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ABSTRACT
Small non-coding RNAs (sRNAs) are involved in the control of numerous cellular processes through various
regulatory mechanisms, and in the past decade many studies have identified sRNAs in a multitude
of bacterial species using RNA sequencing (RNA-seq). Here, we present the first genome-wide
analysis of sRNA sequencing data in Rhodobacter capsulatus, a purple nonsulfur photosynthetic
alphaproteobacterium. Using a recently developed bioinformatics approach, sRNA-Detect, we detected
422 putative sRNAs from R. capsulatus RNA-seq data. Based on their sequence similarity to sRNAs in a
sRNA collection, consisting of published putative sRNAs from 23 additional bacterial species, and RNA
databases, the sequences of 124 putative sRNAs were conserved in at least one other bacterial species;
and, 19 putative sRNAs were assigned a predicted function. We bioinformatically characterized all putative
sRNAs and applied machine learning approaches to calculate the probability of a nucleotide sequence to
be a bona fide sRNA. The resulting quantitative model was able to correctly classify 95.2% of sequences in
a validation set. We found that putative cis-targets for antisense and partially overlapping sRNAs were
enriched with protein-coding genes involved in primary metabolic processes, photosynthesis, compound
binding, and with genes forming part of macromolecular complexes. We performed differential expression
analysis to compare the wild type strain to a mutant lacking the response regulator CtrA, an important
regulator of gene expression in R. capsulatus, and identified 18 putative sRNAs with differing levels in the
two strains. Finally, we validated the existence and expression patterns of four novel sRNAs by Northern
blot analysis.
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Introduction

Bacterial small non-coding RNAs (sRNAs) are regulatory
RNAs that are heterogeneous in size (generally approximately
50 to 250 nucleotides) and structure. sRNAs are known to func-
tion in a number of regulatory processes such as inhibition and
activation of translation, degradation and stabilization of
mRNA, transcriptional interference, and control of protein
activity. sRNAs are usually classified into five categories based
on their regulatory mechanisms. Cis-encoded base-pairing
RNAs are those that bind to their mRNA target with the high-
est degree of complementarity. An example of this type of
sRNA is GadY, which is involved in the regulation of the acid
response system of Escherichia coli.1,2 Riboswitches are cis-reg-
ulatory elements that directly bind a metabolite when abun-
dance of this metabolite exceeds a threshold level. This binding
induces a conformational change in the RNA to form a struc-
ture that affects transcription termination or translation initia-
tion.3 Some riboswitches also function as sRNAs and are able

to act in trans, such as the S-adenosylmethionine (SAM) ribos-
witches SreA and SreB of Listeria monocytogenes.4 These two
riboswitches regulate the expression of the virulence regulator
PrfA by pairing with the 50 untranslated region (UTR) of its
mRNA.4 Trans-encoded base-pairing small RNAs have limited
complementarity to their target mRNA(s) and can, in some
cases, regulate more than one target. A well-characterized
example of a trans-encoded regulatory sRNA is RyhB, which is
involved in the regulation of intracellular iron usage in bacteria
such as E. coli.5 Protein modulator sRNAs are ones that counter
the activities of mRNA-binding proteins. An example is CsrB,
which is part of the carbon storage regulator (Csr) system in E.
coli.6 The final category consists of the clustered regularly inter-
spaced short palindromic repeat (CRISPR) RNAs (crRNAs),
which are palindromes interspaced with short unique spacer
sequences that act as a defense mechanism against homologous
foreign DNA, such as that from viruses.7
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Numerous cellular processes, such as metabolic reactions,
quorum sensing, biofilm formation, stress responses, and path-
ogenesis, are controlled by sRNAs in various species of bacte-
ria.8 In the last decade, high-throughput RNA sequencing
(RNA-seq) methods have been employed to identify sRNAs on
a genome-wide scale in numerous bacterial species (see Table 1
for some examples). In this work, we used sRNA-Detect9 to
perform the first genome-wide detection of sRNAs from RNA-
seq data in the purple nonsulfur alphaproteobacterium Rhodo-
bacter capsulatus. This is an organism of interest for its meta-
bolic versatility10 and production of a gene transfer agent.11 We
performed comparative RNA-seq targeting sRNAs in the R.
capsulatus wild type strain, SB1003, and a mutant strain,
SBRM1, lacking the histidyl-aspartyl phosphorelay response
regulator CtrA, and identified 422 putative sRNAs expressed in
R. capsulatus in the early stationary growth phase when grow-
ing in photoheterotrophic conditions. Among these 422 puta-
tive sRNAs, we identified 18 sRNAs with differing levels in the
two strains. Based on significant matches to sequences in the
Rfam database,12 in the RNAcentral database,13 and in the bac-
terial small regulatory RNA database (BSRD),14 19 of the 422
putative sRNAs were assigned a predicted function. The tran-
script levels for selected sRNA candidates were validated by
Northern blot analysis.

We also collected genome sequences and published putative
sRNAs from 23 additional bacterial species, which included
representatives from the phyla Chlamydiae, Firmicutes, and
Actinobacteria, and the Alpha-, Beta-, Gamma-, and Epsilon-
proteobacteria classes of the phylum Proteobacteria. This
yielded a collection of 4,725 predicted sRNAs. Based on
sequence comparisons, 124 of the 422 putative R. capsulatus
sRNAs were conserved in at least one other bacterial species.

Finally, we characterized all putative sRNAs for four bioinfor-
matics characteristics and then applied machine learning

approaches to develop a quantitativemodel to calculate the proba-
bility of a given RNA sequence to be a bona fide sRNA. Themodel
was able to correctly classify 95.2% of sequences in a validation set.

