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Abstract
Population pharmacokinetic analysis is used to estimate pharmacokinetic parameters and their variability from concen-

tration data. Due to data sparseness issues, available datasets often do not allow the estimation of all parameters of the

suitable model. The PRIOR subroutine in NONMEM supports the estimation of some or all parameters with values from

previous models, as an alternative to fixing them or adding data to the dataset. From a literature review, the best practices

were compiled to provide a practical guidance for the use of the PRIOR subroutine in NONMEM. Thirty-three articles

reported the use of the PRIOR subroutine in NONMEM, mostly in special populations. This approach allowed fast,

stable and satisfying modelling. The guidance provides general advice on how to select the most appropriate reference

model when there are several previous models available, and to implement and weight the selected parameter values in the

PRIOR function. On the model built with PRIOR, the similarity of estimates with the ones of the reference model and the

sensitivity of the model to the PRIOR values should be checked. Covariates could be implemented a priori (from the

reference model) or a posteriori, only on parameters estimated without prior (search for new covariates).
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Abbreviations
FOCE First Order Conditional Estimation

FOCEI First Order Conditional Estimation with

Interaction

IMP Importance sampling algorithm

LRT Likelihood Ratio Test

NONMEM NON-linear Mixed Effect Modelling

NPDE Normalized Prediction Distribution Errors

NWPRI Normal Inverse-Wishart Prior

OFV Objective Function Value

OP Penalty function on the OFV

OS OFV on the sparse data

pcVPC Prediction corrected VPC

PKPD PharmacoKinetic-PharmacoDynamic

PopPK Population PharmacoKinetics

RSE Relative Standard Error

SAEM Stochastic Approximation Expectation

Maximization
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SCM Stepwise Covariate Modelling

SE Standard Error

SIR Sampling Importance Resampling

TNPRI Normal-Normal Prior

VPC Visual Predictive Checks

Introduction

When data are not sufficient to build a model, one may use

prior information to stabilize the estimation of some

parameters of the model. In population pharmacokinetics

(popPK), there are two alternatives to stabilize poorly

estimated parameters with prior information: either to fix

them to their previous estimated values or to ‘‘inform’’

them thanks to their previous estimated values. ‘‘Inform-

ing’’ poorly estimated parameters instead of fixing them

reduces the bias in cases where the parameters are slightly

different in the previous population and in the population

from which the sparse data were collected. To ‘‘inform’’

poorly estimated parameters, the PRIOR subroutine in

NONMEM can be used, regardless of the estimation

method. Indeed, priors can be included either while using a

full Bayesian method (Markov Chain Monte Carlo

(MCMC) Bayesian analysis) or a Maximum Likelihood

Estimation such as First Order estimation (FO), First Order

Conditional Estimation (FOCE), Second Order Conditional

Estimation (Laplace) or Expectation Maximization meth-

ods (EM methods: Importance Sampling algorithm (IMP)

and Stochastic Approximation Expectation Maximization

(SAEM)) [1]. Adding a prior to a Maximum Likelihood

Estimation would technically convert these into a mode a

posteriori (MAP) estimation of the population parameters,

even though this term does not show up on the NONMEM

report.

Priors are at the heart of Bayesian statistics, whereas

they are optional for frequentists [2]. Full Bayesian anal-

ysis with ‘‘Bayesian’’ priors places a prior penalty on its

conditional likelihood; the same prior penalty is used on

maximum likelihood with ‘‘frequentist’’ priors. The OFV is

the sum of the OFV on the sparse data (OS) and the penalty

function (OP), which reflects the deviation of the iterated

parameters from their previous estimate value [3]. There-

fore, it is the sum of OS and OP that is minimized. The

main advantage of the ‘‘frequentist’’ priors approach,

compared to the ‘‘Bayesian’’ priors approach, is the

tremendous decrease in computational time [4].

The pros and cons of the penalty function over simul-

taneous fitting of all data are similar to those of the

Bayesian approach. The main advantages lay in the

rapidity and stability of the runs, which is especially

important from the industry perspective. One of the dis-

advantages is the absence of an established robust method

for covariate testing when using a penalty function. How-

ever, testing for covariates is possible with the penalty

function unlike in the Bayesian approach.

While the PRIOR subroutine in NONMEM seems to be

a suitable way to analyze sparse or small datasets, literature

about the PRIOR subroutine is rare. This review aims at

providing a guidance on how to implement and apply the

PRIOR subroutine in NONMEM.

Literature review

How often is the PRIOR subroutine reported
in literature?

Literature was screened for articles reporting the use of the

PRIOR subroutine in NONMEM, in a four-step approach,

as described in Online Resource 1. In each step, the full

text of eligible articles was checked to retain articles

actually reporting the use of the PRIOR subroutine in

NONMEM. The review of selected articles provided a

basis for the guidance developed here. A total of 33 articles

reporting the use of the PRIOR subroutine in NONMEM

was found in literature [3–35].

In which context is the PRIOR subroutine used?

One article was methodological and was based on simu-

lations [3]. The 32 other articles analyzed observed sparse

data. The methodological article focused on FOCEI (FOCE

with eta–epsilon interaction) [3]. Thirty articles analyzing

observed data also used Maximum Likelihood Estimation

(frequentist approach), all used conditional estimation

methods but two used FO because of numerical problems

with FOCE [15, 35]. FOCE with the PRIOR subroutine in

NONMEM was compared to MCMC Bayesian analysis in

WINBUGS for a whole-body physiologically based phar-

macokinetic model [4]. Two articles used MCMC Bayesian

analysis with $PRIOR NWPRI statement, which allowed

the specification of prior parameters distributions [6, 26].

The PRIOR subroutine was mostly used for empirical

popPK models in special populations, for example to

analyze sparse data from children [9, 10, 12, 13, 18,

20, 25–27] or pregnant women [19, 20, 28]. In one pedi-

atric model, the PRIOR subroutine was used to stabilize the

parameters of the maturation function (i.e. covariate effects

on clearance) to physiologically plausible values, because

no data were available for children younger than one year

old [20]. Eight articles used the PRIOR subroutine in

NONMEM to inform mechanistic popPK models

[4, 8, 11, 15, 22, 32–34]. Amongst them, three were
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Physiologically-Based Pharmacokinetic (PBPK) models

[4, 8, 11] (see Sect. 3.8). In all articles, priors were

implemented on all pharmacokinetic (PK) parameters or on

a subset.

