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Abstract: Efficient separation of enantiomers is critical in the chemical, pharmaceutical, and food
industries. However, conventional separation methods, such as chromatography, crystallization,
and enzymatic kinetic resolution, require high energy costs and specific reaction conditions for the
efficient purification of one enantiomer. In contrast, membrane-based processes are continuous
processes performed with less energy than conventional separation processes. Enantioselective
polymer membranes have been developed for the chiral resolution of pharmaceuticals; however, it
is difficult to generate sufficient enantiomeric excess (ee) with polymer membranes. In this work, a
homochiral filler of L-His-ZIF-8 was synthesized by the ligand substitution method and mixed with
polyamide(imide) (i.e., Torlon®) to fabricate an enantioselective mixed-matrix membrane (MMM).
The enantio-selective separation of R-1-phenylethanol over S-1-phenylethanol was demonstrated
with a 25 wt% loaded L-His-ZIF-8/Torlon® MMM in an organic solvent nanofiltration (OSN) mode.

Keywords: Mixed Matrix Membrane; Torlon®; Metal-Organic Framework; enantioselectivity

1. Introduction

In the pharmaceutical, life science, and food industries, the chirality of compounds has a
vital role in enzymatic reactions to obtain the targeted effect [1,2]. Conventional separation
processes such as chromatography, crystallization, and enzymatic kinetic resolution have
been shown to resolve pure enantiomers effectively [3]. However, traditional methods have
difficulties in the scaled-up operation of separation processes [4]. For example, enzymatic
kinetic resolution, which depends on a catalytic reaction, has a disadvantage in that the
activity of the catalyst decreases over time [5]. Many chiral molecules are resolved using chiral
stationary phases (CSPs) in the form of high-performance liquid chromatography (HPLC) [1,6].
In particular, polymer-based CSPs are commonly adopted for chiral separations due to their
porous structure and diverse surface functionalities [7–9]. Membrane-based separations have
recently appeared as low-energy processes for large-scale and continuous operations in the
pharmaceutical industry. Membrane-based separation generally has distinct advantages:
low energy consumption, solution processability of material, large specific surface area, and
tunable pore structure of the membranes. Recently, organic solvent nanofiltration (OSN)
has emerged as a new technology to improve sustainability in the pharmaceutical industry.
In this work, we demonstrate the enantioselective separation of OSN-based membrane
processes.

Various membrane materials have been investigated for the scalable separation of
solvent–solute pairs [10]. Solution processability of polymeric materials enables the straight-
forward production of polymeric membranes in various forms (e.g., films and hollow fibers)
at large scales. However, polymeric membranes are typically unstable in organic solvents
and exhibit a low permeation flux or separation capacity [11]. Although many researchers
have strived to optimize the membrane fabrication condition or develop new polymeric
materials to improve the separation performance of polymeric membranes, conventional
polymeric membranes generally cannot exceed Robeson’s upper bound. The upper bound
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can often be overcome using a membrane fabricated with microporous materials, such
as a carbon molecular sieve (CMS), metal-organic frameworks (MOFs), and zeolite [12].
These microporous materials can also be incorporated into the polymeric matrix to form
mixed-matrix membranes (MMMs) that boost the intrinsic performances of the compos-
ite membranes. MMMs have demonstrated outstanding performance as a new class of
membrane that combines the advantages of a superior molecular sieving performance,
diverse functionalities of the inorganic fillers and solution-processability of the organic
matrices [10,11,13]. However, simple molecular sieving properties of the inorganic fillers
cannot be fully used in enantiomeric separations. Two enantiomers cannot be separated
through the same molecular sieve membranes because the sizes of the two enantiomers are
identical to each other. The enantioselective MMMs must have chiral recognition sites to
separate the enantiomers, and incorporating chiral fillers can induce this chirality in the
composite membrane. This work focused on the fabrication of an enantioselective MMM
based on homochiral metal-organic frameworks (MOFs).

MOFs are an emerging class of porous materials combining various ligands and center
metals to enable the separation of a wide variety of molecular mixtures [14]. Homochiral
MOFs have garnered tremendous attention because of their potential for enantiomer
separation, although, as noted, enantiomeric separation cannot be achieved via simple
molecular sieving. Instead, the pores can be tuned to provide chiral environments for
enantiomeric mixtures [12]. A chiral MOF, a (R)-CuMOF-1–silica composite, has a strong
binding affinity to a single type of enantiomer and was utilized as a chiral stationary phase
in HPLC to separate enantiomeric mixtures including racemic sulfoxides, sec-alcohols,
β-lactams, benzoins, and flavanones epoxides [15]. TAMOF-1 is another chiral MOF that
enables (±)-ibuprofen and (±)-thalidomide separation in a packed column [16]. The chiral
stationary phase in the HPLC column must meet the application-specific resolution of
enantiomers, and some reported chiral MOFs are plausible candidates [17,18].

