corresponding genes in the 
three classifications were screened, and the top 30 GO 
term bar chart was generated using the top 10 terms 
based on − log10 P value.

The KEGG database was used for pathway analysis 
of LM-specific genes (combined with KEGG annota-
tion results), and a hypergeometric distribution test was 
applied to calculate the significance of gene enrichment 
in each KEGG Pathway entry. Pathway entries with more 
than two corresponding genes were screened based on 
descending − log10 P values. Then the top 20 entries 
were used to generate the KEGG top 20 bubble chart.

Based on the annotation of species information in 
the STRING database or blast (e-value < 10−10) of gene 
sequences and protein sequences, gene correlation was 
obtained and interactions between selected genes were 
extracted. Based on this information, an interaction 
network map was generated using Cytoscape, an open 
source platform for visualizing complex networks.

Data availability statement
The data that support the findings of this study are avail-
able from the corresponding author upon reasonable 
request.

Results
Genomic landscape of CRC patients with LM
WES was performed on 15 freshly frozen samples from 
five CRC patients with LM, including five primary 
tumor foci, five matched LM foci, and five non-can-
cerous colorectal tissue samples as germline controls. 
The clinicopathological characteristics of all patients 
are shown in Additional file 1: Table S1. Among the five 
patients, patients 372, 374, and 375 underwent oxalipl-
atin and capecitabine therapy after resection of the pri-
mary tumor, while patients 371 and 373 did not receive 
chemo-, radio-, or targeted-therapy. Patients 371, 372, 
and 374 had metachronous LM, whereas patients 373 
and 375 had synchronous LM.

After removing duplicates, we obtained an average 
target depth of 286× per sample (ranging from 214 to 
475×, Additional file 2: Table S2). If a nucleotide sub-
stitution occurred in at least 10% of reads in at least 
one tumor lesion, it was considered to be a mutation. 
We identified 1421 non-synonymous and 841 synony-
mous somatic SNVs and 113 indels. Additional file  3: 
Table S3 shows the complete list of mutations for each 
patient. The number of different mutation types and 
functional consequences in each tumor are shown 
in Fig.  1a, b. Missense mutations were the dominant 
mutation category in both primary and metastatic 
tumors. Our results indicate that C > T transitions 
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Fig. 1  Mutations in CRC with LM. a Indel (green), nonsynonymous (red) and synonymous (blue) SNVs in the five CRC patients with LM. b For each 
patient, the relative fraction of five functional categories is shown. c Mutation spectrum of the five CRC patients with LM. Color codes represent the 
fraction of different base substitutions
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were the dominant mutation signature of both the 
primary tumor sites and metastases, accounting for 
59.69% of all detected mutations, consistent with those 
reported for CRC [24, 25] (Fig. 1c).

Mutation analysis reveals genomic heterogeneity 
in primary CRC with LM
We next analyzed the distribution of non-synonymous 
mutations at the primary tumor sites and metastases in 
each patient (Fig. 2). WES identified an average of 144 
(ranging from 87 to 249) non-synonymous mutations 
per sample. The average number of non-synonymous 
mutations in primary tumors and metastases was 107 
and 180, respectively. Trunk mutations were defined 
as genes mutated in all lesions in a single patient. The 
percentages of trunk mutations ranged from 23.7 to 
52.4%. These results indicate a varied mutational het-
erogeneity of primary tumors with metastatic lesions.

