
Available online http://arthritis-research.com/content/9/3/R57
Open AccessVol 9 No 3Research article
Regulation of the JNK pathway by TGF-beta activated kinase 1 in 
rheumatoid arthritis synoviocytes
Deepa R Hammaker1, David L Boyle1, Tomoyuki Inoue2 and Gary S Firestein1

1Division of Rheumatology, Allergy and Immunology, UCSD School of Medicine, Gilman Dr., La Jolla, CA 92093, USA
2Medicinal Research Laboratories, Taisho Pharmaceutical Co. Ltd, Yoshino-Cho, Kita-Ku, Saitama 331-9530, Japan

Corresponding author: Deepa R Hammaker, dhammaker@ucsd.edu

Received: 20 Apr 2007 Revisions requested: 22 May 2007 Revisions received: 25 May 2007 Accepted: 8 Jun 2007 Published: 8 Jun 2007

Arthritis Research & Therapy 2007, 9:R57 (doi:10.1186/ar2215)
This article is online at: http://arthritis-research.com/content/9/3/R57
© 2007 Hammaker et al.; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

c-Jun N-terminal kinase (JNK) contributes to metalloproteinase
(MMP) gene expression and joint destruction in inflammatory
arthritis. It is phosphorylated by at least two upstream kinases,
the mitogen-activated protein kinase kinases (MEK) MKK4 and
MKK7, which are, in turn, phosphorylated by MEK kinases
(MEKKs). However, the MEKKs that are most relevant to JNK
activation in synoviocytes have not been determined. These
studies were designed to assess the hierarchy of upstream
MEKKs, MEKK1, MEKK2, MEKK3, and transforming growth
factor-β activated kinase (TAK)1, in rheumatoid arthritis (RA).
Using either small interfering RNA (siRNA) knockdown or
knockout fibroblast-like synoviocytes (FLSs), MEKK1, MEKK2,
or MEKK3 deficiency (either alone or in combination) had no
effect on IL-1β-stimulated phospho-JNK (P-JNK) induction or
MMP expression. However, TAK1 deficiency significantly
decreased P-JNK, P-MKK4 and P-MKK7 induction compared

with scrambled control. TAK1 knockdown did not affect p38
activation. Kinase assays showed that TAK1 siRNA significantly
suppressed JNK kinase function. In addition, MKK4 and MKK7
kinase activity were significantly decreased in TAK1 deficient
FLSs. Electrophoretic mobility shift assays demonstrated a
significant decrease in IL-1β induced AP-1 activation due to
TAK1 knockdown. Quantitative PCR showed that TAK1
deficiency significantly decreased IL-1β-induced MMP3 gene
expression and IL-6 protein expression. These results show that
TAK1 is a critical pathway for IL-1β-induced activation of JNK
and JNK-regulated gene expression in FLSs. In contrast to other
cell lineages, MEKK1, MEKK2, and MEKK3 did not contribute to
JNK phosphorylation in FLSs. The data identify TAK1 as a pivotal
upstream kinase and potential therapeutic target to modulate
synoviocyte activation in RA.

Introduction
Rheumatoid arthritis (RA) is a chronic inflammatory disease
characterized by synovial lining hyperplasia and sublining infil-
tration of inflammatory cells [1]. Fibroblast-like synoviocytes
(FLSs) play a crucial role in joint damage as well as the prop-
agation of inflammation [2]. In response to potent pro-inflam-
matory cytokines such as IL-1β, FLSs produce large amounts
of matrix metalloproteinases (MMP), which are key drivers of
matrix destruction [3-5]. MMP production is, in turn, regulated
by several signal transduction pathways, including the
mitogen-activated protein kinases (MAPKs) [6,7].