There are enantioselective MMMs manufactured based on such homochiral MOFs.
For instance, Lu et al. discovered that MIL-53-NH-L-His/PES for chiral separations of
1-phenylethanol enantiomers [19].

In this work, the chiral filler L-His-ZIF-8, synthesized via ligand substitution, was
incorporated into polyamide(imide) (i.e., Torlon®) to fabricate enantioselective mixed-
matrix membranes. Torlon® was chosen because of its high solvent resistance and excellent
stability for experiments with organic solvent. ZIF-8 has been shown to have superior
thermal stability, large surface area and permanent porosity with aperture size (3.4 Å) [16].
In addition, ZIF-8 showed high compatibility with polyimides when fabricated into a mixed
matrix membrane due to the organic property of the imidazolate linker [20]. Based on
these advantages, this ZIF-8 was altered to a chiral molecule that enables chiral resolution
through the ligand substitution method with L-histidine. Chiral L-histidine could be
substituted because it has a functional group similar to 2-methylimidazole, a ligand of
ZIF-8. In other words, altered frameworks are designed to have different interactions
with chiral molecules to separate them. As well as the chiral property, it is expected that
organic properties will be increased by inserting L-histidine into the ZIF-8 framework,
which can improve the compatibility with the Torlon® polymer. In this work, a mixed
matrix membrane using L-His-ZIF-8 and Torlon® for separating an enantiomer was tested.
It was proved that there is resolution by using only the L-His-ZIF-8 [21], and in our
experiment, the resolution was observed by fabricating it in the form of an MMM. As
shown in Figure 1, (±)-1-phenylethanol was the target molecule to prove the chirality of
the mixed-matrix membrane. The R-enantiomer of 1-phenylethanol is a useful chemical as
an ophthalmic preservative, as an inhibitor of cholesterol adsorption, and as a component
of fragrances [20].
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tained from Cambridge, and Ethyl Alcohol (Ethanol, HPLC) and n-hexane (99.5%) were 
obtained from Daejung chemicals and metals (Daejeon, Korea). Trifluoracetic acid (TFA, 
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Figure 1. Scheme of the racemic 1-phenylethanol resolution in the L-His-ZIF-8/Torlon® mixed-matrix
membrane.

2. Materials and Methods
2.1. Materials

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 98%, Sigma Aldrich, Saint Louis, MI, USA),
2-methylimidazole (Hmim, 99%), triethylamine (TEA, 99%), L-histidine (L-His, 99%, Sigma
Aldrich, Saint Louis, MI, USA), Methyl Alcohol (Methanol) and 1-methyl-2-pyrrolidinone
(NMP, 99%, TCI) were used in this study. Acetic Acid-D4 (99.5%) was obtained from
Cambridge, and Ethyl Alcohol (Ethanol, HPLC) and n-hexane (99.5%) were obtained from
Daejung chemicals and metals (Daejeon, Korea). Trifluoracetic acid (TFA, HPLC) and the
racemates (±)-1-phenylethanol (97%) were obtained from Alfa Aesar. All solvents and
chemicals were of reagent quality and used without further purification.

2.2. Membrane Fabrication
2.2.1. Synthesis of Microporous L-His-ZIF-8 in Methanol

The synthesis of L-his-ZIF-8 was according to that of Yu et al. [22]. L-histidine was first
dissolved in deionized water followed by the addition of triethylamine into the solution.
Additionally, methanol was added to the L-histidine/H2O solution. Subsequently, zinc ni-
trate hexahydrates and 2-methylimidazole were separately dissolved in the solution. Then,
the separated solutions were mixed. The molar ratio of L-histidine and 2-methylimidazole
is about 8:1. After stirring for 24 h at room temperature, the solution was collected by
centrifugation, followed by methanol washing. Finally, the obtained white powder was
dried at 120 ◦C.