We then determined the number of SMGs in primary 
and metastatic tumors. SMGs show a significantly 
higher mutation rate than the BMR when including 
multiple mutational mechanisms, such as coding indel, 
single nucleotide substitution, and splice site muta-
tions [18]. We performed multiple statistical analyses, 
including CT, LRT, and FCPT, to determine P-values 
and FDR. A total of 145 SMGs were identified (Addi-
tional file 4: Table S4), the top 50 of which are shown 
in Fig.  3. KRAS, APC, TP53, and OR7D2 were the 
most highly mutated genes, with a FDR < 0.2 calculated 
by all methods. Given their important roles in CRC 
tumorigenesis and progression, it is not surprising that 
the cancer genes APC, TP53, and KRAS were the most 
prevalent SMGs [26]. However, the function of OR7D2 
is currently unknown. Other frequently mutated genes 
which are often found in non-hypermutated CRCs 
[27], such as PIK3CA and NRAS, were rarely mutated. 
Furthermore, we analyzed the distribution of mutation 
sites in ubiquitous SMGs in tumor lesions from the 
same patient. Our results showed that mutations of all 
non-synonymous trunk SMGs were the same, indicat-
ing a common driver event in primary CRCs and their 
metastatic lesions, whereas lesion-specific somatic 
mutations are acquired during tumor development.

Somatic copy number alteration (SCNA) analysis reveals 
chromosomal heterogeneity in primary CRC with LM
SCNA events occur early during tumorigenesis [28–30]. 
We assessed SCNAs to determine the role of chromosomal 
alternations in CRC with LM. Copy number gains and 
losses were identified in all lesions, indicating their impor-
tant role in tumor progression and development. Seg-
mented copy number calls derived from Control-FREEC 
and the affected driver genes are listed in Additional file 5: 
Table S5. SCNA analysis revealed disparate profiles within 
the patients (Fig. 4a). Some chromosomal aberrations were 
shared among lesions from the same patient shared; how-
ever, the average ubiquitous SCNA rate was 50.5%, ranging 
from 10.6 to 78.9% (Fig. 4b), indicating substantial intertu-
mor chromosomal heterogeneity.

Further, GISTIC analysis (Additional file 6: Figure S1A) 
showed that 3p22.1, 19p13.3, 1q21.1, 16q24.3, 20q11.21, 
11p15.5, 6p22.1, 11q12.1, and 5q35.3 were the most fre-
quently amplified chromosomal regions. Gain of 20q, 
which is involved in the transformation of adenomas into 
carcinomas, has been reported in CRC [31]. In addition, 
amplification in 20q is associated with a worse prognosis 
of CRC [32]. The amplified genes in 20q belong to several 
signaling pathways that may be crucial in CRC develop-
ment. For example, BCL2L1, located in 20q11.21, regulates 
the mitochondrial apoptosis pathway [33]. The most fre-
quently deleted chromosomal regions include 4q35.2, 
21q22.3, 1q21.2, 14q11.2, 22q13.33, 15q24.2, 1p21.3, 
5q35.3, 10p15.3, 11q11, 5q22.2, and 5p12. Loss of 1p is 
associated with CRC invasion and poor prognosis [34, 35]. 
Deletions of 10p15.3-p14 may be correlated with poor 
prognosis of CRC [36]. Significant chromosomal gains and 
losses and the affected genes are listed in Additional file 7: 
Table S6.

Next, we compared the genes affected in recurrently 
altered chromosomal regions with the Cancer Gene Cen-
sus database and identified the following high-risk genes: 
APC, ATP1A1, BCL10, CTNNB1, FAM46C, FUBP1, HLA-
A, JAK1, NOTCH2, NRAS, RBM15, RPL5, TRIM33, and 
VAV1. High-risk genes includes genes documented in the 
KEGG pathways in cancer. KEGG analysis of these genes 
revealed that signaling pathways regulating the pluripo-
tency of stem cells, T-cell receptor signaling pathway, B-cell 
receptor signaling pathway, and natural killer (NK) cell-
mediated cytotoxicity were among the most significantly 

Fig. 2  Distribution of somatic nonsynonymous mutations in CRC patients with LM. Heatmaps show the focal distribution of all nonsynonymous 
mutations. Presence (purple) or absence (white) of each mutation is marked for each tumor within one individual. Trunk (green) and lesion specific 
(pink) mutations are indicated. The percentage of trunk mutations in each patient is indicated on the top of the figure next to patient ID. Mutated 
genes are listed on the right of each heatmap

(See figure on next page.)
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affected pathways. KEGG enrichment analysis is shown in 
Additional file 6: Figure S1B and Additional file 8: Table S7.