All three MAPK families have been implicated in RA, including
extracellular signal-regulated kinase (ERK), c-Jun N-terminal
kinase (JNK), and p38 [8-10]. JNK plays an especially impor-
tant role in extracellular matrix turnover because it is activated
in RA synovium, regulates MMP gene expression in cultured
FLSs, and mediates joint destruction in rat adjuvant arthritis
[11-16]. JNK is phosphorylated by upstream MAPK kinases
(MAPKKs), which are dual specific enzymes that phosphor-
ylate threonine and tyrosine residues [17]. Two MAPKKs (or
mitogen-activated protein kinases [MEKs]), MKK4 and MKK7,
form a complex with JNK [18], although only the latter is
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required for cytokine-mediated engagement of this pathway in
FLSs [19].

Multiple upstream MAPKK kinases (MAP3Ks) that activate the
MAPKKs and the JNK cascade have been identified in RA. For
instance, MEK kinase (MEKK)1, MEKK2, and transforming
growth factor-β activated kinase (TAK)1 are the most abun-
dant in inflamed synovium as well as cultured FLSs [20]. Of
these MAP3Ks, MEKK2 initially appeared to be the most
important in RA because it forms a functional complex with
JNK. In the present study, TAK1 functioned as the dominant
MAP3K for JNK activation in IL-1-stimulated FLSs. These
results were unexpected because several groups have shown
that MEKK1, MEKK2 and MEKK3 are indispensable for JNK
activation. For instance, MEKK1 is the predominant kinase
required for JNK activation in corneal epithelia [20] and murine
embryonic fibroblasts (MEFs) [20]. In other culture conditions,
JNK activation is inhibited in MEKK3-/- MEFs stimulated with
IL-1 [21]. Similarly, fibroblast growth factor (FGF)-2-induced
JNK activation and JNK phosphorylation-induced T cell recep-
tor ligation require MEKK2 [22]. Based on our studies using
MAP3K deficient cells, these MAP3Ks appear to be redundant
in JNK activation in cultured FLSs. Therefore, the diverse and
complex functions of MAP3Ks vary depending on the cell type
as well as the stimulus. It is precisely this signaling diversity
that offers an opportunity to target upstream kinases in the
JNK cascade that regulate pathogenic responses in arthritis
while potentially sparing other functions that are critical to host
responses. This study suggests that TAK1 is a crucial activator
of the JNK pathway in FLSs and is a potential target for arthritis
therapy.

Materials and methods
Fibroblast-like synoviocytes
FLSs were isolated from synovial tissues obtained from RA
patients at the time of joint replacement as described previ-
ously [3]. The diagnosis of RA conformed to the American Col-
lege of Rheumatology 1987 revised criteria [23]. The protocol
was approved by the UCSD Human Subjects Research Pro-
tection Program. Synovial tissues were minced and incubated
with 0.5 mg/ml collagenase VIII (Sigma, St. Louis, MO, USA)
in serum-free RPMI (Mediatech, Herndon, VA, USA) for 1.5 h
at 37°C, filtered through a 0.22 μm cell strainer, extensively
washed, and cultured in DMEM supplemented with 10% FCS
(endotoxin content <0.006 ng/ml; Gemini Biosciences, Cala-
basas, CA, USA), penicillin, streptomycin, gentamicin and L-
glutamine in a humidified 5% CO2 incubator. After overnight
culture, nonadherent cells were removed, and adherent cells
were trypsinized, split at a 1:3 ratio, and cultured. Synovio-
cytes were used from passage 4 through 9, when FLSs were
a homogeneous population with <1% CD11b, <1% phago-
cytic, and <1% FcRγII positive cells.

Mice knee and ankle synovial tissues were isolated, minced
and incubated with 0.5 mg/ml collagenase VIII (Sigma) in

serum-free RPMI (Mediatech) for 1.5 h at 37°C, extensively
washed, and cultured in DMEM supplemented with 10% FCS
(endotoxin content <0.006 ng/ml; Gemini Biosciences), peni-
cillin, streptomycin, gentamicin and L-glutamine in a humidified
5% CO2 incubator. After three days of culture, non-adherent
cells were removed, and adherent cells were trypsinized, split
at a 1:3 ratio, and cultured. Synoviocytes were then used from
passage 4 through 9.