What are the pros and cons of the PRIOR
subroutine?

The main advantages of the PRIOR subroutine are that it

can be implemented on a subset of selected parameters

using Maximum Likelihood Estimation methods:

OMEGA2 can be estimated without priors, unlike in

Bayesian methods (e. g. MCMC Bayesian analysis) [1] and

that it runs relatively fast [4]. The PRIOR subroutine is an

alternative to fixing the parameters to their previous esti-

mates or to pooling the new data with the previous rich data

(when available).

In four studies, the use of priors allowed a better fit of

the new data than fixing the parameters [7, 9, 30, 31]. In

another study, fixing some parameters led to unrealistic

estimates of other parameters, while the use of informative

and non-informative (vague) priors on all parameters

allowed a correct estimation [12].

In some studies, the use of the prior approach was

preferred over pooling sparse with previous data because it

allowed the analysis to be completed in one single NON-

MEM run [15]. Compared to the model built on pooled

data, the model built with priors may be more stable and

provide a better fit of the new data [27], or reduce the

residual unexplained variability [26]. To analyze sparse

pediatric data when adult data are available, two articles

concluded that it was better to build first the adult model

(with allometric scaling) and then use it as prior for the

pediatric model than to build a model on pooled data

[12, 13]. In the first one, the use of the prior approach

prevented the large number of subjects and samples in the

rich prior study from driving the estimates of the small new

dataset of the population of interest [12]. In the second, the

model built on pooled adult and pediatric data was unable

to accurately characterize clearance maturation parameters.

Indeed, estimations depended on initial estimates and

produced large standard errors, probably due to the lack of

data in children between 2 and 18 years old [13].

However, implementation of the PRIOR subroutine

raises some issues. One article mentioned the PRIOR

subroutine but did not retain the prior approach, arguing

that the sensitivity to prior information and the assumption

of reliability of prior parameterization and structural model

may affect the identifiability of the parameters [36].

The articles selected in the present review contain a

series of points interesting to consider when using the

$PRIOR subroutine. The following guidance summarizes

the best reported practices.

Guidance

Defining the reference model

Whatever the method used to integrate previous knowledge

in a new model, the first step consists in defining the most

relevant reference model, with reference parameters that

will be implemented as prior (‘‘hyperparameters’’). If more

than one previous model is available, the reference model

may be selected amongst them, using the different criteria

presented in Section ‘‘Selection of a single model’’. Beside

model selection, it is possible to combine several models,

either in a ‘‘combined-model’’ or using a ‘‘meta-analysis

with random effects’’ (Section ‘‘Combining several mod-

els’’). If only one previous model is available, or when one

reference model is selected or built, its relevance as the

reference model can be assessed with the methods pre-

sented in Section ‘‘Robustness of the reference model’’.

Selection of a single model

Empirical selection If several previous models are avail-

able, the reference model can be selected amongst them

based on (i) population similarity (e.g. similar demographic

characteristics [6], same geographic region [18]), (ii) the

number of relevant estimated structural parameters [12],

(iii) the confidence in the estimate(s) of the parameter(s) of

interest, according to study design. For example, Kshir-

sagar et al. wanted to estimate the absorption constant with

prior [35]. Their reference model was built on the highest

proportion of data (17%) in the early absorption period (up

to 2 h), compared to other published models.

Quality criteria of the Bayesian estimation on the new
data Knosgaard et al. compared literature models

regarding their performance as a Bayesian attractor for

individual PK parameters estimation from the new data, to

choose the most adapted previous model to be used in the

PRIOR subroutine [9]. First, a Bayesian estimation of the

individual PK parameters for each model was run on the

new data (MAXEVAL = 0 in the estimation step allows

the estimation of individual g conditional on the initial

estimates). Then, the models were ranked by OFV or

Akaike Information Criterion (AIC, which applies a pen-

alty to models with more parameters). For each model, the

distribution densities of individual gi were compared to the

theoretical g-distribution N(0,x2). It was hypothesized that

the model adequately describes the new dataset if the dis-

tributions visually overlap and the g-shrinkage is low, as

illustrated in Fig. 1.
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The predictive performance of each model may be

evaluated by multiple simulations which are then compared

to the new data:

– Visual Predictive Checks (VPCs) can be plotted with

the new data (external VPC).

– Normalized prediction distribution errors (NPDEs) can

be used to compare the simulated concentrations with

the observations in the new dataset [37]. The models

can then be compared and ranked according to p-values

of tests determining whether the NPDEs follow a

normal distribution (Wilcoxon sign rank t-test, Fisher

test for variance, Shapiro-Wilks test). The best predic-

tive model is the one resulting in the lowest number of

Fig. 1 Plot of individual g clearances (black line) on top of theoretical g-distribution N(0, x2) (dotted line). The model resulting in the top plot is

to be preferred over the one resulting in the bottom plot. ETACL: g clearances. Adapted from [43]
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tests in which the NPDEs deviate from a normal

distribution.

In the systematic comparison of literature models by

Knosgaard et al., the predictive performance of the models

was more clearly differentiated by NPDEs than VPCs.

Combining several models

Meta-analysis with random effect Milosheska et al. per-

formed a meta-analysis with random effects to determine

the reference parameter values and their uncertainty [23].

In this method, parameter values from structurally identical

models are averaged, weighted by their uncertainty. Unlike

the meta-analysis with fixed effect, the meta-analysis with

random effects assumes that included studies do not come

from the same exact population and hypothesizes that there

is a distribution of true effect size from a ‘‘universe’’ of

populations (Fig. 2). The meta-analysis with random

effects can be easily implemented in the R software [38].

Combined model If needed, the reference model can

combine models from two (or more) studies having dif-

ferent focus and providing complementary information.