Results and discussion

Sequencing and detection of R. capsulatus sRNAs

We grew cultures under photoheterotrophic conditions to early
in the stationary phase of growth so that the data collected would
match with ourmost comprehensive collection of transcriptomic
data from previous microarray studies.15,16 Sequencing of size-
selected RNA, � 200 nucleotides, from the genome-sequenced
strain, SB1003, and its derived ctrA mutant strain, SBRM1,17

generated a total of 4.45 million reads. From these reads, 93.5%
were uniquely mapped to the R. capsulatus genome. These
sequence data have been submitted to the NCBI Gene Expres-
sion Omnibus (GEO) under accession number GSE82056.

Recently, we showed that sRNA-Detect, a new computa-
tional program for the detection of bacterial small transcripts
from RNA-seq data, exhibits higher recall rates at comparable
specificity levels than other standalone computational
approaches.9 We used sRNA-Detect on our sequence data, and
after removal of detected small transcripts located within anno-
tated tRNAs (tRNAs) and rRNAs (rRNAs), we detected 422
potential sRNAs in R. capsulatus.

sRNAs with predicted functions or homologs

To annotate R. capsulatus putative sRNAs with predicted func-
tions, we retrieved significant matches to R. capsulatus sRNAs
from the Rfam, RNAcentral and BSRD databases. Based on
these matches, we annotated 19 sRNAs with predicted func-
tions (Tables 2 and S1). There were six riboswitches (including

Table 1. List of bacterial species and sRNAs used for comparative analysis.

Species Phylum or class Genome assembly accession number Number of sRNAs Reference

Chlamydia trachomatis L2b/UCH-1/proctitis Chlamydiae NC_010280.2 46 52

Clostridium difficile 630 Firmicutes NC_009089.1 253 53

Streptococcus pneumoniae TIGR4 Firmicutes NC_003028.3 88 54

Bacillus subtilis subsp. subtilis str. 168 Firmicutes NC_000964.3 84 55

Corynebacterium glutamicum ATCC 13032 Actinobacteria NC_003450.3 805 56

Mycobacterium tuberculosis H37Rv Actinobacteria NC_000962.3 258 57

Propionibacterium acnes KPA171202 Actinobacteria AE017283.1 79 58

Streptomyces venezuelae ATCC 10712 Actinobacteria NC_018750.1 175 59

Streptomyces avermitilis MA-4680 Actinobacteria NC_003155.4 199 59

Streptomyces coelicolor A3 Actinobacteria NC_003888.3 92 59

Campylobacter jejuni RM1221, 81–176, 81116, and
NCTC11168

Epsilonproteobacteria NC_003912.7, NC_008787.1, NC_009839.1,
NC_002163.1

102 60

Helicobacter pylori 26695 Epsilonproteobacteria NC_000915.1 276 61

Neisseria gonorrhoeae FA 1090 Betaproteobacteria NC_002946.2 231 62

Caulobacter crescentus sp K31 Alphaproteobacteria NC_010338.1 29 34

Rhodobacter capsulatus SB1003 Alphaproteobacteria NC_014034.1 422 This work
NC_014035.1

Agrobacterium tumefaciens Alphaproteobacteria NC_003062.2, NC_003063.2 187 63

Rhodobacter sphaeroides 2.4.1 Alphaproteobacteria NC_007493.2, NC_007494.2 28 19,64

Sinorhizobium meliloti 1021 Alphaproteobacteria NC_003047.1 150 65

Vibrio cholerae O1 biovar El Tor str. N16961 Gammaproteobacteria NC_002505.1, NC_002506.1 480 66

Pseudomonas aeruginosa UCBPP-PA14 Gammaproteobacteria NC_008463.1 165 67

Escherichia coli str. K-12 substr. MG1655 Gammaproteobacteria NC_000913.2 309 68

Erwinia amylovora ATCC 49946 Gammaproteobacteria NC_013971.1 40 69

Yersinia pestis KIM10C Gammaproteobacteria NC_004088.1 31 70

Salmonella enterica subsp enterica serovar
Typhimurium str. SL1344

Gammaproteobacteria NC_016810.1 113 71
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those binding thiamine pyrophosphate and cobalamin), three
segments of transfer-mRNA (tmRNA), three segments of the
catalytic RNA of ribonuclease P (RNase P RNA), the signal rec-
ognition particle (SRP) RNA (ffs), 6S RNA, an a-operon ribo-
some binding site, the cspA thermoregulator, the upstream
sRNA of mraZ (UpsM)18 and an sRNA homologous to a vali-
dated Rhodobacter sphaeroides sRNA (RSs1386).19 Several
sRNAs corresponding to fragments of the tmRNA and the
RNase P RNA were predicted due to differences in read depth
coverage across the full length of these transcripts.

To investigate the extent of sequence conservation of puta-
tive R. capsulatus sRNAs in different bacterial species, we
obtained sRNA sequences identified in recent studies of 23
other bacterial species (Table 1) and used BLAST (version
2.2.30C)20 to search for pairwise reciprocal best matches
between the sRNAs of each of the other 23 bacterial species
and the R. capsulatus sRNAs from this study. As differences in
the characteristics of each study, including but not limited to
differences in sequencing platforms, growth conditions, RNA
extraction methods, and sRNA identification methods, lead to
limitations in this analysis, we also searched for sequence con-
servation of R. capsulatus sRNAs in the genomes of these 23
other bacterial species. In total 124 (or 29%) of the 422 putative
sRNAs had homologous sRNAs or were found to be conserved
in the genome of at least one other bacterial species (Fig. 1).
We organized these 124 sRNAs based on our level of confi-
dence in their conservation. We referred to sRNAs with
matches in at least one of the three RNA databases (Rfam,
RNAcentral and BSRD) as hypothetical equivalogs, which rep-
resented 24 sRNAs that likely belong to a set of sRNAs con-
served with respect to function. This category includes the 19
sRNAs for which we inferred a function. We classified sRNAs
with homologs found in bacterial species belonging to other
genera as inter-taxa homologs, which represented 40 sRNAs
that are likely to be true functional sRNAs. The sRNAs whose
sequences were only present in the genome of the related bac-
terial species R. sphaeroides were classified as intra-genus
homologs, which represented 60 sRNAs. The remaining 298
putative R. capsulatus sRNAs appear to be species-specific.
Not surprisingly, there are more intra-genus than inter-taxa
homologs and, as already pointed out by Gomez-Lozano
et al.,21 there is limited sRNA sequence conservation across
different species.