Antibodies and reagents
Affinity purified rabbit polyclonal MEKK1, MEKK2, mouse
monoclonal TAK1, mouse monoclonal GAPDH, goat polyclo-
nal actin antibodies and secondary antibodies were pur-
chased from Santa Cruz Biotechnology (Santa Cruz, CA,
USA). Rabbit polyclonal phospho-JNK (P-JNK), P-p38, P-ERK,
P-MKK4, P-MKK7, JNK, and secondary horse-raddish peroxi-
dase (HRP)-conjugated antibodies and GST-c-Jun were pur-
chased from Cell Signaling Technology (Danvers, MA, USA).
Anti-MEKK3, MKK4, MKK7, and appropriate secondary anti-
bodies were purchased from Upstate Biotechnology (Lake
Placid, NY, USA). rhIL-1β was purchased from R&D Systems
(Minneapolis, MN, USA).

Fibroblast-like synoviocyte transfection
Using the Amaxa Human Dermal Fibroblast Nucleofector kit
(NHDF-adult) with program U-23, 2 to 5 × 105 cells (passages
4 to 6) were transfected with 1 to 5 μg of MEKK1, MEKK2,
MEKK3, TAK1, or scrambled (sc) negative control Smartpool
small interfering RNA (siRNA; Dharmacon, Lafayette, CO,
USA), according to the manufacturer's protocol (Amaxa,
Gaithersburg, MD, USA) [19].

Western blot analysis
After transfection, FLSs were cultured in DMEM with 10%
FCS in six-well plates for appropriate times and synchronized
in DMEM with 0.1% FCS. FLSs were then treated with
medium or rhIL-1β (2 ng/ml; R&D Systems) for 15 minutes.
Cell lysates were obtained as described previously [19].
Whole cell lysates (50 μg) were fractionated on Tris-glycine-
buffered 10% SDS-PAGE and transferred to nitrocellulose
membrane (Biorad, Hercules, CA, USA). The membranes
were blocked with 5% nonfat milk in 0.05% Tween 20/Tris-
buffered saline(TBS) for 1 h at room temperature, followed by
incubation with primary antibody (1:1000) overnight at 4°C.
The blots were then incubated in the secondary antibody for 2
h at room temperature. Immunoreactive protein was detected
with enhanced chemiluminescence (Perkin Elmer, Waltham,
MA, USA) and autoradiography, which was analyzed using
NIH Image (version 1.63) and normalized to actin or GAPDH
expression.

Immunoprecipitation and kinase assays
siRNA-transfected FLSs were stimulated with either medium
or IL-1 (2 ng/ml) and lysed at appropriate times, as previously
described [19]. The lysate (100 μg) was then incubated with
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anti-JNK, anti-MKK4, or anti-MKK7 antibodies (2 μg) for 4 h at
4°C on a rotator, followed by incubation with protein A-agar-
ose overnight. The immunoprecipitates were washed and
resuspended in 25 μl of kinase buffer (50 mM HEPES, pH 7.4,
1 mM MgCl2, 20 mM β-glycerophosphate, 1 mM Na3VO4, 0.2
mM dithiothreitol, 10 μg/ml aprotinin, 1 μM pepstatin A, and 1
mM phenylmethylsulfonyl fluoride) containing 5 mCi of [γ-32P]-
ATP, 25 μM ATP, and 8 μg of GST-c-Jun, and incubated at
37°C for 30 minutes. Reactions were stopped with 5 μl of 6×
SDS sample buffer (100 mM Tris, pH 6.8, 2% SDS, 10% glyc-
erol, 5% 2-ME, 0.25% bromophenol blue). After electrophore-
sis and autoradiography, the data were analyzed using NIH
Image (version 1.63).