Knosgaard et al. analyzed both parent drug and metabolite:

they combined the parent drug model and the metabolite

model that performed the best in the systematic model

comparison stage for each molecule [9]. Brill et al. built a

model to quantify the interaction effect of antiretrovirals on

tuberculosis treatment in patients with both HIV and

tuberculosis [7]. The PK parameters of the antituberculosis

drug were based on data from two phase IIb studies in

subjects without antiretrovirals. The drug interaction effect

parameters were based on data from two drug-drug inter-

action studies in subjects without tuberculosis.

Robustness of the reference model

The quality criteria listed in Sect. 3.1.1 can be evaluated on

the chosen, built or sole-candidate reference model.

External VPCs were also used by Perez-Ruixo et al. to

confirm the ability of the allometrically-scaled PK model

developed for adults to describe pediatric data [26].

External prediction-corrected VPC (pcVPC) were used by

Deng et al. and Magnusson et al. to verify that the reference

model generally fitted the new data [29, 30].

If the previous data are available, one can assess the

ability of the reference model to estimate with prior some

parameters on a subset of data. Marshall et al. used the

PRIOR subroutine to build a semi-mechanistic model with

sparse data [15]. The reference model included a neutrophil

model and a combined PK and receptor model (CD11b

receptor). The sparse data contained neutrophil and PK

observations but no information on CD11b binding (neither

free nor total CD11b measurements), while the model

could not be simplified for mechanistic reasons. As the

previous data were available, the strength of the previous

estimates of CD11b binding parameters was assessable: a

model with prior (previous model as prior) was built on the

previous data without the observations that allowed the

estimation of the CD11b binding data. Robustness was

evaluated by assessing the degree of similarity between the

estimates of this model and those of the reference model.

In summary, one would ideally select the model which

responds best to the objective (e.g. characterization of ka).

If some models are equivalent as regard to the problematic,

it is possible either to use the model which best describes

the new data using the Bayesian estimation quality criteria

or to build a new model with a meta-analysis. In some

cases, the process to be described needs the combination of

two or more complementary models that have different

focus.

Of note, the reference parameters can be adapted to the

target population. For instance, to analyze pharmacoki-

netics in pregnant women, Lohy Das et al. used a reference

model built on both pregnant and non-pregnant women that

included pregnancy as a significant covariate on inter-

compartmental clearance: the reference estimate of inter-

compartmental clearance was the one calculated with

pregnancy effect [19].

Whatever the reference model selected, its robustness

should be assessed with a Bayesian estimation on the new

data and/or external VPC.

Fig. 2 Illustration of parameters of the random-effects-model, from

[38]. bh k = l ? ek ? fk (1),bhk: typical value in the study k, l:
typical value in the « universe» of population, ek: deviation from the

typical value because of sampling errors in the study k, fk: deviation
from the typical value because of over-arching distribution of true

effect sizes with the mean, l, fk * N(l, s2)
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Code to provide prior information with $PRIOR
subroutine

NWPRI or TNPRI subroutine?

Two types of PRIOR subroutines can be called: $PRIOR

NWPRI or $PRIOR TNPRI, depending on the assumption

on the distribution of the prior parameters. Indeed, the prior

parameters can be considered normally or Inverse-Wishart

distributed [3]. In NWPRI (the most commonly assumed),

the fixed parameters THETA are assumed normally dis-

tributed and the random parameters OMEGA2 (inter-indi-

vidual and/or inter-occasion variability) are assumed

inverse-Wishart distributed. In TNPRI, both are assumed

normally distributed.

The methodological article by Gisleskog et al. underli-

nes the theoretical advantage of using TNPRI as compared

to NWPRI: in contrast to the normal–inverseWishart dis-

tribution (NWPRI), the normal-normal distribution

(TNPRI) can express correlations between separate infor-

mation about the separate values of THETA and OMEGA2

[3]. However, in the simulations and tests presented in that

article, both methods showed similar percentage of devia-

tion of the parameter estimates and standard errors from

their true values.

In our review, only two out of 32 articles analyzing

sparse data used TNPRI [15, 29]: in both articles, the

previous analysis had been done by the same team. Eigh-

teen articles [4–14, 23, 25, 27, 30, 32–34] used NWPRI; in

the remaining 12 articles the method was not specified

[16–22, 24, 26, 28, 31, 35], among which six used prior

only on THETA [19, 20, 22, 24, 28, 35], the distribution

attributed to the OMEGA consequently having no impact.

In practice, the implementation of NWPRI in NON-

MEM is much simpler than the implementation of TNPRI.

In the present version NONMEM 7.4, TNPRI needs an

output file from the reference model (msf file) that is not

available when using priors from literature.

Prior values of the parameters

The prior values to THETA, OMEGA2 and SIGMA2

should be written and fixed in the control stream in

$THETAP, $OMEGAP and $SIGMAP records, respec-

tively. In case of covariances between n random compo-

nents, OMEGA2 and SIGMA2 matrices should be informed

in $OMEGAP BLOCK (n) and $SIGMAP BLOCK

(n) records.

Although inter-occasion variability is different from

inter-individual variability, it is also a random effect coded

using OMEGA’s. Thus, prior inter-occasion variability is

coded in the same way as prior inter-individual variability.

Usually, the implementation of priors on SIGMA2 can

be avoided because data contain strong information for

estimating the residual error. In most articles, the residual

error was estimated independently from the original model.

Only two articles used informative priors on SIGMA2

[7, 29], without providing rationale for doing so.

Four out of the 33 articles reviewed used log-transfor-

mation for the PK model fixed-effect parameters (THETA)

[4, 8, 11, 12]. Of note, the three ‘‘popPBPK’’ models (see

Sect. 3.8) used this approach to avoid negative sampled

values for clearance and tissue affinity [4, 8, 11]. Log-

transformation provides stability during the estimation

process [12]. When log-transforming THETAs of the ref-

erence model, the rules of propagation of errors are used:

the variance of the log-transformed THETA is approxi-

mately RSE^2, where RSE = SE(THETA)/THETA.

Weight of the priors

The weight of each prior into the model is informed by the

distribution of the prior parameter. For an assumed nor-

mally-distributed prior parameter, the weight is inversely

proportional to its variance: the more precise the prior

parameter, the more informed the model. When the prior

parameter is supposed to be inverse-Wishart distributed, its

weight is proportional to its degree of freedom.