Primary and metastatic CRCs exhibit different clonal 
structures
Tumors are often composed of several genotypically dis-
tinguishable cell populations, defined as clones. Clonal 
architecture may change to adapt to the tumor micro-
environment and drug intervention used. Therefore, 
we next compared the clonal components of primary 
CRCs with their matched LMs (Additional file  9: Fig-
ure S2). Different clone structures of primary and meta-
static tumors were observed, indicating variable genetic 
determinants of the phenotype, and different prolifera-
tion capacities. Different organ environments and drug 

interventions may also result in different clone structures 
of the primary and metastatic tumors. Accordingly, they 
may also have different chemotherapeutic responses.

Phylogeny of CRC with LM
To further investigate the evolutionary process of CRC 
with LM, we performed phylogenetic reconstruction 
of WES data for each patient using ClonEvol. Branch-
based trees represent clonal relationships and seeding 
patterns between samples, and the fish plots represent 
clonal dynamics over time (Fig.  5). The first notable 
observation was that the phylogenetic structure was 
similar across patients, and branched evolution is read-
ily visualized. Based on evolution models, primary CRCs 
were founded by a single clone, and some new clone(s) 

Fig. 3  Significantly mutated genes (SMGs) in CRC patients with LM. The upper panel shows the gene mutation rate of each sample, calculated by 
number of mutations per megabase (Mb) of target sequence. Nonsynonymous (red) and synonymous mutations (green) were included. The central 
matrix shows SMGs and mutation types (represented by different colors as indicated in the upper left corner). Each column represents a single 
tumor lesion, and each row represents a gene. Patient ID is listed at the bottom of the figure. Blank grids indicate no mutations or no functional 
mutations in the corresponding gene of the sample. The grey bars on the left panel indicate the proportion of samples with mutated genes. The 
red bars on the right panel show SMGs ranked by − log10 P-value
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were formed during tumor progression, some of which 
acquired metastatic potential. Upon metastasis, new 
clone(s) with growth advantages were generated. Clonal 
expansion of these new clones may lead to their domi-
nance. The founding clone in the primary tumor also 
evolved into the metastatic clone. For patients 373 and 
375, the metastatic tumors inherited genetically distinct 
subclones from the primary tumors, indicating a possible 
polyclonal seeding mechanism for metastasis (Fig.  5b). 
We identified potential driver mutations on the trees to 
reflect their time of acquisition; TP53, KRAS, and APC 
were frequently identified in the trunks (Fig. 5a).

Profiling of LM‑specific genetic alternations
Next, we studied the SNVs that occurred in the LM 
lesions (Fig. 6). Mutations in KRAS, APC, TP53, XPO4, 
TCF7L2, SPSB4, PCDH9, PCDH17, LAMA1, FBXW7, 
ARHGAP24, ATP10D, C17orf58, DIP2C, DNAH17, 
DNAH11, DSCAM, DYNC2H1, INVS, LRP1B, MUC19, 
NPIPB11, OBSCN, OR7D2, SYNE1, TOMM70A, and 
TTN were identified in more than two samples, and 
additional SNVs were found in each individual patient. 
Mutations in KRAS, APC, TP53, XPO4, TCF7L2, 
SPSB4, PCDH9, PCDH17, OR7D2, LAMA1, FBXW7, 
and DNAH17 were also found in the primary tumors. 

Fig. 4  Somatic copy number alteration (SCNA) analysis of the five CRC patients with LM. a SCNA heatmaps of five CRC patients with LM. Sample 
names are labeled on the left side. The colors in the heatmaps represent copy number gain (red) and loss (blue). A gain was defined as a copy 
number at least one greater than ploidy, whereas a loss was defined as a copy number at least one less than ploidy. b Venn diagrams show the 
number of ubiquitous and lesion-specific SCNAs in each patient. Sample IDs are shown under each diagram



Page 9 of 13Zhang et al. Cancer Cell Int          (2020) 20:281 	

Mutations in ATM, KIT, PIK3CA, and SMAD4 have fre-
quently been found in CRC with synchronous LM, and 
FBXW7, SMO, and STK11 were frequently mutated in 