Electrophoretic mobility shift assay
Following transfection, FLSs were seeded in 10 cm dishes
and cultured in DMEM with 10% FCS at 37°C for 24 h. The
cells were incubated in fresh media for 48 h and subsequently
serum starved (0.1% FCS/DMEM) for 48 h. FLSs were then
treated with either medium or IL-1β (2 ng/ml) for 60 minutes.
The cells were rinsed twice with phosphate-buffered saline
and nuclear extracts were isolated using a nuclear protein
extraction kit (Chemicon, Temecula, CA, USA) and protein
estimation was performed using the micro-BCA kit (Pierce,
Rockford, IL, USA). Nuclear extracts (10 μg) were incubated
with [γ-32P]-ATP labeled or unlabeled AP-1 (5'-CGCTTGAT-
GAGTCAGCCGGAA-3'), nuclear factor (NF)-κB (5'-AGTT-
GAGGGGACTTTCCCAGGC-3') oligonucleotides
(Promega, Madison, WI, USA) for 20 minutes at room temper-
ature and run on a 5% acrylamide/Tris-base EDTA (TBE) gel
for 25 minutes at 200 V. The gel was dried and exposed to
film. The autoradiograph was analyzed using NIH Image (ver-
sion 1.63).

IL-6 ELISA
After transfection, FLSs were seeded in 12-well plates and
cultured in DMEM with 10% FCS at 37°C for 24 h. The super-
natants were aspirated and replaced with fresh medium for 24
h. FLSs were then treated with medium or rhIL-1β (2 ng/ml) for
24 h and the supernatants were harvested. Samples were
assayed for IL-6 by ELISA (R&D Systems).

Quantification of MMP mRNA in FLS
mRNA from cultured FLSs was isolated using RNA-STAT (Tel-
Stat, Friendswood, TX, USA) and cDNA was prepared,
according to the manufacturer's instructions using GeneAmp
2400 (Applied Biosystems, Foster City, CA, USA). Quantita-
tive real-time PCR was performed using Assays On Demand
(Applied Biosystems) to determine relative mRNA levels using
the GeneAmp 5700 Sequence Detection System (Applied
Biosystems) as described previously [24]. Sample threshold
cycle (Ct) values were used to calculate the number of cell
equivalents in the test samples. The data were then normalized
to GAPDH expression to obtain relative cell equivalents.

Statistical analysis
Data are expressed as mean ± standard error of the mean.
Comparisons between two groups were performed using Stu-
dent's t-test. A comparison was considered statistically signif-
icant if p < 0.05.

Results
MAP3K knockdown by siRNA transfection in RA FLSs
To determine the optimal conditions for inhibiting MAP3K
expression, FLSs were transfected with 1 or 5 μg of MEKK1,
MEKK2, MEKK3, TAK1 or sc siRNA and lysates were pre-
pared 3 to 5 days later. Western blot analysis was then per-
formed using anti-MEKK1, -MEKK2, -MEKK3 and -TAK1
antibodies. As shown in Figure 1, each siRNA inhibited the
respective kinase expression. Optimal inhibition of MEKK1 (5
μg siRNA), MEKK2 (1 μg siRNA) and MEKK3 (1 μg siRNA)
expression was observed on day 3. TAK1 expression was
inhibited using 1 μg siRNA on day 5.