Normally distributed parameters (assumed for THETA

in NWPRI and for both THETA and OMEGA2 for TNPRI)

are weighted by their variance–covariance matrix in

$THETAPV BLOCK record. When there is only one

normally distributed parameter to be weighted, $THE-

TAPV should be used instead of $THETAPV BLOCK. The

variance–covariance matrix can be calculated from the SE

of the previous model or from a nonparametric bootstrap of

this model if the SE are not provided [10]. Large variance

sets non-informative priors (e.g. 106 [12]). For informative

priors, the full covariance matrix should be preferred.

However, this information is not always available and

when available, it may lead to minimization issues. In these

cases, off-diagonal elements should be set either to 0 [10]

or to a very small value (e.g. 10-7). Setting off-diagonal

elements to zero implies that there is no correlation

between the fixed and random effects, which might lead, in

theory, to potential bias in model estimates but to date,

nothing has been published on this topic.

Inverse-Wishart distributed parameters (assumed for

OMEGA2 and SIGMA2 in NWPRI) are weighted by their

degree of freedom in $OMEGAPD and $SIGMAPD

records. Their values, as for the normally distributed

parameters, depend on the prior informativeness intended.

They can range from m ? 1, m being the dimension of

OMEGA or SIGMA matrix, for uninformative priors, to

the number of subjects (for OMEGA) or to the number of
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observations (for SIGMA) in the previous study for very

informative prior. Usually, the degree of freedom for

informative OMEGAs is calculated with the formula df =

2*[ OMEGA2 / (SE of OMEGA2)]2 ? 1 [1, 6, 11, 23, 39].

The same formula can be applied for informative SIGMAs.

The degrees of freedom pertain to the entire OMEGA

block, including the off-diagonal elements. Nonetheless it

is a general or vague strength parameter, which lends its

strength on all elements to the OMEGA block. If a high

degree of freedom is placed on an OMEGA prior block,

and that block has 0 off-diagonals whereas the data sug-

gests a strong off-diagonal, the analysis may be compro-

mised. If the previous data are available, the degrees of

freedom of Inverse-Wishart distribution of OMEGAs can

be estimated using maximum likelihood based on the

probability density function of the inverse Wishart distri-

bution, for example with R packages mle and diwish [7], or

as automatically estimated in Sampling Importance

Resampling (SIR) [40]. The aim of SIR is to approximate

the true uncertainty of the parameters [41]. Parameters’

vectors are sampled from the covariance matrix, and the

model is run on the data with each set of parameters using a

Maximum a Posteriori Bayesian estimation (MAX-

EVAL = 0). When the model is built using the prior sub-

routine, covariance matrix is taken from the previous

model. Then, parameters are resampled according to an

importance ratio computed thanks to the previous step.

This resampling is repeated. And then, for each OMEGA,

an inverse-Wishart distribution can be fitted to the distri-

bution of the resampled OMEGA: the degree of freedom of

the inverse-Wishart distribution is the one that can be

reported in $OMEGAPD.

Figure 3 summarizes how to code the prior weight in the

control file. Non-informative distribution can also be

referred to as vague [12], because as long as a prior is used,

it remains at least slightly informative.

Eight out of 32 articles analyzing sparse data reviewed

implemented informative priors on all parameters

[5, 10, 12, 15, 23, 29–31], 18 implemented informative

priors, and/or so-called ‘‘weakly informative’’ (when they

are associated to 10% [20] or 50% [24, 28] uncertainty)

only on a part of the parameters [7–9, 13, 16–22, 24,

25, 28, 32–35], and three implemented uninformative pri-

ors on some of the parameters while had informative priors

on the rest of the parameters [4, 6, 11]. The latter included

the study using MCMC [6] and the study comparing FOCE

to MCMC [4]. Three articles did not precise how infor-

mative the priors were [14, 26, 27].

When only a subset of the parameters is estimated with

prior information, these parameters should be the first

declared in NONMEM: the first n parameters, where n is

the number of parameters defined in the $THETAP and/or

$OMEGAP statement, will have priors, and the following

parameters will not.

Reducing the prior weight and even suppressing them is

useful to obtain the most information from the new popu-

lation. A covariate search should be conducted only on the

parameters estimated without prior (see Sect. 3.6). More-

over, if a model with full informative priors has much

greater estimates of interindividual variability as compared

to the prior value, it might stem from the strength of the

prior values for the corresponding fixed effects together

with a potentially different population parameter estimate

in the new population. In this case, it seems interesting to

reduce the prior weight or to remove the prior from these

parameters (from both THETA and OMEGA if possible)

[7].

Approaches to remove priors To determine if a parameter

can be estimated without prior, the ratio of RSE of PK

parameters estimates from the model built with prior to the

RSE from the previous model can be used: if the RSE ratio

is very small, one can consider deleting the prior on the

corresponding parameter [15] (see the approach of Mar-

shall et al. in Sect. 3.5).

Stevens et al. removed the priors from each parameter in

turn. For each re-estimation, they observed the impact on

the OFV and on value and precision of other parameters

[34]. They tested the priors on two parameters and decided

to keep the priors on both: together with a drop of OFV, the

remaining parameter had plausible values and smaller

confidence intervals. For example, when they removed the

prior on the drug’s EC50 (concentration that induces half

the maximum effect Emax), the Emax estimate increased

threefold and was less plausible.

Knosgaard et al. also tested different combinations of

priors (e.g. prior on THETA, with or without prior on

OMEGA) to select the one that gives the lowest OFV [9].

Approaches to select prior weight To implement the best

weight of priors, Magnusson et al. compared the results of

models with informative priors weighted on the one hand

by an assigned 10% uncertainty and on the other hand by

their smaller reference uncertainties, in terms of VPC (see

Fig. 2 in the original article [30]), residual unexplained

variability, inter-individual and inter-occasion variability

parameters. In this case, the model with 10% uncertainties

assigned to the model parameters provided the most ade-

quate description of the data and decreased variability

parameters.

In their pediatric model, Knebel et al. varied the infor-

mativeness of the adult priors so as to minimize the

influence of adult prior information but still allow a

stable estimation: variance was set to 106 for half of the

THETAs (uninformative) and degree of freedom of
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OMEGAs were fixed to the smallest value possible (the

dimension of the OMEGA matrix) [12].

