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A compartmental model 
that predicts the effect of social 
distancing and vaccination 
on controlling COVID‑19
Mohammadali Dashtbali & Mehdi Mirzaie*

The understanding of the interaction between disease dynamics and human behavior is an important 
and essential point to control infectious. Disease outbreak can be influenced by social distancing and 
vaccination. In this study, we introduce two compartmental models to derive the epidemic curve and 
analyze the individual’s behavior in spreading and controlling the COVID-19 epidemic. The first model 
includes Susceptible, Exposed, Infectious, Hospitalized, Recovered and Death compartments and 
in the second model, we added a new compartment namely, semi-susceptible individuals that are 
assumed to be more immune than the susceptible. A comparison of the two models shows that the 
second model provides a better fit to the daily infected cases from Egypt, Belgium, Japan, Nigeria, 
Italy, and Germany released by WHO. Finally, we added a vaccinated term to the model to predict how 
vaccination could control the epidemic. The model was applied on the record data from WHO.

During history, the human encountered with severe pandemics such as the Spanish flu in 1917, the Honk Kong flu 
(H3N2) in 1968, and the swine flu (H1N1) in 2009 affecting people on a worldwide scale1. Recently, in December, 
2019, the first case of the Corona Virus Disease (COVID-19) was identified in Wuhan, China and since then 
has spread to almost all countries and regions around the world2. The COVID-19 pandemic, as the most crucial 
global health disaster of the century infected millions of people and leads to thousands of deaths over the world. 
The disease caused by a new betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) 
related to the middle east respiratory syndrome virus (MERS-CoV) and the severe acute respiratory syndrome 
virus (SARS-CoV). This virus spreads mainly between individuals through close contacts by respiratory droplets 
produced when an infected person coughs, sneezes or even talks. The disease is highly transmittable with specific 
characteristics including the incubation period and high infectivity during incubation. The incubation period is 
2–14 days and during this time when no symptoms are present on the patients3, 4.

Several mathematical models have been introduced to analyze the dynamics of infectious diseases to predict 
the number of infected, recovered, and removed in the future. In 1927, Kermack and McKendrick5 presented 
one of the first models to forecast the progress of the epidemic. In this model, a population is divided into 
distinct compartments and assumed that individuals in every compartment, have the same characteristics. The 
model is called SIR, consists of three compartments that divide a given population into susceptible (S), infected 
(I), and recovered (R) individuals and a system of three differential equations describe the dynamics of disease 
during time and the individuals’ transition in a population between different compartments. Ever since, sev-
eral simple and complex compartmental models have been introduced to analyze different types of infectious 
disease and predict the duration of an epidemic, the prevalence and finding how control interventions such as 
social distancing and immunization, as well as vaccination could reduce the epidemic size. These can be taken 
as useful measures to evaluate the effectiveness of control policies and actions against the spreading of infectious 
diseases. Recently, several dynamical models have been presented to describe the dynamics of the evolution of 
COVID-19 and trying to predict the duration of epidemics and the number of infected individuals in different 
countries6–13. Note that COVID-19 as a disease caused by a new virus needs a model taking into consideration 
its known specific characteristics.

Since the disease spreads through the close interaction, the social distancing and reducing contact in popu-
lation was suggested to control the epidemic. The presented model also should consider the effect of social 
distancing on the dynamics of the disease. The concept of social distancing as a nonpharmaceutical action to 
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reduce and control the spread of an epidemic was studied by Reluga14. According to optimal control and dif-
ferential game approaches, the impact of social distancing in the spread of infectious diseases on the network 
was studied in 202015.

Vaccination policy is related to the population health adopted by the government. Eradicating the disease 
or the immunity of the population is the aim of vaccination. Individuals’ deciding about vaccination is involved 
considering the risk of morbidity from vaccination and the probability of getting infected16–19. On the other 
hand, each person’s decisions in vaccination are influenced by the decisions of others in social distancing20, 

21. In this study, two models have been studied. The first model consists of seven compartments including the 
Susceptible (S), Exposed (E), Infected (I), Hospitalized (H), Recovered (R), and Death (D) individuals, called 
SEIHRD. After getting infected, an individual enters the hospitalized compartment and at the end of this state 
either recovers or dies. The model also considers social distancing and we assume that number of dead people 
among the total number of infected individuals could affect the behavior of people in social distancing. Some 
researches indicate that some people are less likely to become infected. In the second model, we added a com-
partment, Semi-susceptible (M) and assume that these individuals are half as susceptible to COVID-19. The 
new model is called SMEIHRDV model. The results of the two models were compared using WHO data from 
Japan, Italy, Belgium, Germany, Nigeria and Egypt. The second model was fitted better than the first one. Finally, 
the SMEIHRDV model was simulated for the different coverages of vaccination to predict how vaccination can 
control the epidemic.

The main purpose of this study is to develop a compartmental model to fit the released data by WHO and 
could predict the behavior of epidemic. This model can be used to investigate how vaccination coverage will 
control the epidemic. Social distancing is one of the best strategies limiting contact rate and reducing transmis-
sion rates. A differential game theory model also introduced to investigate the role of individual’s investment in 
social distancing for controlling the epidemic. The organization of this paper is as follows: in “SEIHRDV model” 
we present the SEIHRDV model. In “SMEIHRDV model”, the SEIHRDV model is expanded to the SMEIHRDV 
model. The game theory of social distancing is considered in “The game theory of social distancing”. Next, results 
and discussion are presented in “Results and discussion”.