Figure 1

MAP3K knockdown by small interfering RNA (siRNA) in rheumatoid arthritis fibroblast-like synoviocytes (FLSs)MAP3K knockdown by small interfering RNA (siRNA) in rheumatoid 
arthritis fibroblast-like synoviocytes (FLSs). Cultured FLSs were trans-
fected with 1 or 5 μg of MEKK1, MEKK2, MEKK3, TAK1 or scrambled 
negative control (sc) siRNA as described in Materials and methods. 
FLSs were then incubated for 3, 5 and 7 days and western blot analy-
sis was performed. siRNA specifically inhibited respective kinase 
expression by >75%. Optimal knockdown of MEKK1 (5 μg siRNA), 
MEKK2 (1 μg siRNA) and MEKK3 (1 μg siRNA) was observed on day 
3 and on day 5 for TAK1 (1 μg siRNA).
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MEKK1, MEKK2 and MEKK3 knockdown do not alter IL-
1-induced MAPK activation
To determine the relative contributions of MEKK1, MEKK2,
and MEKK3 to IL-1β-induced MAPK activation, FLSs were
transfected with the corresponding siRNA, individually or in
combination. On day 3, the serum starved FLSs were stimu-
lated with IL-1β (2 ng/ml) and the lysates were evaluated by
western blot analysis using anti-P-JNK, anti-P-p38, and anti-P-
ERK antibodies. Figure 2a shows that MEKK1, MEKK2, and
MEKK3 deficiency alone or in combination had no effect on IL-
1-stimulated JNK, p38 or ERK activation. We then repeated
the experiment using MEKK1-/- mouse FLS. Western blot
analysis of IL-1β or medium treated MEKK1-/- FLS lysates
confirmed data obtained from human FLSs transfected with
MEKK1 siRNA (Figure 2b). Next, we transfected MEKK1-/-
mouse FLS with MEKK2 and MEKK3 siRNA. IL-1β-induced
JNK, p38, and ERK activation was then determined (Figure
2c). The results indicate that MEKK1, MEKK2 and MEKK3
deficiency do not alter the activation of JNK, p38 or ERK in IL-
1β-stimulated FLSs.

Effect of TAK1 knockdown on IL-1-induced JNK 
activation
To determine the effect of TAK1 knockdown on JNK and p38
activation, FLSs were transfected with TAK1 siRNA and then
stimulated on day 5 with 2 ng/ml of rhIL-1β. As shown in Fig-
ure 3, TAK1 deficiency in FLSs significantly inhibited IL-1β-
induced JNK, MKK4, and MKK7 phosphorylation compared
with sc control (mean inhibition: JNK, 58 ± 1% (p = 0.01);
MKK4, 49 ± 3% (p = 0.01); MKK7, 49 ± 7% (p = 0.04); n =
3 each). However, p38 activation was not affected by TAK1
deficiency. To determine the effect of TAK1 deficiency on JNK
function, kinase assays were performed using anti-JNK, anti-
MKK4, or anti-MKK7 antibodies and GST-cJun substrate (Fig-
ure 4a). GST-cJun phosphorylation by anti-JNK immunopre-
cipitates was significantly decreased in TAK1 deficient FLSs
(53 ± 2% inhibition, p = 0.03, n = 3). In addition, TAK1 knock-
down modestly inhibited MKK4 and MKK7 kinase activity
(average inhibition: MKK4, 28 ± 4% (p = 0.01); MKK7, 28 ±
8% (p = 0.03); n = 3 each; Figure 4b).

Figure 2

MEKK1, MEKK2 and MEKK3 do not alter IL-1β-induced mitogen-activated protein kinase (MAPK) activationMEKK1, MEKK2 and MEKK3 do not alter IL-1β-induced mitogen-activated protein kinase (MAPK) activation. (a) Three days after small interfering 
RNA (siRNA) transfection, serum-starved fibroblast-like synoviocytes (FLSs) were stimulated with IL-1β (2 ng/ml) for 15 minutes and lysates were 
evaluated by western blot analysis. MEKK1, MEKK2, or MEKK3 deficiency alone or in combination had no effect on IL-1β-stimulated JNK, p38 or 
ERK activation compared with scrambled control (sc) (n = 2 separate FLS lines). M1, MEKK1 siRNA; M2, MEKK2 siRNA; M3, MEKK3 siRNA; 
M123, MEKK1+MEKK2+MEKK3 siRNA. (b) To complement the MEKK1 siRNA studies, MEKK1-/- FLSs were also examined. MEKK1 knockout 
(KO) and wild-type (WT) mouse FLSs were serum-starved for 48 h, stimulated with IL-1β (2 ng/ml) for 15 minutes and lysed. Cell extracts were eval-
uated by western blot analysis. MEKK1 deficiency did not affect IL-1β-induced MAPK activation. (c) MEKK1-/- mFLSs were transfected with MEKK2 
and MEKK3 (M2M3) or sc siRNA, and, later, serum-starved for 48 h and stimulated with IL-1β (2 ng/ml) for 15 minutes. Western blot analysis of the 
lysates confirmed that MEKK2 and MEKK3 do not alter MAPK activation.
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Regulation of AP-1 and NF-κB binding and 
transcriptional activity by TAK1
AP-1 and NF-κB regulate MMP and pro-inflammatory cytokine
gene expression by FLSs. To determine if TAK1 knockdown
modulates AP-1 and NF-κB binding, electrophoretic mobility
shift assays were performed (Figure 5). Similar levels of basal
AP-1 and NF-κB binding were observed in control and TAK1
knockdown FLSs. AP-1 binding increased after IL-1β stimula-
tion in the sc siRNA transfected lysates. However, TAK1 defi-
ciency significantly inhibited IL-1β-induced AP-1 activation
(84.3 ± 8.1% inhibition compared with control, n = 3, p =
0.028). There was a trend towards a decrease in NF-κB acti-
vation, although this did not reach statistical significance (34.2
± 7.0% inhibition, n = 3, p = 0.21).