Bioinformatic characterization of putative sRNAs in R.
capsulatus

We characterized all 422 putative sRNAs in terms of their pre-
dicted secondary structures, their proximities to predicted pro-
moter sites, their proximities to predicted Rho-independent
terminators, and their genomic contexts. To be able to compare
the features of the putative sRNAs with a null distribution, we
randomly extracted sequences matching the length and strand
of putative sRNAs from the R. capsulatus genome. There were
at least 10 random sequences for each putative sRNA sequence.
We used CentroidFold22 to predict the secondary structures of
both the sRNA sequences and the random sequences, and to
calculate the free energies of the folded structures. We found
that the distribution of free energies of the sRNAs’ secondary
structures was shifted toward lower values than the distribution
of free energies of the random sequences’ secondary structures
(Fig. 2A). The difference between the free energies of the
sRNAs’ secondary structures and the free energies of the ran-
dom sequences’ secondary structures was statistically signifi-
cant (p D 5.9E-12, Mann-Whitney test). This indicates that our
putative sRNAs tend to adopt more stable conformations than
random genomic sequences.

Using the BPROM program,23 we searched for putative pro-
moters in the region spanning 150 nucleotides (nts) upstream
to 20 nts downstream from the predicted 50 ends of both the
putative sRNAs and the random genomic sequences. Of the
422 putative sRNAs, 183 (43%) had predicted promoter sites,
in contrast to 18.6% of the random sequences. Furthermore,
there was a distinct peak at position ¡21.5 in the probability
density function for the ¡10 promoter positions of putative

Table 2. List of functionally annotated sRNAs.

Identifier(s) Inferred Annotation

sRNA00627 TPP riboswitch
sRNA00822 Signal recognition particle (SRP) RNA (ffs)
sRNA00687, sRNA00526, sRNA00688,

sRNA00508, sRNA01035
Cobalamin riboswitch

sRNA00123 a-operon ribosome binding site
sRNA00598 Bacterial small signal recognition particle

RNA
sRNA01208 cspA thermoregulator
sRNA01158, sRNA01157, sRNA01156 Transfer-messenger mRNA (fragment of)
sRNA01077 Upstream sRNA of mraZ, UpsM
sRNA00648 6S RNA
sRNA00470 Homologous sRNA to the Rhodobacter

sphaeroides validated sRNA RSs1386
sRNA01141, sRNA01140, sRNA01139 Ribonuclease P catalytic RNA (fragment of)

Figure 1. Map of 124 sRNAs in R. capsulatus with sequence conservation in other
bacterial species. Sequence similarity searches were performed for all putative R.
capsulatus sRNAs against three RNA databases and a panel of 23 bacterial species
including representatives from the Chlamydiae, Firmicutes, and Actinobacteria
phyla and the Alpha-, Beta-, Gamma-, and Epsilonproteobacteria classes of the phy-
lum Proteobacteria. From right to left, three classes (hypothetical equivalogs, 24
sRNAs; inter-taxa homologs, 40 sRNAs; and intra-genus homologs, 60 sRNAs) pro-
ceed from nearly complete certainty about a putative sRNA’s function to no func-
tional information. Gray indicates no homologs (matches) were found for the sRNA
in that organism or database.
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sRNAs, whereas the random sequences had a uniform proba-
bility distribution for the ¡10 promoter positions (Fig. 2B). As
sRNA-Detect tends to predict transcripts that lie within the
boundaries of the actual sRNA (i.e., it misses some nucleotides
at the 50 and 30 ends of the sRNAs),9 the average distance to the
¡10 and ¡35 promoter sites from the actual 50 end of the
sRNAs would be less than as estimated above. Our data

indicates that many of the putative sRNAs have proximal pro-
moter sites and supports the notion that they are independently
transcribed.

Next, we used TransTermHP,24 a computational method to
detect Rho-independent transcription terminators, to predict
the locations of terminators in the R. capsulatus genome. We
associated a terminator to a putative sRNA if the terminator
was within 500 nts downstream from the predicted 30 end of
the sRNA as described by Kingsford et al.24 Of the 422 putative
sRNAs, 130 (31%) had an associated predicted Rho-indepen-
dent transcription terminator, whereas only 8.15% of the ran-
dom genomic sequences did. Moreover, as depicted in Fig. 2C,
there was a distinct peak in the probability that the 30 ends of
the sRNAs were located 7 nts from the closest downstream ter-
minator, whereas the random sequences’ density function had
a uniform distribution.

Based on the putative sRNAs’ genomic contexts, we classi-
fied the sRNAs as either “intergenic” if located in intergenic
regions (IGRs), “antisense” if located within an annotated gene
and transcribed on the strand opposite to this gene, “partially
overlapping” if the 50 or 30 end of the sRNA overlaps the 50 or
30 end of an annotated gene, “partially overlapping on both
ends” if the 50 end of the sRNA overlaps an annotated gene and
the 30 end of the sRNA overlaps another annotated gene, or
“sense” if located within an annotated gene and transcribed on
the same strand as this gene (Fig. 3). 150 sRNAs were inter-
genic, 186 were partially overlapping and 46 were partially

Figure 2. Characteristics of putative sRNAs in comparison with the null distribution. (A) Probability distribution of the free energy of the predicted secondary structures
for the putative sRNAs (red line) and 4,400 random genomic sequences of matching length and orientation (black line). The average free energy of the sRNAs’ predicted
secondary structures is statistically significantly lower than the average free energy of the random sequences’ secondary structures (p D 5.902E-12, Mann-Whitney test).
(B) Density function of the number of nucleotides (nts) upstream from the predicted 50 end of the putative sRNAs to ¡10 (solid red line) and ¡35 (dashed red line) pre-
dicted promoter sites in comparison with the number of nts from the 50 end of random genomic sequences to ¡10 predicted promoter sites (solid black line). (C) As B,
but number of nts downstream from the predicted 30 end of the putative sRNAs (red line) and of random genomic sequences (black line) to predicted Rho-independent
terminators. (D) Proportion of sRNAs (left) and random genomic sequences (right) in a specific class of genomic context (antisense (AS), 28 sRNAs; intergenic (I), 150
sRNAs; partial overlapping (PO), 186 sRNAs; partial overlapping on both ends (POb), 46 sRNAs; and sense (S), 12 sRNAs).