CRC with metachronous LM; CDKN2A, FGFR2, GNAS, 
JAK3, and SRC were mutated only in metachronous LM 

Fig. 5  Clonal evolution of CRC LM. a Branch-based phylogenic trees for each patient. Branch-based clonal evolution trees are annotated with 
samples where the clones are present and driver events. b Fish plots inferred by ClonEvol showing an evolutionary model of CRC patients with LM
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[37]. However, except FBXW7, other genes were rarely 
mutated in our samples.

Functional predictions of the nonsynonymous muta-
tions in LM were then made. The top 10 GO terms 
based on biological processes, cellular component and 
molecular function are shown in Additional file 10: Fig-
ure S3A. The top two affected biological processes were 
homophilic cell adhesion via plasma membrane adhe-
sion molecules and cell adhesion. The top two affected 
cellular components were M band and axoneme. The 
top two altered molecular functions were dynein inter-
mediate chain binding and dynein light intermediate 
chain binding. We then performed KEGG analysis with 

genes mutated in LM. The top 20 pathways are displayed 
in Additional file 10: Figure S3B. Several of the affected 
pathways in CRC LM were cancer related. The PPI net-
work of mutated genes in LM was also constructed 
(Additional file 11: Figure S4).

Genes mutated only in LM lesions include ARH-
GAP24, ATP10D, C17orf58, DIP2C, DNAH11, DSCAM, 
DYNC2H1, INVS, LRP1B, MUC19, NPIPB11, OBSCN, 
SYNE1, TOMM70A, and TTN. ARHGAP24 inhibits 
cell proliferation and cell cycle progression and induces 
apoptosis of lung cancer [38]. Silencing of ARHGAP24 
activates the β-catenin signaling pathway to promote 
lung cancer cell migration and invasion [39]. DIP2C 

Fig. 6  Potential genetic determinants of CRC LM. Heatmap showing the distribution of LM specific nonsynonymous SNVs. Presence (red) or 
absence (blue) of each mutation is marked for each tumor within one individual. Sample IDs are shown at the bottom of the heatmap. Mutated 
genes present in at least two LM lesions are listed on the right of the heatmap. Mutated genes present in both primary and metastatic CRC are 
marked in red
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expression was found to be decreased in the basal-like 
and HER-2 breast cancer subtypes [40]. In a human can-
cer cell line, knockdown of DIP2C was found to induce 
extensive DNA methylation, gene expression variation, 
cell death, and epithelial–mesenchymal transition [41]. 
LRP1B has been reported to be down-regulated in colon 
cancer tissues, and impedes the proliferation, migration, 
and metastasis of colon cancer cells [42]. It is also often 
mutated in patients with melanoma and non-small-cell 
lung cancer. A higher tumor mutation burden was found 
in patients with LRP1B mutations [43]. Genomic meta-
analysis has indicated that OBSCN plays an important 
role in GPCR, RAS, p75, and Wnt signaling. OBSCN 
likely regulates breast cancer progression and metastasis 
by interacting with many cancer genes [44]. SYNE1 poly-
morphism increases the risk of invasive epithelial ovarian 
cancer [45]. TOMM70A has been identified as a tumor 
suppressor gene in xenograft studies [46]. The functions 
of ATP10D, C17orf58, DSCAM, and INVS have not yet 
been reported.

Discussion
In this study, an in-depth analysis of somatic mutations, 
somatic copy number alterations, and clonal structures 
revealed that the genomic alterations in primary and 
metastatic CRCs show various levels of discordance, 
indicating substantial levels of intertumor heterogeneity. 
Analysis of clonal evolution suggested that the founding 
clone in the primary tumor also evolved into the meta-
static clone, regardless of whether the LM was detected 
synchronously or metachronously with the primary 
tumor. A few metastasis-specific mutations were identi-
fied, suggesting that essential mutations for LM might be 
pre-existing in primary tumors.