Effect of TAK1 knockdown on MMP gene expression and 
IL-6 production
Because TAK1 regulates IL-1β-induced AP-1 activation, we
determined if TAK1 deficiency affects MMP3 gene expression
by real-time quantitative PCR and IL-6 production by ELISA.
TAK1 siRNA- or sc siRNA-treated FLSs were stimulated with
IL-1β or medium for 24 h and assayed for MMP3 gene expres-
sion (Figure 6a). TAK1 deficiency significantly decreased IL-
1β-induced MMP3 gene expression compared with sc control
(GAPDH normalized average: 55.9 ± 14% inhibition, n = 5, p
= 0.04). To measure IL-6 production, control or TAK1 knock-
down FLSs were stimulated with IL-1β for 24 h. Cell superna-
tants were then collected and assayed by ELISA (Figure 6b).

TAK1 deficient cells produced significantly less IL-6 com-
pared with sc siRNA transfected cells (52.7 ± 3.3% inhibition,
n = 4, p = 0.021).

Discussion
RA is a chronic inflammatory disease of unknown etiology that
targets the synovium. Intimal lining macrophages and fibro-
blast-like synoviocytes produce pro-inflammatory cytokines
that contribute to synovial inflammation and production of
destructive enzymes like MMPs [25]. The MMPs can then
degrade components of the extracellular matrix, especially
native interstitial collagen [26], initiating a series of events
leading to irreversible joint damage [27]. MMP gene expres-
sion in FLSs is regulated by many signaling pathways,
although MAPKs play a prominent role [9].

Of the three MAPK families, JNK is particularly interesting
because it efficiently phosphorylates c-Jun. This protein is a
crucial component of the transcription factor AP-1, which, in
turn, initiates MMP gene expression [16,28]. JNK can be

Figure 3

IL-1β-induced JNK activation in fibroblast-like synoviocytes (FLSs) is TAK1-dependentIL-1β-induced JNK activation in fibroblast-like synoviocytes (FLSs) is 
TAK1-dependent. The effect of TAK1 deficiency on JNK activation was 
determined by western blot analysis. Three days after TAK1 or scram-
bled control (sc) small interfering RNA transfection, serum-starved 
FLSs were stimulated with IL-1β (2 ng/ml) for 15 minutes. Cell lysates 
were evaluated for P-JNK, P-MKK4, P-MKK7, P-p38, and actin. JNK, 
MKK4, and MKK7, but not p38 activation was significantly decreased 
in the absence of TAK1 (average inhibition: JNK, 58 ± 1%, p = 0.01; 
MKK4, 49 ± 3%, p = 0.01; MKK7, 49 ± 7%, p = 0.04). A representa-
tive experiment is shown (n = 3).