Krogh-Madsen et al. also tested different values of

degree of freedom for OMEGA: there were only little

changes in the parameter estimates. Therefore, the degree

of freedom in the final model was set to the lowest possible

value, considering it more appropriate to compensate for

the choice of distribution (i.e. inverse Wishart) [14].

To sum up, NWPRI can be preferred over TNPRI,

unless there is a strong correlation between THETA and

OMEGA. Priors on SIGMA2 should be avoided. Different

combinations and weights of priors should be performed to

select the one that performs best, i.e. give the lowest OFV,

confidence intervals, residual variability, and have the best

predictive ability with VPC.

$PRIOR NWPRI 

; ================================
; PRIOR INFORMATION
; ================================
; THETA Priors -----------------------------------
$THETAP
0.023             FIXED 
11.24             FIXED ; 

; Variance to THETA priors -------------------
$THETAPV BLOCK(2) ; informative
1.05e-06   FIXED
0.03 0.180

$THETAPV BLOCK(2) ; informative (simpler)
1.05e-06   FIXED
0         0.180

$THETAPV BLOCK(2) ; non-informative
10000 FIXED
0 10000

; OMEGA Priors ---------------------------------
$OMEGAP BLOCK(2)
0.0988596             FIXED
0.0591049             0.0682833            

$OMEGAP
0.424172              FIXED

; Degrees of freedom of OMEGA Prior ----
$OMEGAPD ; informative
42                    FIXED
39 FIXED

$OMEGAPD ; non-informative
3 FIXED
2 FIXED

; SIGMA Priors -----------------------------------
$SIGMAP
0.0389392             FIXED

; Degrees of freedom of SIGMA Prior ----
$SIGMAPD
526  FIXED

; =================================

With NWPRI subroutine, THETA is considered as  Normally 
distributed and OMEGA and SIGMA are considered inverse-
Whishart distributed

PRIOR information should be placed below initial estimates

Reference values (from reference model) of the THETAs

Weight of the PRIOR: inversely proportional to the variance 
set in $THETAPV
- For informative priors: variance/covariance matrix from 

the reference model

Covariance values can be set to 0 or  to 10-7 to simplify the 
model

- For non-informative priors: large variance, e.g. 107

Reference values (from reference model) of the OMEGAs
$OMEGAP BLOCK(n) if n OMEGA correlated

Weight of the PRIOR: proportional to the degree of freedom
(DF) of the inverse-Whishart distributed OMEGAs
One DF set per OMEGA block (smallest DF of the OMEGA in 
the block): calculate each OMEGA’s DF with the formula 
below and retain the smallest one)
$OMEGAPD   DF=2*[(OMEGAP/SE(OMEGAP)]²

Or DF=2*[(OMEGAP/SE(OMEGAP)]²+1
Maximum DF is the number of subjects in the prior study
Or DF= N – λ, where N is the number of patients used to build 
the prior model and λ is the number of parameters (4)
For non-informative priors: DF=m+1;  m=dimensions of the 
OMEGA-block (number of terms in the matrix)

Reference values (from reference model) of the SIGMAs

Weight of the PRIOR: proportional to the degree of freedom 
(DF) of the inverse-Whishart distributed SIGMAs 
Same rules as OMEGAPD (above), except that maximum DF is 
the number of observations on the prior study

Fig. 3 Example of codes of a

NONMEM control file for

implementation of PRIOR,

NWPRI subroutine, informative

and non-informative priors; as

defined by Bauer [1] and

Gisleskog et al. [3]
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Objective functions of the model built with prior

The NONMEM output file displays two blocks of infor-

mation for OFV for models built with prior.

The first is the same as the one obtained with models

without prior:

• TOTAL DATA POINTS NORMALLY DISTRIBU-

TED (N)

• N*LOG(2PI) CONSTANT TO OBJECTIVE

FUNCTION

• OBJECTIVE FUNCTION VALUE WITHOUT CON-

STANT: objective function on the data, including the

prior penalty (usually reported) = OS ? OP

• OBJECTIVE FUNCTION VALUE WITH CON-

STANT: sum of the two terms above

The second is specific to models built with prior:

• PRIOR CONSTANT TO OBJECTIVE FUNCTION:

constants pertaining to wisharts of OMEGAs, SIGMAs,

and normal of THETAs (appropriate multiple of

LOG(2PI))

• OBJECTIVE FUNCTION VALUE WITHOUT CON-

STANT: objective function on the data, including the

prior penalty (the same as the one in the first

block) = OS ? OP

• OBJECTIVE FUNCTION VALUE WITH (PRIOR)

CONSTANT: sum of the two terms above

The objective function with constant is used only for

compatibility with how other software may report the OFV.

The prior contribution on the objective function (prior

penalty, OP) is included in the reported OFVs. The OFV on

the data (OS) is the sum of the individual OFV reported in

the phi file of NONMEM outputs. OS is the OFV calculated

with the tweaked model (model where initial estimates

were set to final estimates of the model built with priors)

run with MAXEVAL = 0 NOPRIOR = 1 (without prior).

OP can then be calculated as the difference between the

reported OFV without constant and OS.

Once the prior is used in the base model, the total OFV

(which includes the prior penalty) can be used in the

Likelihood Ratio Tests (LRT), if no change is made to the

prior information. Thus, OS should not be used in the LRT,

as the prior was involved in the original fitting so OS is not

a minimum OFV by itself (not a maximum likelihood

position).

Therefore, the OFV to be used in comparisons using

LRT is the total OFV that is reported in the output of

NONMEM (OFV without constant = OS ? OP).

Impact of varying the prior

Milosheska et al. tested the sensitivity of the model

parameters [23] (i) to the prior specification by varying the

prior values by - 50% and ? 50%, and ii) to the infor-

mativeness of the prior by changing the precision of the

prior (SE from - 50% to ? 50%). The impact of changing

prior values and precision was quantified by the resulting

change in the estimate of the impacted parameter. The

sensitivity of the model to the weight of the prior was

considered acceptable as parameter estimates remained

within ± 15% range when the SE varied of ± 50%. If

changing the prior value results in identical change in

parameter estimates, it means that the new data contains

little information about this parameter: the prior is impor-

tant in the model and it should be carefully defined and

trusted.