Figure 3. Schematic illustration of the different classes of genomic contexts of
sRNAs. Genes are depicted as thick arrows with open reading frames (ORFs) shown
in gray and sRNAs shown in red. Only a subset of all possible direction of transcrip-
tion combinations are shown. Antisense RNAs (asRNAs) are within an ORF that is
transcribed on the strand opposite to the asRNAs. Sense sRNAs are within an ORF
that is transcribed on the same strand as the sRNA. Intergenic sRNAs are found in
intergenic regions (IGRs) between ORFs. Partial overlapping sRNAs occur when the
50 or 30 end of the sRNA overlaps with the 50 or 30 end of an ORF. Partial overlap-
ping on both ends sRNAs occur when the 50 of the sRNA overlaps the 50 or 30 end
of an ORF and the 30 of the sRNA with the 50 or 30 end of another ORF.
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overlapping on both ends. These amounts were 6.6, 5.2 and
2.6 times more than expected, respectively, if the locations were
randomly distributed over the genome (Fig. 2D). In contrast,
28 antisense sRNAs (asRNAs) and 12 sense sRNAs were
detected, which is 6.3 and 14.1 times less than expected, respec-
tively (Fig. 2D).

As putative sRNAs had clearly distinct characteristics from
random sequences, we decided to apply machine learning
approaches (classifiers) to obtain a model to quantify the prob-
ability of a sequence being a bona fide sRNA. To derive the
model, we selected as predictors (attributes) the free energy of
the predicted secondary structure of the sRNA, the distance to
a predicted promoter site, the distance to a Rho-independent
terminator, and the sRNA genomic context. The genomic con-
text included distance to the closest “left” neighboring ORF,
distance to the closest “right” neighboring ORF, and whether
the sRNA was on the same strand as the closest neighboring
annotated ORFs. We refer to an annotated ORF located at the
50 end of a sRNA on the forward strand or an annotated ORF
located at the 30 end of a sRNA on the reverse strand as “left,”
and an annotated ORF located at the 30 end of a sRNA on the
forward strand or an annotated ORF located at the 50 end of a
sRNA on the reverse strand as “right” (illustrated in Fig. S1).
To create the model, we considered those sRNAs with inter-
taxa homologs in the sRNA collection or conserved in the
genome of at least two other bacterial species, and sRNAs with
hypothetical equivalogs (Fig. 1) as “bona fide sRNAs.” We ran-
domly chose 33 of these 41 bona fide sRNAs as positive instan-
ces and 98 random sequences as negative instances to train the
classifiers. We then evaluated the classifiers’ performances on
the remaining 8 bona fide sRNAs and 4322 random sequences.
We applied three machine learning approaches, namely, logis-
tic regression, linear discriminant analysis (LDA) and quadratic
discriminant analysis (QDA).25 Among these three methods,

logistic regression had the highest recall rates at the lowest false
positive rate (Fig. S2A-C). Details about the logistic regression
model obtained are given in the Materials and Methods section.
At a probability cut-off of 0.6, the logistic regression model
retrieved 66.25% of the positive test instances and only 4.7% of
the random sequences. We then calculated the probability of
being a bona fide sRNA using the logistic regression model for
all 422 putative sRNAs. Of the 422 putative sRNAs, 109 (26%)
scored a probability >0.6 (Fig. S2D). At the estimated false pos-
itive rate, only five of these 109 sRNAs would be expected to be
false positives. We expect that assigning a confidence estimate
for being a bona fide sRNA to a given putative sRNA will help
prioritize sRNAs for experimental validation. A limitation of
this analysis is that, as the majority of positive instances used to
learn the logistic regression model were intergenic or partially
overlapping sRNAs, the logistic regression model underesti-
mates the probability of asRNAs being bona fide sRNAs. These
analyses need to be replicated in other bacterial species with a
larger number of confirmed sRNAs to corroborate these find-
ings and obtain better performance estimates. Table S1 con-
tains the full description of all putative sRNAs, including their
estimated probabilities of being bona fide sRNAs.

Identification of a putative tRNA-derived sRNA locus

We observed a putative intergenic sRNA (sRNA00295) found
to be conserved in the genomes of 16 other bacterial species
without a homologous sRNA in the sRNA collection or the
RNA databases. This sRNA lacked a homologous sRNA of
known function and we decided to inspect it further. The
sequence of sRNA00295 was identical to the 30 region of the
four tRNA-Met genes found in the R. capsulatus chromosome.
The homology with the tRNAs makes interpreting the RNA-
seq read data somewhat challenging, as reads originating from

Figure 4. Genomic context and predicted secondary structure of a putative tRNA-derived sRNA locus (sRNA00295). The top panel shows sRNA00295’s genomic context
indicating distance to the closest protein-coding genes. The middle panel illustrates read depth coverage, location of predicted promoter site, and location of Rho-inde-
pendent terminator (panel generated using Integrative Genomics Viewer version 2.3.72). The numbers of reads mapped for the SB1003 and the ctrA mutant strain were
472 and 462, respectively, as calculated by htseq-count. The bottom panel shows a multiple sequence alignment and predicted consensus secondary structure obtained
using LocARNA. Colored nucleotides indicate correspondence between positions in the alignment and the RNA structure.
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the tRNAs could be mapping onto this putative sRNA locus,
and vice versa. However, a promoter site and Rho-independent
terminator were predicted to flank this putative sRNA. We also
checked this region in an additional unpublished data set based
on differential RNA-seq (dRNA-seq), which identifies 50 ends
of RNAs that originate from transcription initiation as opposed
to RNA processing,26 and a 50 end was identified at this location
(Gr€ull et al., unpublished). There have been recent discoveries
of tRNA-derived sRNAs, which have been implicated in differ-
ent regulatory processes.27,28 If genuine, this sRNA would
instead represent an independent tRNA-derived fragment
locus, and this warrants future investigation. Fig. 4 depicts
sRNA00295’s genomic context and predicted secondary
structure.