We observed substantial levels of intertumor heteroge-
neity in SCNAs and SNVs in primary CRCs and matched 
LMs. SCNAs often result in gene dosage effects that 
enhance tumor growth by up-regulating oncogenes or 
down-regulating tumor suppressors [47]. SCNAs were 
acquired by the primary tumor at the earliest stages 
during tumorigenesis and were inherited by metastatic 
tumors through tumor evolution. Trunk mutations were 
considered to be ‘early’ events because they were pre-
sent in a large portion of cancer cells, had a relatively 
high mutation copy number, and occurred prior to the 
most recent clonal expansion [48]. Frequent mutations 
in cancer driver genes, including APC, TP53, and KRAS, 
promote colorectal tumorigenesis by modulating critical 
cellular pathways to achieve selective growth advantages 
for mutated cells [49]. Upon progression, primary and 
metastatic tumors acquired lesion-specific SCNAs and 
SNVs. The dynamic adaptation of tumors to local and 
distant organs is guaranteed by the myriad of cancer gene 

alterations [50]. Inter- and intra-tumor heterogeneity 
has also been reported in CRCs and their matched liver 
metastases [51].

Our clonal evolution analysis suggests that the found-
ing clone of the primary tumor also evolved into the 
metastatic clone. This finding has important implica-
tions for the genetic prognosis of metastasis and the 
contribution of individual malignant clones to tumor 
progression should be investigated. LM-specific clones 
are not related to primary tumor-specific clones, which 
are formed by the transformation of normal lung cells. 
Multiregional WES of matched primary and metastatic 
lymph node tumors of CRC also revealed a polyclonal 
seeding of metastasis [52]. Through analysis of the spa-
tial mutation categories and phylogenetic structures of 
primary CRCs and matched liver metastases, Kim et al. 
[51] identified branched evolutionary patterns in CRC 
genomes and suggested that preexisting subclones in 
primary lesions were responsible for the seeding of liver 
metastases. A similar evolutionary pattern has been pro-
posed in acute myeloid leukemia relapse [53]. Naxerova 
et  al. [54] found that two different lineage relationships 
between lymphatic and distant metastases exist in CRC; 
65% of lymphatic and distant metastases were generated 
by independent subclones in the primary tumor, while 
35% of cases shared a common subclonal origin. In con-
trast, Werner-Klein et al. [55] reported that early dissem-
inated melanoma cells were genetically immature; they 
acquired critical alterations outside of the primary tumor, 
and thereby gained the ability to form a colony.

Comprehensive sequencing analyses of primary and 
metastatic cancer genomes have suggested that minimal 
additional genetic alterations are required for carcinoma 
cells to give rise to metastasis [56]. Accordingly, our study 
identified 27 mutated genes present in more than one 
metastatic sample, of which 14 were also found in pri-
mary tumors. These results suggest that the core muta-
tions promoting cancer metastasis might already exist in 
primary cancer genomes. Indeed, Kim et al. [51] identi-
fied metastasis-clonal mutations in only 0.7% to 15.6% 
of total mutations in CRC liver metastases. In pancreatic 
cancer, it has been shown that new mutations acquired 
during metastatic development do not overlap across dif-
ferent patient samples [57]. Moreover, it has been shown 
that driver gene mutations not shared by all metastases 
are unlikely to have functional consequences [58]. Colon 
adenoma genomes were shown to be almost as old as 
invasive cancers, indicating that the time needed for met-
astatic formation is relatively short compared to the life 
span of CRC [51, 59].
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Conclusion
Our analysis of five CRC patients with synchronous or 
metachronous LM reveals discordant genomic altera-
tions in primary and metastatic CRCs, indicating sub-
stantial levels of intertumor heterogeneity. Analysis of 
clonal evolution suggests that the founding clone in the 
primary tumor also evolved into the metastatic clone; 
mutations identified in primary tumors might be crucial 
for metastasis. These findings suggest that specific indi-
vidual malignant clones contributing to cancer progres-
sion should be identified during the genetic prognosis of 
metastasis.
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