Lledo-Garcia et al. also varied the precision of all priors

(simultaneously made less informative by increasing their

associated variances tenfold): the change was lower than

6% in each parameter estimate and was thus qualified as

‘‘very minor’’ [33].

Denti et al. tested different settings for the prior distri-

bution to show that the estimates of the other parameters in

the model were not significantly affected [24].

To date, there is no standardized method to quantify the

impact on the model of varying the value and weight of the

prior. However, it is recommended to quantify both the

change in the estimate of the impacted parameter and the

stability of other parameters when the prior value and

weight are modified.

Differences in parameters between previous
population and new population

The parameters implemented with priors should be similar

in the previous and the new population. Otherwise, the new

estimates would be constrained to a biased value, leading

to a misfit of the model built with prior. Moreover, the

estimation of other parameters could also be impacted.

Pharmacometricians used different strategies to verify the

hypothesis of similarity between parameters in the previous

and in the new populations. Some of these strategies can

also be used to characterize the amount of information

given by the new (sparse and/or small) dataset compared to

the prior information.

Brill et al. tested whether the univariate addition of a

parameter without prior information showed any significant

improvement in OFV for each parameter of the model built

with full prior [7], that is, testing on each parameter if the

addition of a parameter of difference (e.g. named DIS),

estimated on the new data without prior, significantly
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improved the OFV of the model built with prior. For each

parameter, two models are compared with the LRT: one

with the parameter estimated with prior (DIS = 0), one

with the parameter estimated with prior multiplied by

(1 ? DIS). This can be done with automated Stepwise

Covariate Modelling (SCM) in PsN� [40]: the difference

in parameters between the previous data and the new data

can be coded DIS = 1, reflecting the difference between the

populations of the two datasets [42]. The difference in OFV

between the two models should be compared to an actual

significance level that can be computed with Stochastic

Simulation and Estimation (SSE) in PsN�. If the addition

of DIS (estimated on the data only) on a parameter sig-

nificantly improves the OFV, the parameter differs between

previous population and new population. It is then more

appropriate to either remove the prior from this parameter

or take DIS into account. A code for the SCM configuration

file and the SSE command for the current situation is

proposed in Online Resource 2. Similarly, Chotsiri et al.

investigated inter-study differences between the new and

the prior study by applying a categorical study covariate on

all pharmacokinetic parameters [18]. The body weight-

normalized exposure was lower in children 2 months to

5 years old from the new study than in the older children

from the reference model. As the data collected in the new

study were not sufficient to explain this discrepancy, a

categorical ‘‘study’’ covariate was applied to the relative

bioavailability. Physiological explanations were only

hypothesized.

Tsamandouras et al. proposed to plot the estimates of the

parameters estimated with priors on top of the distributions

representing the available prior knowledge (prior uncer-

tainty in a population model parameter), to visualize the

degree to which these estimates were tweaked from the

priors [11] (Fig. 4).

Marshall et al. proposed an approach based on ratios of

parameters’ estimates and RSE [15]. They compared each

PK parameter estimate from the model built with prior over

the one from the previous model and identified three cases:

– Ratio of the parameter estimate * 1 and ratio of the

corresponding RSE * 1: the sparse data does not

provide information on this aspect of the model

– Ratio of the parameter estimate * 1 and ratio of the

corresponding RSE\ 1: the sparse data adds informa-

tion on this parameter

– Ratio of the parameter estimate = 1 (ratio of the

corresponding RSE should be[ [ 1): the parameter

differs between the two populations; in this case the

parameter should not be estimated with priors.

This method should be applied with caution. Lledo-

Garcia et al. investigated a lack of decrease in uncertainty

in one parameter compared to the prior (ratio of RSE close

to unity) [33]. They fixed the parameter that had a marked

reduction in uncertainty and estimated LS (life span), the

parameter that had no decrease in uncertainty: LS was well

estimated without prior (low RSE). This illustrated that the

data did contain information about LS. Moreover, LS

estimate was close to the reference value: this information

was in agreement with the prior value.

To compare the pharmacokinetic parameters distribu-

tions between adults and children, Perez-Ruixo et al. used a

‘‘parametric bootstrap approach’’ on a dataset of 12 chil-

dren (12 samples per children) [26]. They compared the

estimates of the model built with prior to the theoretical

distribution of parameters that would have been obtained if

adults and children had the same parameter distributions.

This theoretical distribution was obtained with stochastic

simulation (with uncertainty) and estimation. First, they

simulated 1000 (new) pediatric datasets with uncertainty,

using the parameters distributions of a nonparametric

bootstrap of the (reference) adult model with allometric

scaling. Then, they estimated the parameters of the model

built with prior on each of the 1000 simulated datasets. The

distribution of these estimated parameters constituted the

theoretical distribution. The estimates of the fixed effect

parameters of the model built with prior was within the

95% confidence interval of the theoretical distribution,

which confirmed the similarity of the pharmacokinetic

parameter point estimates between adults and children. On

the contrary, the estimates of the between-subjects and

residual variability of the model built with prior were out of

the 95% confidence interval of the theoretical distribution,

which did not confirm the similarity of PK parameter

Fig. 4 Case example of the plot proposed by Tsamandouras et al.
[11], data from [43]. The estimate of THETA(CL) in the model built

with prior was 12.7 L.h-1 (black line). THETA(CL) in the reference

model was 9.89 L.h-1 and its standard deviation 3.71 L.h-1 (dotted

lines)
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distribution between adults and children. The authors

proposed this approach to detect differences in the distri-

bution of PK parameters between adults and children.

However, this approach is questionable, since the prior

constrains the estimation of pediatric parameters to be

similar to the adult estimates. If there were differences in

PK parameters between the children and the adult dataset,

it would be difficult to find them as the parameters esti-

mates on the children dataset are already constrained by the

adult values. In that article, what is interpreted by the

authors as a difference in PK parameter distribution

(OMEGA) could actually be a difference in PK parameters

compensated by an inflated parameter distribution due to

the constrained bias in PK parameter estimates.