To gain insight into the likely functional role of this putative
sRNA, we used the CopraRNA web server29 to predict
sRNA00295’s targets. Despite recent advances, most sRNA tar-
get prediction programs have a high false positive rate;
CopraRNA, which requires at least three homologous sequen-
ces to predict targets, has twice the prediction accuracy of other
sRNA target prediction programs.30 Table 3 shows the top 10
sRNA00295 targets predicted by CopraRNA (the complete
CopraRNA results, which includes all 76 predicted targets are
listed in Table S2). To quantify protein interactions among
sRNA00295’s 76 predicted targets, we used the Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING, version
10.0) database of physical and functional interactions.31 Com-
pared with similarly sized randomly selected protein sets,
sRNA00295’s 76 predicted targets have significantly
more interactions among themselves (PPI enrichment p D
1.13E-08), with 28 interactions as compared with eight for ran-
dom protein sets. We also tested for functional enrichment
among sRNA00295’s 76 predicted targets using STRING, but
no functional enrichment was found.

Functional and protein-interaction enrichment of potential
cis-targets of putative antisense and partially overlapping
sRNAs

To obtain insight into the biological processes potentially regu-
lated by the antisense and partially overlapping putative
sRNAs, we assumed that they were cis-acting and examined the
265 overlapping protein-coding mRNAs for functional and
protein interaction enrichment using STRING. As antisense
and partially overlapping sRNAs have been shown to also

regulate gene expression in trans,32 this approach likely missed
additional regulatory targets of these putative sRNAs. Never-
theless, the set of cis-targets showed a significant enrichment of
genes involved in primary metabolic process (28 genes, FDR-
corrected p D 1.97E-5), photosynthesis (16 genes, FDR-cor-
rected p D 3.98E-5), compound binding (24 genes, FDR-cor-
rected p D 0.004), and of genes encoding parts of
macromolecular complexes (17 genes, FDR-corrected p D
3.2E-7). The complete functional enrichment results are pro-
vided in Table S3. We also investigated whether putative cis-
targets were co-expressed based on previously determined
R. capsulatus gene co-expression modules,16 and found that cis-
targets showed a significant accumulation in two gene co-
expression modules (13 genes in the midnightblue module,
FDR-corrected p D 0.002; and 7 genes in the salmon4 module,
FDR-corrected p D 0.003). Additionally, there were signifi-
cantly higher interactions among the network of cis-targets
(PPI enrichment p D 0), with 528 interactions as compared to
204 for random protein sets. This indicates that several of the
likely cis-targets interact and are co-expressed, and supports
the notion that sRNAs play a regulatory role in these processes.

Effects of loss of ctrA on sRNA expression

We investigated whether putative sRNAs were differentially
expressed between two R. capsulatus strains: the genome-
sequenced strain, SB1003, and its ctrA null mutant derivative,
SBRM1. CtrA is a two-component/histidyl-aspartyl phosphore-
lay response regulator that affects many processes in R. capsula-
tus such as motility and gene transfer agent production.33 In
Caulobacter crescentus, where it is an essential protein and con-
trols many cell cycle-related process, CtrA was shown to regu-
late expression of sRNAs as part of its regulon.34 Fig. S3
illustrates the distribution of the normalized log2 fold change
of the sRNAs’ read counts between the two strains. Although
more samples are required to have enough statistical power to
identify statistically differentially expressed sRNAs, the vast
majority of sRNAs do not appear to be differentially expressed.
However, 18 sRNAs had an absolute log2 fold change >3, sug-
gesting possible differential expression between the strains.
Among these 18 sRNAs, there are 2 asRNAs, 7 intergenic, 8
partially overlapping, and 2 partially overlapping on both ends
sRNAs. Nine of the 14 ORFs overlapped by the antisense and
partially overlapping sRNAs were previously identified as
affected by the loss of CtrA15 (p D 4.14E-10, Hypergeometric
test), including genes encoding the flagellar protein MotB
(rcc00006), the flagellar hook-associated protein FlgK
(rcc00008), an Hpt domain-containing protein (rcc00180), and
the DNA-protecting protein DprA (rcc03098). We also investi-
gated whether these 14 ORFs overlapped by potential differen-
tially expressed sRNAs were co-expressed based on previously

Table 3. Top 10 targets predicted by CopraRNA for sRNA00295 a putative tRNA-
derived sRNA locus.

Gene ID Description

RCAP_rcc01474 amino acid permease
RCAP_rcp00009 LacI family transcriptional regulator
RCAP_rcc00101 ABC transporter permease
RCAP_rcc02606 mammalian cell entry domain-containing protein
RCAP_rcc00024 glutaryl-CoA dehydrogenase
RCAP_rcc01400 signal transduction histidine kinase
RCAP_rcc00616 acriflavine resistance protein B
RCAP_rcc00505 type II secretion system protein E
RCAP_rcc01291 kinetochore Spc7 domain-containing protein
RCAP_rcc02771 TetR family transcriptional regulator

Table 4. Biotin-labeled probes for detection of selected sRNAs on Northern blots.

sRNA Oligo sequence (50 to 30)

sRNA00385 BIO-GCGCAGTTGACGCGCCGTCT
sRNA01029 BIO-GGAAACCGGGCGCGGGAACC
sRNA00848 BIO-TCAAGCCTCTGAGGAAGGTC
sRNA01129 BIO-GGGGCTGTTGACCGCCCGCC
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determined R. capsulatus gene co-expression modules and,
indeed, they were significantly over-represented in two mod-
ules: pink (6 genes, FDR-corrected p D 1.05E-5) and orange (3
genes, FDR-corrected p D 2.9E-4). The orange module was
identified as associated with the production of RcGTA16 and
the DprA protein is required for uptake of DNA from RcGTA
particles by recipient cells,35 thereby adding sRNAs as another
regulatory mechanism involved in controlling RcGTA-medi-
ated gene exchange in R. capsulatus.11 As all of the potentially
differentially expressed sRNAs are R. capsulatus-specific, we
were unable to use CopraRNA to predict potential targets of
the intergenic sRNAs.