2.2.2. Preparation of the Torlon® Dense Membrane

Torlon® 4000T was dried in a vacuum oven at 120 ◦C overnight before use to remove
any remaining water. After drying, Torlon® 400T/NMP casting dope was prepared by
dissolving Torlon® to the NMP. The glass plate was thoroughly washed with acetone and
deionized water followed by drying in an oven at 120 ◦C. Then, the dope solution was
casted using a blade with thickness of 50 µm on the glass plate at room temperature and
dried for 2 days at 45 ◦C to remove any residual solvent. Lastly, the casted membrane was
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washed with pure water. Once the film was formed, it could be easily separated from the
glass plate in pure water. Finally, after soaking the membrane in methanol and hexane, it
was dried in a vacuum oven at 120 ◦C overnight.

2.2.3. Preparation of the Mixed Matrix Membrane

MMMs containing different L-His-ZIF-8 loadings (15, 20, 25 wt%) were fabricated
using the prime method. Two solutions of polymer and L-His-ZIF-8 were prepared in two
separate vials. For the prime method, a 10 wt% Torlon® solution was prepared. Then,
15, 20 and 25 wt% of L-His-ZIF-8 crystals were dispersed in the NMP. Subsequently, the
L-His-ZIF-8 solution was primed by the 10 wt% Torlon® solution, which was further mixed
by Voltex. Following in-depth mixing, the solid-state Torlon® polymer was added, and the
mixture was thoroughly mixed by a jar roller for 1 day. Finally, the polymer and filler dope
solution was casted onto the glass plate at room temperature and dried for 2 days at 45 ◦C
to remove any residual solvents. Again, the casted membrane was washed with pure water,
methanol and hexane and dried in a vacuum oven at 120 ◦C overnight.

2.3. Characterization
2.3.1. L-His-ZIF-8

Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)
analysis was performed on a Thermo Fisher Scientific Instrument Nicolet iS50 (Walttham,
MA, USA) spectrometer at room temperature with a wavenumber range of 4000–400 cm–1

to determine the change with the ZIF-8 functionality. To obtain the crystal size of the
L-His-ZIF-8, scanning electron microscopy (FEI Magellan400) was performed. Powder
X-ray diffraction (RIGAKU, SmartLab) measurements were done on the powder at room
temperature. The Circular Dichroism Spectropolarimeter (Jasco-815-150-L, Jasco Inc., Eas-
ton, PA, USA) was used to identify the chirality of the L-His-ZIF-8 with a wavenumber
range of 220–380 nm. 1H NMR spectrum of the L-His-ZIF-8 (600 MHz, CD3COOD) was
obtained to calculate the ratio of the ligand.

2.3.2. L-His-ZIF-8/Torlon® Mixed Matrix Membrane

Powder X-ray diffraction (RIGAKU, SmartLab) measurements were done on pristine
Torlon®, L-His-ZIF-8 and L-His-ZIF-8/Torlon® MMM at room temperature to check the
incorporation of the filler in the MMMs. Scanning electron microscopy (FEI Magellan400)
was performed to obtain the surface and cross-section morphology of the Torlon® mem-
brane and mixed matrix membrane. To check whether the L-His-ZIF-8 crystal is well
integrated into the MMM, L-His-ZIF-8/Torlon® was characterized with element mapping
by energy-dispersive X-ray spectroscopy (EDS).

2.3.3. Organic Solvent Nanofiltration (OSN) Experiments

To confirm the resolution of the L-His-ZIF-8, an experimental group and a control
group were established. The experimental group was the MMM mixed with L-hi-ZIF-8 and
Torlon®, and the control group was a membrane using only Torlon® without L-His-ZIF-8.
The OSN test of the pristine Torlon® membrane was performed with HP 4750 dead-end
filtration at 60 bar, 80 rpm and room temperature, to evaluate the permeance of the organic
solvent and the separation of (±)-1-phenylethanol with molecular weights of 122.16 g/mol.
In the case of the 25 wt% L-His-ZIF-8/Torlon® MMM, the experiment was conducted at
50 bar, and all other conditions were the same. The active area of the L-His-ZIF-8/Torlon®

MMM was about 14.6 cm2.
P =

V
A× t× ∆p

(1)

V: permeate volume, A: membrane’s area, t: unit time, ∆p: transmembrane pressure.
The permeate after the OSN test was injected to calculate the area ratio of the R/S.