Figure 4

JNK kinase activity is TAK1-dependentJNK kinase activity is TAK1-dependent. (a) Kinase assays were used to 
evaluate JNK function in TAK1 deficient cells. Fibroblast-like synovio-
cytes (FLSs) transfected with TAK1 or scrambled control (sc) small 
interfering RNA (siRNA) were serum-starved, stimulated with IL-1β (2 
ng/ml) for 15 minutes, lysed, immunoprecipitated with anti-JNK anti-
bodies, and subjected to kinase assay using GST-c-Jun substrate. JNK-
mediated activation of c-Jun was significantly decreased in TAK1 defi-
cient FLS (53 ± 2% inhibition, p = 0.03). A representative experiment 
is shown (n = 3). Med, medium; IP, immunoprecipitation. (b) Kinase 
assays were performed with anti-MKK4 and anti-MKK7 antibody immu-
noprecipitates and GST-c-Jun substrate to evaluate the effects of 
TAK1 deficiency on MKK4 and MKK7 function. Significant decreases in 
IL-1β-induced MKK4 and MKK7 kinase activity were observed (average 
inhibition: MKK4, 28 ± 4%, p = 0.004; MKK7, 28 ± 8%, p = 0.02). A 
representative experiment is shown (n = 3). Wb, Western blot.
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phosphorylated by two dual specificity threonine/tyrosine
kinases, MKK4 and MKK7 [18]. Recent studies using siRNA
to deplete individual kinases showed that MKK7, but not
MKK4, is necessary for IL-1β-induced JNK activation in FLSs
[19]. In contrast, both MKK4 and MKK7 are required for max-
imum JNK phosphorylation by anisomycin, lipopolysaccharide,
and sorbitol [19,29].

MKK4 and MKK7 are, in turn, regulated by a large family of ser-
ine/threonine kinases known as the MAP3Ks that integrate
extracellular stimuli and activate transcription factors in a cell-
type and stimulus-specific manner [29]. Little is known about
how MAP3Ks regulate the JNK pathway or MMP gene expres-
sion in RA. To address this issue, we previously examined
MAP3K gene and protein expression in RA synovial tissue and
FLSs [20]. These studies showed that four of the MAP3Ks,
namely MEKK1, MEKK2, MEKK3 and TAK1, are abundant in
RA FLSs. Kinase assays suggested that MEKK2 and TAK1 are
especially important activators of the JNK pathway in FLSs.

In the present study, we examined the hierarchy of these pro-
teins in IL-1β-mediated JNK activation in RA FLSs using
siRNA. The results showed that MEKK1, MEKK2 and MEKK3
are not necessary for IL-1β-mediated JNK phosphorylation,
either individually or in combination. The data also demon-
strate that the pathways utilized by stress kinases can be cell
and stimulus specific. For instance, MEKK1 is required for JNK
and c-Jun activation in the corneal epithelia of MEKK1-/- mice
[30]. MEKK1 is also critical for JNK activation in response to

pro-inflammatory stimuli and cell migration in MEKK1-/- MEFs
[31]. Unlike MEKK1, MEKK3 knockout is embryonic lethal [32]
and JNK and p38 activation are defective in MEKK3-/- MEFs
stimulated with IL-1β [21].

Several additional studies indicate that MEKK2 can play a cell-
lineage specific role in JNK activation, and our previous
studies showed that it could form a functional signaling com-
plex in FLSs [20]. MEKK2 also associates with MKK7 and
JNK1 in Cos cells [33]. Its role in JNK function was suggested
by studies showing that MEKK2 gene disruption inhibits JNK
activation in mast cells in response to c-Kit and Fcε RI stimu-
lation [34]. Kesavan and colleagues showed that FGF-2-
induced JNK activation also required MEKK2 in knockout
MEFs [22]. Furthermore, MEKK2 is required for JNK activation
in T cell receptor signaling and IL-2 gene expression [35].
Despite these data, siRNA and MEKK2-/- studies indicate that
MEKK2 is not required for IL-1β-induced JNK activation in
FLSs.