Experimental validation of putative sRNAs using Northern
blot analysis

We chose four putative sRNAs to evaluate by Northern blot-
ting. These were sRNA00385, sRNA01029, sRNA00848, and
sRNA01129, representing four R. capsulatus-specific intergenic
sRNAs, three of which showed differential expression between
the wild type and ctrA mutant strains, as evaluated by read
counts in the RNA-seq data. We purposefully chose three of
the targets due to their predicted differential expression to help
with interpretation of the Northern blots as previous studies
have detected multiple bands on Northern blots probed for
sRNA detection.36 These differentially expressed sRNAs are
also candidates for future investigation for potential roles in the
regulation of CtrA-affected processes, such as the production
of RcGTA. As expected due to the program’s limitation with
respect to correctly identifying the 50 and 30 boundaries of
sRNAs,9 the bands detected for each of the sRNAs were larger
than predicted by sRNA-Detect. Manual inspection of the
sequence read data allowed us to estimate the boundaries and
sizes of these sRNAs more accurately (Fig. 5) to match the sizes
estimated on the Northern blots, and we identified putative
promoter sequences for these sRNAs (Fig. 6) that agree with a
previously identified R. capsulatus consensus promoter
sequence.37

sRNA00385 was predicted to have a size of 189 nts based on
sRNA-Detect. Examination of the sequence reads for this
region suggested an actual size of 249 nts (Fig. 5). A putative
promoter site was found upstream of the predicted 50 end
(Figs. 5 and 6) although in this case the ¡10 site was centered
18 nts upstream of the predicted 50 end, possibly indicating
either poor read coverage at the 50 end as frequently found in
RNA-seq,38 or variable length spacing in the promoter ele-
ments.39,40 This putative sRNA showed similar, high levels of
expression in the RNA-seq data from both strains. The North-
ern blot showed a major band at approximately 230 nts
(Fig. 7). There were several additional bands detected on this
blot, most of which were present in both strains. These presum-
ably result from non-specific hybridization of the probe to
additional RNAs, as has been observed in previous studies
detecting sRNAs by this method.36

sRNA01029 was predicted to have a size of 52 nts by
sRNA-Detect. Inspection of the sequencing data for this
sRNA suggested a size of 68 nts and a ¡10 element was
identified centered 12 nts upstream of the predicted sRNA’s

Figure 5. Read depth coverage plots and genomic locations for the experimentally confirmed sRNAs. Parts of the neighboring genes are shown with green arrows indi-
cating their direction in the genome. Their relative distance to the coverage plots is not to scale. Predicted promoter ¡10 and ¡35 elements are depicted as black boxes
with white arrows inside, and the sequences are given in Fig. 6 and below. The distance of the promoter relative to the 50 end of the corresponding sRNA is also not to
scale. The sRNA sequencing reads are presented as purple plots with an indication of the sRNA’s predicted size on top. Blue bars mark the predicted 50 ends and orange
bars the predicted 30 ends of the sRNAs. The sRNAs’ 50 and 30 end sequences and the ¡10/¡35 elements are shown underneath the plots in their respective 50–30
orientations.

Figure 6. Identification of putative promoter ¡10 and ¡35 sequences for four
experimentally confirmed sRNAs. (A) Predicted promoter sites upstream of each of
the sRNAs. The nucleotide spacing between the motifs is indicated. (B) The fre-
quency of bases found at each position is indicated by the size of the colored let-
ters, created with Weblogo 3.0.51 (C) Consensus promoter sequence based on
promoters identified in a previous study.37
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50 end (Figs. 5 and 6). The sRNA was predicted to be more
highly expressed in the wild type strain based on read count
data (approximately 3:1, Table S1). The Northern blot
showed several bands in both strains, with one band at
approximately 65 nts that was present at higher levels in the
wild type strain in comparison to the ctrA mutant (Fig. 7).

sRNA00848 was predicted to have a size of 71 nts by sRNA-
Detect, with inspection of the sequencing data suggesting a size
of 91 nts. A putative promoter sequence was identified
upstream of the predicted 50 end (Figs. 5 and 6) but, as with
sRNA00385, the ¡10 sequence was centered more than 10 nts
upstream (25 nts). This sRNA was only detected in the RNA-
seq data from the wild type strain and the Northern blot
showed a band at approximately 78 nts only in RNA from the
wild type strain (Fig. 7).

sRNA01129 was predicted to have a size of 69 nts based on
sRNA-Detect, and this matched the predicted size from manual
inspection of the sequencing data. We found a putative pro-
moter with a ¡10 element centered 7 nts upstream of the pre-
dicted 50 end (Figs. 5 and 6). This sRNA was detected at a
much higher level in the wild type strain RNA-seq data com-
pared to the ctrA mutant (28:1, Table S1). The Northern blot
showed a band at approximately 60 nts that was present in the
wild type strain but not detected in the ctrAmutant (Fig. 7).