Figure 2 shows the UV/vis detector set to a wavelength of 254 nm and a DAICE CHIRAL-
PAK IG (250 × 4.6 mm) column in the YL9100 HPLC system. All solvents for the HPLC
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Mobile Phase were as follows: 0.1% Trifluoro acetic acid in n-Hexane/EtOH solvent mix-
ture (95:5 v/v). The area value is calculated based on the HPLC data, and the enantiomeric
excess could finally be calculated. As can be seen from the equation for calculating the
enantiomeric excess, it is an indicator that represents the ratio of each enantiomer, that is,
the enantiomeric separation ability.

% ee =
|R− S|
R + s

× 100 (2)

ee: enantiomeric excess, R Area of R enantiomer, S: Area of S enantiomer.
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Racemic compounds were separated using a mixed solvent of Hexane/Ethanol/TFA (90:10:0.1, v/v).
The UV monitor wavelength was 254 nm.

3. Results and Discussion
3.1. Chiral Filler: L-His-ZIF-8

As shown in Figure 3a, it was confirmed that L-His-ZIF-8 was synthesized with a
uniform size of 1 µm. At the same time, it is necessary to confirm whether L-histidine is
inserted into the existing ZIF-8 lattices. As mentioned earlier, L-His-ZIF-8 was synthesized
by ligand substitution replacing the ligand in the existing framework. Powder X-ray
diffraction (PXRD) shows the L/D-His-ZIF-8 has the same structure as the pristine ZIF-8
based on the same position of the peak (Figure 3b). Typical peaks were observed for ZIF-8
with 2θ at 7.48, 10.48, 12.88, 14, 16.4 and 18 [23]. The L/D-His-ZIF-8 also has a sodalite
(SOD) topology like the ZIF-8 architecture. Attenuated Total Reflectance Fourier Transform
Infrared Spectroscopy (ATR-FTIR) analysis confirmed that the synthesized L-His-ZIF-8
contained L-histidine molecules by confirming the adsorption peak at 1627 cm−1 assigned
to the C=O stretch in the carboxy group for L-histidine (Figure 3c). Additionally, the
broad adsorption peaks between 3600 and 2700 cm−1 are attributed to the N-H groups
and O-H stretching vibrations together with the C-H stretching bonds. Thus, it can be
acknowledged that the L-histidine molecule was inserted into a part of the existing structure
of the ZIF-8. As shown in Figure 4, the ratio of 2-Hmim to L-Histidine was calculated to be
9:1 by the 1H NMR Spectrum of L-His-ZIF-8 (600 MHz, CD3COOD). Circular Dichroism
Spectropolarimetry was performed to characterize a homochirality of the synthesized L-
His-ZIF-8 (Figure 3d). Compared with pure ZIF-8, an obvious adsorption peak at 235 cm−1

demonstrating the chiral L-histidine molecule successfully substituted part of the ZIF-8.
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3.2. Enantioselective L-His-ZIF-8/Torlon®

After making the casting dope with various filler/polymer compositions, all MMMs
were casted under saturated NMP conditions (Figure 5). Thin Film X-ray Diffraction results
supported the incorporation of L-His-ZIF-8 into the MMM (Figure 6). Scanning Electron
Microscopy (SEM) was used to demonstrate the cross-section and surface morphology of
the membranes (Figure 7). As shown in the image, the thickness of the cross section is
about 10 ± 5 µm. The cross-sectional SEM image of the L-His-ZIF-8/Torlon® showed that
the fillers were integrated into the polymer interchain. However, it can be seen that an
interfacial void was observed especially in the 15 wt% and 20 wt% MMM and, as the filler
content was increased, fewer interfacial voids were observed. In general, when the amount
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of filler escalates in an MMM, the adhesion between the polymer and filler decreases due
to agglomeration of the filler which results in an increased “sieve-in-a-cage” morphology.
However, L-His-ZIF-8/Torlon® shows the opposite trend. It is presumed that this is due
to differences in the membrane fabrication process. In addition, even in the section where
the filler was surrounded by Torlon® and the crystal was not distinguished, it can also be
proved that the crystal exists in that part by energy dispersive X-ray Spectroscopy (EDS)
(Figure 8).

Membranes 2022, 12, x  7 of 11 
 

 

the fillers were integrated into the polymer interchain. However, it can be seen that an 
interfacial void was observed especially in the 15 wt% and 20 wt% MMM and, as the filler 
content was increased, fewer interfacial voids were observed. In general, when the 
amount of filler escalates in an MMM, the adhesion between the polymer and filler de-
creases due to agglomeration of the filler which results in an increased “sieve-in-a-cage” 
morphology. However, L-His-ZIF-8/Torlon® shows the opposite trend. It is presumed that 
this is due to differences in the membrane fabrication process. In addition, even in the 
section where the filler was surrounded by Torlon® and the crystal was not distinguished, 
it can also be proved that the crystal exists in that part by energy dispersive X-ray Spec-
troscopy (EDS) (Figure 8). 