In cases where the model on new data can be built

without prior (e.g. priors are used to stabilize the model and

to avoid flip-flop kinetics), its final parameter values can be

compared with those of the model built with prior [14, 35].

In cases where the previous data are available, the

similarity in PK parameter distribution between popula-

tions can be assessed by comparing the results of models

estimated without prior on the pooled data stratified by two

different approaches [27]. The first stratification is an

arbitrary dichotomization that stratifies the pooled dataset

by population (previous and new populations). The second

stratification is a random dichotomization implemented by

the MIXTURE subroutine in NONMEM, which identifies

two subpopulations with different PK parameters. If the

previous and the new populations are identified as sub-

populations in the random dichotomization, the previous

and the new populations are different: the model on the

new population should not integrate prior from the previ-

ous population. If the subpopulations identified in the

random dichotomization are not consistent with the arbi-

trary split, i.e. there are individuals from both the previous

and the new population in each subpopulation, it is

assumed that previous and new data are part of the same

population: the variability in PK parameters can be

described by covariates. In this case, it is possible to esti-

mate on the new data a model built with prior from the

previous population.

Altogether, the choice of the method to assess the dif-

ferences in parameters between previous and new popula-

tions depends on the constraints of the analysis. If time is

not an issue, testing the new study as a categorical

covariate on all pharmacokinetic parameters would be the

most recommended approach because it is reproducible

thanks to the automatization in PsN. When previous data

are available, the comparison of arbitrary and random

stratifications is simpler.

Covariate integration

Implementation a priori

Covariates of the reference model can be included a priori

in the model built with prior, especially if there is a strong

belief that they are the same in the previous and the new

population. For example, besides allometric scaling, scal-

ing factors for preterm neonates are supposed to remain the

same: one can prefer to fix the scaling factor values to their

previous estimates, and to estimate the standardized

parameter with or without prior [9]. However, the risk of

over-parameterizing the model by introducing covariates

based on assumptions should be taken into account.

Priors may be implemented only on covariate effects.

Ali et al. used the PRIOR subroutine to stabilize only the

parameters of the maturation function (covariate effects on

clearance) to physiologically plausible values, because no

data were available for children younger than one year old

[20]. Similarly, in their PKPD model of artesunate and

dihydroartemisinin, Lohy Das et al. used priors to include

the effect of declining parasite densities (i.e. malaria dis-

ease effect) on pharmacokinetic parameters, as concentra-

tion measurements were absent after the first dose [21].

Assessment of the impact of covariates implemented
a priori

After implementation a priori, the impact of covariates can

be assessed in terms of effect on the parameter, for

example graphically plotting parameter versus covariate

[7, 9, 12]. The physiological plausibility has to be taken

into account. To test if the covariate is still significantly

influencing the model on the new population, it is unclear

how the OFV can be used for comparison between models:

the LRT cannot be used to compare models directly with

DOFV when changes are made in the PRIOR information

[14].

Krogh-Madsen et al. chose to compare OFV on the data

(OS). The two models built with prior (one using the pre-

vious model without covariate and the other using the

previous model with one covariate) were run on the new

dataset. Their parameters estimates were then fixed to run

the same two ‘‘tweaked’’ models without re-estimation

(MAXEVAL = 0) on the same dataset. The OFVs were

compared using the LRT. However, as stated in Sect. 3.3,

OS should not be compared between nested models when

prior information was used to minimize the OFV.
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Search for new covariates

Stepwise covariate modelling Stepwise covariate mod-

elling is questionable when using the PRIOR subroutine. In

some articles, covariates were added on parameters esti-

mated with priors using the classical stepwise covariate

modelling with forward inclusion and backward deletion

(for example, p\ 0.05, that is a threshold of DOFV = 3.84

in the hypothesis that the DOFV is Chi-square distributed)

[5, 19, 23]. In practice, specific considerations should be

kept in mind when searching for covariates on parameters

that are estimated with priors:

– with prior information on THETA, the typical values of

the parameters are constrained to be close to the one of

the reference model: if the covariates were not similarly

distributed in the previous and the new population, the

covariate should be centered around its median in the

previous dataset. Alternatively, the median covariate of

the new dataset could be used, but the THETAP shall

be adjusted accordingly, and it is important to take into

account that the uncertainty of the parameter, which

depends on the normalization, can be biased.

– with prior information on ETA, the introduction of a

covariate would decrease less the inter-individual

variability than if the inter-individual variability was

estimated on the new dataset.

As much as possible, covariate search on model

parameters estimated with priors should not be performed:

if the new data is statistically too weak to support a PK/PD

parameter, even on a base model, then the statistical power

is likely too low to support a covariate analysis on that

parameter. Instead, one should rather search for covariates

only on parameters without prior [44]. In a first step, the

priors can be removed from all parameters that can be

estimated without prior (see ‘Approaches to remove the

priors’ in Sect. 3.2.3). Subsequently, the covariate search

can be performed on these parameters.

Full covariate modelling Robbie et al. used a full

covariate modelling approach [13]. Estimates of covariate

effects were examined in the context of magnitude of effect

and precision of effect size. Covariates were kept if the

95%CI of their estimates given by the bootstrap did not

include 1 (equivalent to no effect). The covariate modelling

approach, which emphasized parameter estimation rather

than stepwise hypothesis testing, was used for this popu-

lation PK analysis to avoid issues associated with the

likelihood ratio test in mixed-effect models, including

correlation or co-linearity of predictors, multiple compar-

isons, and artificial parameter precisions.

Validation of the model built with priors

Most articles reviewed validated the models built with

priors using simulation-based diagnostics (i.e. VPC

[5, 6, 9, 11–14, 17–24, 28, 30–34], pcVPC [8, 10, 16, 29],

and NPDE [9, 25, 29]). Some used bootstrap

[4, 5, 9, 11–14, 16–18, 20, 23–25, 27, 32, 34], SIR [28] and

external validation [30, 33, 34].