Conclusions

Using RNA-seq data we have identified 422 putative sRNAs in
R. capsulatus: 24 sRNAs with hypothetical equivalogs, 40
sRNAs with putative inter-taxa homologs, 60 sRNAs with puta-
tive intra-genus homologs and 298 potential R. capsulatus-spe-
cific sRNAs. To help prioritize further investigations into these
sRNAs, we have bioinformatically characterized these sRNAs
and used logistic regression to quantify the probability of a
putative sRNA being a bona fide sRNA. Using the logistic
regression model, 109 (or 26%) of the 422 putative sRNAs were
assigned a probability greater than 0.6 of being a bona fide
sRNA; at the estimated false positive rate of 4.8%, only five out

of these 109 sRNAs are expected to be false positives. Analysis
of a strain lacking the important response regulator CtrA iden-
tified 18 putative sRNAs that were differentially expressed rela-
tive to the wild type strain. This indicates that effects on the
levels of sRNAs is another means by which the CtrA phosphor-
elay regulates processes in R. capsulatus. We experimentally
confirmed the existence of four of the putative sRNAs by
Northern blot analysis, and validated the differential expression
that was predicted from the RNA-seq data analysis for three of
these. The abundance of sRNAs detected in R. capsulatus indi-
cates that a potential extra layer of regulatory complexity exists
in this species. Revealing the functional roles of these sRNAs
will improve our understanding of the mechanisms R. capsula-
tus employs to regulate its physiology.

Materials and methods

R. capsulatus growth and RNA isolation

R. capsulatus cultures were grown under anaerobic phototro-
phic conditions at 35�C in complex YPS medium41 until four
hours after reaching stationary phase. The culture was mixed
5:1 with 95% ethanol and 5% saturated phenol,42 the cells were
pelleted by centrifugation, the supernatant was removed, and
the cell pellets were frozen in dry ice/ethanol and stored at
¡80�C until RNA isolations were performed. sRNA purifica-
tion was performed with the NucleoSpin� miRNA kit
(MACHEREY-NAGEL) following the manufacturer’s protocol
for purification of the small RNA fraction (<200 nts).

Library preparation and sequencing

The isolated small RNA fraction was used for RNA library
preparation for sequencing using an Ion Torrent Personal
Genome Machine (PGM; Thermo-Fisher). The RNA quality
was checked prior to library preparation using an Agilent Bioa-
nalyzer (Agilent Technologies). Library preparation followed
the manufacturer’s recommendations for small RNA libraries
with the RNA-seq Kit v2 (Thermo-Fisher). The library was
amplified using an Ion Torrent One Touch 2 system. The sam-
ples were loaded individually on 316 v2 chips and sequenced
with the number of flows set to 550.

Processing of RNA-seq data

The RNA-seq data quality was verified using the FastQC tool
(version 0.10.0) and reads were filtered and trimmed using the
fastq_quality_trimmer available in the FASTX Toolkit (version
0.0.13.2) with a quality threshold of 22 and minimum read
length of 28 nucleotides. Filtered and trimmed reads were
mapped to the R. capsulatus genome using the Torrent mapper
tmap (version 3.0.1), executed with the parameters: -B 18 -a 2
-v stage1 map1 map2 map3. Mapping statistics were obtained
using samtools.43

Detection of sRNAs from RNA-seq data

sRNAs were predicted from mapped RNA-seq data using
sRNA-Detect.9 sRNA-Detect constructs a coverage vector using

Figure 7. Northern blot images of the experimentally confirmed sRNAs. RNA from
the genome-sequenced strain, SB1003, and the ctrA mutant strain were run in the
left and right lane, respectively, of each gel. The sequences of the biotin-labeled
probes are given in Table 4. The sizes for the corresponding ladder bands are indi-
cated on the left of each blot image, and the number on top of each image identi-
fies the corresponding sRNA probe.
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the function GenomicArray available in HTSeq44 (version
0.5.4p5) and then goes through the genomic intervals in the
coverage vector and finds continuous segments between 20 and
250 nucleotides long with similar numbers of reads, with a
maximum percentage change of 3% allowed in the average
number of reads. A minimum of 10 reads across all samples
was required to consider a transcript as expressed. sRNA-
Detect is available at www.cs.mun.ca/»lourdes. Predicted tran-
scripts overlapping to tRNAs and rRNAs were removed from
the putative sRNA set using the tool intersectBed available in
BEDtools45 (version 2.25).

Collection and analysis of sRNAs from other bacterial
species

Published studies performing genome-wide identification of
sRNAs using RNA-seq data were identified (Table 1), genomic
coordinates of the putative sRNAs were collected, and the cor-
responding sRNA sequences were obtained using the tool fasta-
FromBed available in BEDtools.

Bioinformatic analysis of sRNAs

Sequence conservation of putative sRNAs was determined by
identifying reciprocal best BLAST matches between pairs of
species (Table S4). The program blastn (version 2.2.30C) was
executed with an E-value cut-off of 1E-4, a best_hit_overhang
of 0.1 and task mode of “blastn.” Rfam matches were obtained
using the batch search functionality in the Rfam database (ver-
sion 12.1). If an sRNA had multiple Rfam matches only the
most significant match was considered. All 30581 sRNA
sequences in BSRD were downloaded (May 2015) and a BLAST
database was created with these sequences. BSRD matches per
sRNA were obtained using blastn with the same settings as for
the homology search. If an sRNA had multiple BSRD matches
only the match with the lowest E-value was considered. The
RNAcentral database (release 5) was downloaded (May 2016)
and nhmmer46 (version 3.1b2) with an E-value cutoff of 1E-3
was used to identify RNAcentral matches for each putative
sRNA. If an sRNA had multiple RNAcentral matches only the
most significant match was considered. CentroidFold with
parameters -e “CONTRAfold” and -g 4 was used to predict the
secondary structure of putative sRNAs and random genomic
sequences. Sequences of the sRNAs including 150 nts upstream
of the predicted 50 end were obtained using slopBed and fasta-
FromBed and promoter sites were predicted using BPROM
with default values. Rho-independent terminators in R. capsu-
latus genome were predicted using TransTermHP with default
values and providing an annotation file with the coordinates of
the protein-coding genes. The numbers of reads mapped to the
putative sRNAs per strain were calculated using htseq-count
available in HTSEQ. Normalized log2 fold changes between the
two R. capsulatus strains were obtained using edgeR47 (version
3.12.1). All results were compiled, processed and visualized
using R (version 3.2.4).