 
Figure 5. The casted membrane with a doctor blade: (a) Image of pristine Torlon® membrane; (b) 15 
wt% L-His-ZIF-8/Torlon® MMM; (c) 20 wt% L-His-ZIF-8/Torlon® MMM; (d) 25 wt% L-His-ZIF-
8/Torlon® MMM. 

 
Figure 6. Thin Film X-ray diffraction of the fabricated L-His-ZIF-8/Torlon® Mixed Matrix Membrane 
compared to the pristine Torlon® dense membrane and L-His-ZIF-8 filler. 

Figure 5. The casted membrane with a doctor blade: (a) Image of pristine Torlon® membrane;
(b) 15 wt% L-His-ZIF-8/Torlon® MMM; (c) 20 wt% L-His-ZIF-8/Torlon® MMM; (d) 25 wt% L-His-
ZIF-8/Torlon® MMM.

Membranes 2022, 12, x  7 of 11 
 

 

the fillers were integrated into the polymer interchain. However, it can be seen that an 
interfacial void was observed especially in the 15 wt% and 20 wt% MMM and, as the filler 
content was increased, fewer interfacial voids were observed. In general, when the 
amount of filler escalates in an MMM, the adhesion between the polymer and filler de-
creases due to agglomeration of the filler which results in an increased “sieve-in-a-cage” 
morphology. However, L-His-ZIF-8/Torlon® shows the opposite trend. It is presumed that 
this is due to differences in the membrane fabrication process. In addition, even in the 
section where the filler was surrounded by Torlon® and the crystal was not distinguished, 
it can also be proved that the crystal exists in that part by energy dispersive X-ray Spec-
troscopy (EDS) (Figure 8). 

 
Figure 5. The casted membrane with a doctor blade: (a) Image of pristine Torlon® membrane; (b) 15 
wt% L-His-ZIF-8/Torlon® MMM; (c) 20 wt% L-His-ZIF-8/Torlon® MMM; (d) 25 wt% L-His-ZIF-
8/Torlon® MMM. 

 
Figure 6. Thin Film X-ray diffraction of the fabricated L-His-ZIF-8/Torlon® Mixed Matrix Membrane 
compared to the pristine Torlon® dense membrane and L-His-ZIF-8 filler. 

Figure 6. Thin Film X-ray diffraction of the fabricated L-His-ZIF-8/Torlon® Mixed Matrix Membrane
compared to the pristine Torlon® dense membrane and L-His-ZIF-8 filler.



Membranes 2022, 12, 357 8 of 11Membranes 2022, 12, x  8 of 11 
 

 

 

Figure 7. SEM cross-sectional image of the L-His-ZIF-8/Torlon® MMM (a) 15 wt% L-His-ZIF-8, (b) 
20 wt% L-His-ZIF-8, (c) 25 wt% L-His-ZIF-8. 

 
Figure 8. Energy-dispersive X-ray spectroscopy (EDS) of the 20 wt% MMM: (a) SEM Image; (b) EDS 
Mapping; (c) C Kα (d) Zn Kα. 

3.3. Performance Test via Organic Solvent Nanofiltration 
To evaluate the ability to separate a racemic mixture, a Torlon® dense membrane was 

used to perform the solvent separation with (±)-1-phenylehtanol in a methanol environ-
ment. The experiments were performed with a dead-end filtration setup with a transmem-
brane pressure and temperature of 60 bar and 20 °C, respectively. HPLC measurement 

Figure 7. SEM cross-sectional image of the L-His-ZIF-8/Torlon® MMM (a) 15 wt% L-His-ZIF-8,
(b) 20 wt% L-His-ZIF-8, (c) 25 wt% L-His-ZIF-8.

Membranes 2022, 12, x  8 of 11 
 

 

 

Figure 7. SEM cross-sectional image of the L-His-ZIF-8/Torlon® MMM (a) 15 wt% L-His-ZIF-8, (b) 
20 wt% L-His-ZIF-8, (c) 25 wt% L-His-ZIF-8. 

 
Figure 8. Energy-dispersive X-ray spectroscopy (EDS) of the 20 wt% MMM: (a) SEM Image; (b) EDS 
Mapping; (c) C Kα (d) Zn Kα. 