In contrast, TAK1 is a critical upstream kinase regulating JNK
in FLSs. TAK1 is an evolutionarily conserved MAP3K that is
essential for some innate and adaptive immune responses
[36]. Signaling through the IL-1 receptor leads to ubiquination
and activation of the tumor necrosis factor receptor-associ-
ated factor 6 (TRAF6)/TAB1/TAB2/TAB3 (TAB, TAK1-bind-
ing protein) complex through IL-1 receptor-associated kinase
(IRAK) [37-41]. TAK1 is then activated by autophosphoryla-
tion of serine/threonine residues within its activation loop [42].
It can then engage I-kappaB kinase and MAPK pathways lead-
ing to the activation of NF-κB, p38, and JNK [43].

TAK1, unlike MEKK1, MEKK2, and MEKK3, is intimately
involved in IL-1β-induced JNK activation in FLSs. TAK1
knockdown significantly inhibited the kinase activity of MKK4,
MKK7, and JNK. However, TAK1 deficiency did not affect the
p38 pathway or interferon gene expression (IP-10 and IFNβ).
This result in FLSs differs from studies using 293 cells where
p38 and JNK activation by IL-1β required TAK1 [44]. Once
JNK is phosphorylated, its effect on downstream gene expres-
sion typically involves AP-1 activation. Transcription factor
studies in FLSs confirmed that TAK1 deficiency not only
decreased JNK activation but also suppressed AP-1 binding.
The effect on NF-κB was less prominent and is consistent with
previous studies in RANK ligand-stimulated 293 cells express-
ing dominant-negative TAK1 [45]. The variability of MAP3K
function in different cell types is also underscored by studies
implicating TAK1 in the NF-κB pathway in HeLa cells [46] and
NIH3T3 cells [47]. Therefore, it is important to evaluate signal-
ing mechanisms in tissue-specific cell lineages when consid-
ering their potential role in inflammatory diseases.

The functional consequences of activating the TAK1-JNK-AP1
pathway can be evaluated by determining expression of key
AP-1-driven genes implicated in RA. The AP-1 consensus

Figure 5

Regulation of AP-1 binding and transcriptional activity is TAK1-depend-entRegulation of AP-1 binding and transcriptional activity is TAK1-depend-
ent. The effect of TAK1 deficiency on IL-1β-induced AP-1 activation 
was evaluated by electrophoretic mobility shift assay. Five days after 
small interfering RNA transfection, cultured fibroblast-like synoviocytes 
were stimulated with IL-1β (2 ng/ml) for 60 minutes. Nuclear extracts 
were obtained and evaluated for AP-1 and NF-κB binding activity. A 
representative experiment is shown (n = 3). IL-1β-induced AP-1 activity 
was significantly decreased in the absence of TAK1 (84 ± 8% inhibi-
tion compared to control, p = 0.03). NF-κB binding, on the other hand, 
was not significantly decreased with TAK1 deficiency (34 ± 7% inhibi-
tion, p = 0.21). Cold oligo, non-radioactive oligo; Sc, scrambled 
control.
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sequence is located at -70 base-pairs in the promoter region
of the gene encoding MMP3, making it a useful biomarker for
TAK1 in cells such as osteocytes [48] and chondrocytes [49].
siRNA studies showed that TAK1 inhibition significantly
decreased MMP3 gene expression in cultured FLSs. Of inter-
est, IL-1β-induced IL-6 production was also decreased by
TAK1 deficiency, which could reflect an effect on AP-1
because this transcription factor also binds to the IL-6 pro-
moter. The modest effect of TAK1 on NF-κB could also con-
tribute to MMP3 and IL-6 expression.

Conclusion
These data suggest that TAK1 is a key element in JNK activa-
tion, IL-6 production, and MMP expression by FLSs. Surpris-
ingly, other MAP3Ks implicated in JNK activation, such as
MEKK1, MEKK2, and MEKK3, do not have a major contribu-
tion to this pathway in FLSs. Therefore, targeting TAK1 might

represent an alternative way to regulate JNK activation and
matrix degradation in inflammatory arthritis.
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