It is important to underline that simulation with a model

built with priors does take the priors into account to sim-

ulate with uncertainty. To simulate without uncertainty,

one must turn off the prior (that represents the population

parameter uncertainty) in the tweaked model. This is per-

formed by simply removing the priors from the simulation

model file. This is the case if the aim is to verify that the

final estimates adequately describe the data. The uncer-

tainty of the population parameters can be included to

cover a wide range of possibilities if the goal is to inves-

tigate all the possible datasets that can occur on a future

trial. This functionality can be used on a simple model built

without prior, with the specification of the uncertainty in

the $PRIOR positions.

Population Physiologically-Based PK (popPBPK)

In three articles, the models implemented as priors were

Physiologically-Based Pharmacokinetic (PBPK) models,

since they included two types of input data: system-related

(physiological) parameters (e.g. blood flows, organ vol-

umes, tissue compositions) and drug-related parameters

(e.g. plasma protein binding, clearance and plasma to tissue

partition coefficients (Kp)).

Over these three, two were ‘‘whole-body physiologi-

cally-based PK model (WBPBPK)’’ [4, 8], and one was a

so-called ‘‘mechanistic PK model using an integrated

popPBPK approach’’ [11], which included a compartment

‘‘rest of the body’’. In these PBPK models, the system-

related parameters were fixed, as they were considered

known at the fixed effect (typical individual) level.

Besides, the drug-related parameters were estimated with

priors, as these parameters were informed from in vitro

experiments or in silico calculation and were therefore

associated with a certain degree of inaccuracy/imprecision.

Depending on the model, interindividual variability was

estimated for clearance and/or Kp value(s).

Compared to a full Bayesian analysis in WINBUGS, run

time was substantially shortened and estimates were simi-

lar [4]. Moreover, unlike the full Bayesian analysis, the

PRIOR functionality allowed to estimate some of the

parameters without prior, which comes in handy when

prior information is missing for some of the model

parameters [11].
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Conclusion

The PRIOR subroutine is a valuable approach to analyze

sparse/rare data or estimate mechanistic-based models in

an easy way and acceptable run times. Even if this sub-

routine has been available in NONMEM for years, its use is

still uncommon: few articles are available and a lot of

questions remains. Anyway, some recommendations can

ease the future use of this function and limit the risk of

misuse. First of all, the choice the reference model is

critical: it can be either carefully selected or combined

from several models. Regardless of the reference model, it

is best to test the robustness of the final model, e.g. with

external VPC. In order to specify the prior weight, the

usual approach is to retain the model with priors on the

least parameters and with the lowest informativeness on

some parameters, but that still allows for a good estimation.

The sensitivity of the model parameters to the prior spec-

ification should also be evaluated. Then, it is mandatory to

quantify the differences in parameters between previous

and new populations. If significant differences are detected,

it means that the prior constrains the estimate to a biased

value, which should be taken into account in the analysis.

Finally, it is tricky to identify new covariates or to confirm

previously existing parameter/covariate relationships with

a model built with prior. Covariate search should be

avoided on parameters estimated with priors.
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Rosenthal PJ, White NJ, Ouédraogo J-B, Tarning J (2019)

Optimal dosing of dihydroartemisinin-piperaquine for seasonal

malaria chemoprevention in young children. Nat Commun.

https://doi.org/10.1038/s41467-019-08297-9

19. Lohy Das J, Rulisa S, de Vries PJ, Mens PF, Kaligirwa N, Agaba

S, Tarning J, Karlsson MO, Dorlo TPC (2018) Population Phar-

macokinetics of Artemether, Dihydroartemisinin, and Lume-

fantrine in Rwandese Pregnant Women Treated for

Uncomplicated Plasmodium falciparum Malaria. Antimicrob

Agents Chemother. https://doi.org/10.1128/AAC.00518-18

20. Ali AM, Penny MA, Smith TA, Workman L, Sasi P, Adjei GO,

Aweeka F, Kiechel J-R, Jullien V, Rijken MJ, McGready R,

Mwesigwa J, Kristensen K, Stepniewska K, Tarning J, Barnes KI,

Denti P (2018) Population Pharmacokinetics of the Antimalarial

Amodiaquine: a Pooled Analysis To Optimize Dosing. Antimi-

crob Agents Chemother. https://doi.org/10.1128/AAC.02193-17

21. Lohy Das JP, Kyaw MP, Nyunt MH, Chit K, Aye KH, Aye MM,

Karlsson MO, Bergstrand M, Tarning J (2018) Population phar-

macokinetic and pharmacodynamic properties of artesunate in

patients with artemisinin sensitive and resistant infections in

Southern Myanmar. Malar J. https://doi.org/10.1186/s12936-018-

2278-5

22. Guiastrennec B, Sonne D, Hansen M, Bagger J, Lund A, Rehfeld

J, Alskär O, Karlsson M, Vilsbøll T, Knop F, Bergstrand M

(2016) Mechanism-Based Modeling of Gastric Emptying Rate

and Gallbladder Emptying in Response to Caloric Intake. CPT

Pharmacometrics Syst Pharmacol 5:692–700. https://doi.org/10.

1002/psp4.12152

23. Milosheska D, Lorber B, Vovk T, Kastelic M, Dolžan V, Grabnar
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33. Lledó-Garcı́a R, Mazer NA, Karlsson MO (2013) A semi-

mechanistic model of the relationship between average glucose

and HbA1c in healthy and diabetic subjects. J Pharmacokinet

Pharmacodyn 40:129–142. https://doi.org/10.1007/s10928-012-

9289-6

34. Stevens J, Ploeger BA, Hammarlund-Udenaes M, Osswald G, van

der Graaf PH, Danhof M, de Lange ECM (2012) Mechanism-

based PK-PD model for the prolactin biological system response

following an acute dopamine inhibition challenge: quantitative

extrapolation to humans. J Pharmacokinet Pharmacodyn

39:463–477. https://doi.org/10.1007/s10928-012-9262-4

35. Kshirsagar SA, Blaschke TF, Sheiner LB, Krygowski M, Acosta

EP, Verotta D (2007) Improving data reliability using a non-

compliance detection method versus using pharmacokinetic cri-

teria. J Pharmacokinet Pharmacodyn 34:35–55. https://doi.org/10.

1007/s10928-006-9032-2
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