3.3. Performance Test via Organic Solvent Nanofiltration 
To evaluate the ability to separate a racemic mixture, a Torlon® dense membrane was 

used to perform the solvent separation with (±)-1-phenylehtanol in a methanol environ-
ment. The experiments were performed with a dead-end filtration setup with a transmem-
brane pressure and temperature of 60 bar and 20 °C, respectively. HPLC measurement 

Figure 8. Energy-dispersive X-ray spectroscopy (EDS) of the 20 wt% MMM: (a) SEM Image; (b) EDS
Mapping; (c) C Kα (d) Zn Kα.

3.3. Performance Test via Organic Solvent Nanofiltration

To evaluate the ability to separate a racemic mixture, a Torlon® dense membrane
was used to perform the solvent separation with (±)-1-phenylehtanol in a methanol en-
vironment. The experiments were performed with a dead-end filtration setup with a
transmembrane pressure and temperature of 60 bar and 20 ◦C, respectively. HPLC mea-
surement was performed to analyze the composition of the permeance. For pristine Torlon®
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membrane, it was confirmed that there was no difference in the amount of R and S, that
is, there was no enantiomeric separation ability by the polymer itself. The methanol per-
meance for the Torlon® dense membrane was 4.52 × 10−6 L m2 h bar−1. Then the 25 wt%
loading L-His-ZIF-8/Torlon® was tested for the enantiomeric separation performance with
(±)-1-phenylethanol in methanol. Because the 25 wt% L-His-ZIF-8/Torlon® had the small-
est interfacial void among the casted MMMs, it was considered suitable for the performance
evaluation. The experiments were performed with the same dead-end filtration setup at a
transmembrane pressure and temperature of 50 bar and 20 ◦C, respectively. As the filler
was added into the mixed-matrix membrane, the void space through which the feed could
penetrate was increased, and the permeance increased accordingly. HPLC results showed
that a difference between the R and S was observed. Using the formula for calculating the
enantiomer excess, the ee value for R over S is calculated to be 3.63% (Figure 9). This value
is increased by 2.62% compared to the ee value of the pristine Torlon®. The permeance for
the 25 wt% MMM was 53.84 × 10−6 L m2 h bar−1.
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4. Conclusions

In this study, enantioselective mixed-matrix membranes were fabricated with the
advantages of both a polymer and filler. The chiral filler, L-His-ZIF-8, has a role in the sepa-
ration of enantiomers in the L-His-ZIF-8/Torlon® MMM. It was confirmed that L-His-ZIF-8
crystals of several hundred nanometers were synthesized, and it could be seen that the
chiral ligand was inserted into the ZIF-8 skeletal backbone. To verify the characterization,
SEM, XRD, FEIR, CD Spectra and NMR were analyzed. After the filler synthesis, Torlon®

was adopted as a polymer for the MMM. Torlon® is a very stable polymer because of its
high mechanical strength, thermal stability and chemical resistance. Therefore, Torlon® is
a suitable polymer for Organic Solvent Nanofiltration because it does not swell in most
organic solvents. MMMs with various contents were manufactured by mixing L-His-ZIF-8
and Torlon®. As a result, a 25 wt% MMM was tested to prove the enantioselectivity com-
pared to the Torlon® dense membrane. Torlon® has no selectivity for (±)-1-phenylethanol,
and the permeance for the Torlon® dense membrane was 4.52 × 10−6 L m2 h bar−1. In
contrast, the enantiomeric excess of the 25 wt% MMM was 3.63%, and the permeance was
53.8 × 10−6 L m2 hr bar−1. The reason for this much larger permeance is attributed to the
pore flexibility of the inserted filler.

Considering that the value of ee was lower than expected, it is assumed that it is due to
the sieve-in-a-cage phenomenon seen in a part of the membrane. This is one of the common
problems in MMMs due to the different interactions between the filler and polymer. Once
this void is created, the non-selective flow increases, and the performance of the MMM
deteriorates. Therefore, if the interaction can be increased, the efficiency is expected to be
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improved. Additionally, if D-His-ZIF-8 was synthesized and tested to show the opposite
trend, the results of this experiment would be further strengthened. Furthermore, the
various possibilities that this study presents can be demonstrated by showing that another
racemic mixture is also separable. If high efficiency can be achieved, it is expected to
improve the economic feasibility of the existing expensive chiral separation process.
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