To apply machine learning approaches, we represented a
putative sRNA or a random genomic sequence as a numerical
vector X consisting of seven numerical predictors (input varia-
bles); namely, free energy of the secondary structure, distance

ranging from [¡150, 20] nts to the ¡10 predicted promoter
site (if no promoter site was predicted in that range a value of
¡1000 was used), distance to terminator ranging from [0, 500]
nts (if no terminator was predicted within this distance range a
value of 1000 was used), distance (¡1, 0] nts to closest left
ORF, a binary number indicating whether the RNA is tran-
scribed on the same strand as its left ORF (1 if transcribed on
same strand), distance [0, C1) to closest right ORF, and a
binary number indicating whether the RNA is transcribed on
the same strand as its right ORF. For training the classifiers, 33
of the 41 putative sRNAs deemed as bona fide sRNAs were ran-
domly selected as positive instances, and 98 of the 4420 random
genomic sequences were randomly selected as negative instan-
ces. The remaining sequences were used for testing. Logistic
regression was applied using the R function glm (with family D
binomial), and cross-validation was performed using the func-
tion cv.glm from the R package boot (version 1.3-18). LDA and
QDA were applied using the lda and qda functions from the R
package MASS (version 7.3-45). Performance measurements
were calculated using the R package ROCR48 (version 1.0-7).
For the classifiers’ performance comparison, we used recall and
false positive rates. Recall indicates the proportion of testing
positive instances that are predicted to be bona fide sRNAs by a
given approach at a certain probability threshold (i.e., true posi-
tives (TP) divided by the total number of positive instances
(P)). The false positive rate is the proportion of negative instan-
ces that are predicted to be bona fide sRNAs by a given
approach at a certain probability threshold (i.e., false positives
(FP) divided by the total number of negative instances (N)).
The logistic regression estimates the parameter u to model
p(X) D e (̂u0C u1X1C … C upXp) / (1 C e (̂u0 C u1X1C … C
upXp)) where X is the vector of attributes representing an
instance, e is the base of the natural logarithm, p is the number
of attributes in X, and Xi is the value of attribute i. The parame-
ter u was chosen to maximize the likelihood function. The value
of the estimated parameters was u D [¡2.02, ¡0.037, ¡5.8e-4,
¡2.1e-3, ¡0.011, 0.25, 5e-3, 0.38]. Intuitively, the model learnt
makes sense; for instance, decreasing the free energy increases
the probability of being a bona fide sRNA, and decreasing the
distance to a terminator increases the probability of being a
bona fide sRNA. We used these parameters’ values to calculate
the probability of being a bona fide sRNA for all putative
sRNAs. A probability cut-off of 0.6 was chosen as the optimal
cut-off to have high recall while maintaining a low false positive
rate.

Detection of sRNAs by Northern blotting

Purified sRNA was eluted in 30 ml of nuclease-free water. The
water was subsequently evaporated using a vacuum centrifuge
(Thermo Scientific, Savant DNA120 SpeedVac Concentrator)
for 30 minutes at high vacuum setting. The RNA was then dis-
solved in 20 ml of nuclease-free water to increase the initial
concentration.

A denaturing 15% polyacrylamide gel containing 7 M urea
was used to separate the sRNAs. The gel was pre-run for 30
minutes at 18 mA (100 V) in 1X TBE buffer (89 mM Tris,
89 mM boric acid, 20 mM EDTA; pH 8.0). A total of 10 mg of
RNA was prepared in a 10 ml sample for electrophoresis and
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mixed with 5 ml of 3X loading buffer (95% (v/v) formamide,
20 mM EDTA, Bromphenol blue and Cyanol xylene) such that
paired wild type and mutant samples contained the same
amount of RNA. The low-range single stranded RNA ladder
(NEB; N0364S) was included for size reference. The gels were
run for 80 minutes at 18 mA (100 V) in 1X TBE buffer. After
electrophoresis, the lanes containing one set of samples with a
corresponding ladder were cut from the gel and stained in ethi-
dium bromide for 15 minutes before taking an image. The
remaining gel was cut into pieces containing paired wild type
and mutant sRNA samples and each pair transferred to a
Hybond-NC nylon membrane (Amersham) by electro-blotting
in 1X SSC buffer (3 M NaCl, 30 mM Sodium Citrate) for
2 hours at 250 mA (4 V). The RNA was cross-linked to the
membranes by exposing them to 120000 mJ cm¡2 (UVC500
UV Crosslinker; Hoefer) and the membranes were then dried
at 50 �C for 30 minutes.

The membranes were rolled with hybridization mesh and
pre-hybridized for 3 hours in 10 ml pre-hybridization solution
containing 10 mg ml¡1 of salmon sperm DNA at 40 �C in a
hybridization oven (Model 5420; VWR). After the pre-hybrid-
ization step, 50 mg ml¡1 of biotin-labeled probe49 was added
directly to the pre-hybridization solution and the membranes
were hybridized with the probe for 16 hours at 40 �C. Probe
sequences are given in Table 4. After hybridization, the mem-
branes were washed twice in 2X SSC/0.1% SDS for 15 minutes
at 40 �C, with a final wash in 0.1X SSC for 15 minutes at room
temperature.50 The Chemiluminescent Nucleic Acid Detection
Module (catalog # 89880; Thermo-Fisher) was used for probe
detection following the manufacturer’s recommendations.
Images were captured using an ImageQuant LAS4000 (General
Electric Canada). The resulting images were adjusted for
brightness and contrast using Adobe Photoshop CC 2017. The
images of the ethidium bromide-stained portions of the corre-
sponding gels were used to construct standard curves to allow
estimation of the sizes of bands detected on the blots.
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