SEIHRDV model
The most commonly implemented dynamical model in infectious disease is the SIR model, consists of three 
compartments including susceptible, infected and recovered individuals represented by S, I and R, respectively. 
In order to represent the number of susceptible, infected and recovered individuals with respect to time, these 
variables are considered as function of t (time): S(t), I(t) and R(t). The dynamics of SIR model is as follows:

Letting total population size denoted by N , is constant and N = S(t)+ I(t)+ R(t) . Several compartmental 
models have been extended from the SIR model. According to the reported characteristics of the COVID-19 
disease, we develop a mathematical model consists of seven compartments: 

1.	 Susceptible individuals denoted by S who are not infected by the disease pathogen,
2.	 Exposed individuals denoted by E. The persons in the incubation period after being infected by the virus. 

They have no visible clinical signs but infectious.
3.	 Infected individuals denoted by I. After the incubation period, it is the first compartment of the infectious 

period, where the person has finished the incubation period, may infect other people and starts developing 
clinical signs. After this period, people needed to be hospitalized (in a hospital or at home), therefore the 
next state is:

4.	 Hospitalized individuals denoted by H. After the hospitalization period, people can be, either recovered or 
removed. Therefore, we have two other compartments:

5.	 Recovered individuals denoted by R , and
6.	 Death individuals denoted by D. In order to predict the effect of vaccination, after releasing the vaccine, we 

considered the vaccinated compartment. So:
7.	 Vaccinated individuals denoted by V. The suggested dynamics of this model (called SEIHRDV) is as follows:

(1)

dS(t)

dt
= − β

S(t)

NI
(t),

dI(t)

dt
= β

S(t)

NI
(t)− γI(t),

dR(t)

dt
= γI(t).
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where, 

(a)	 β denotes the infection rate,
(b)	 γ−1 is the average latent time,
(c)	 δ1 is the cure rate,
(d)	 δ2 is the mortality rate,
(e)	 α is vaccine coverage.
(f)	 ν is the hospitalized rate

and N = S(t)+ E(t)+ I(t)+H(t)+ R(t)+ D(t)+ V(t) where N is the number of people in the population. 
The diagram for this model is depicted in Fig. 1.

Social distancing.  Social distancing is a non-pharmaceutical strategy to reduce and control the spread of an 
epidemic14. It could decrease the transmission rate between susceptible and infected individuals and affects the 
dynamics of an epidemic. In this study, we consider behavior of individuals by simple function of the available 
information. In fact we assume that susceptible individuals change their contact rate based on the number of 
confirmed death per day in a country. Also, in order to investigate the effectiveness of social distancing during 
time, we use function σ(t) as it was discussed by Reluga14. Therefore, the system of Eq. (2) is modified as follows:

(2)

dS(t)

dt
= − (1− α)β

S(t)

NI
(t)− αS(t),

dE(t)

dt
= (1− α)β

S(t)

NI
(t)− γE(t),

dI(t)

dt
= γE(t)− νI(t),

dH(t)

dt
= νI(t)− δ1H(t)− δ2H(t),

dR(t)

dt
= δ1H (t),

dD(t)

dt
= δ2H (t),

dV(t)

dt
= αS(t),

Figure 1.   SEIHRDV model. The diagram for SEIHRDV model that S, E, I, H, R, D and V are the number 
of susceptible individuals, exposed individuals (persons in the incubation period after being infected by the 
disease pathogen), infected individuals, hospitalized individuals, recovered individuals, death individuals and 
vaccinated individuals, respectively.
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where σ(t) estimated using the number of confirmed death per day in a country and is σ(t) = 1
p(1+c(t)) where c(t) 

is, the ratio of the number of daily died COVID-19 patients at time t to the number of daily diagnosed COVID-
19 patients at time t . In order to consider individual heterogeneities such as differences in social activity, mixing 
patterns including household, spatial aspects, and travels, we used a parameter, namely p, in the model which is 
calibrated to fit the model to data. The selected values of p−1 for different countries are as follows: Egypt: 0.47, 
Germany: 0.50, Belgium: 0.54, Japan: 0.55, Italy: 0.56, Nigeria: 0.57.

SMEIHRDV model
Elderly and sick people are most susceptible to severe forms of COVID-19. There have been studies to discover 
why some individuals are more susceptible than the others22. For example, some studies show that people car-
rying certain variants of the ACE2 gene would be protected against the COVID-19 infection23, 24. Therefore 
we divided susceptible individuals into two compartments, the susceptible compartment denoted by S and 
the semi-susceptible denoted by M. In compartment S, people are more susceptible than M. The new model is 
called the SMEIHRDV model. A diagram summarizing the main structure of our model is presented in Fig. 2. 
β1 is the transmission rate between susceptible and infected individuals and β2 is the transmission rate between 
semi-susceptible and infected individuals. The remaining parameters are the same as the SEIHRDV model. The 
dynamics of this model is as follows:

(3)

dS(t)

dt
= − σ(t)(1− α)β

S(t)

NI
(t)− αS(t),

dE(t)

dt
= σ(t)(1− α)β

S(t)

NI
(t)− γE(t),

dI(t)

dt
= γE(t)− νI(t),

dH(t)

dt
= νI(t)− δ1H(t)− δ2H(t),

dR(t)

dt
= δ1H (t),

dD(t)

dt
= δ2H (t),

dV(t)

dt
= αS(t),

Figure 2.   SMEIHRDV model. SMEIHRDV model that S, M, E, I, H, R, D and V are the number of susceptible, 
exposed, infected, semi-susceptible, hospitalized, recovered, death, and vaccinated individuals, respectively.
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The game theory of social distancing
Social distancing as a strategy limiting contact rates and reducing transmission rate has costs in terms of money, 
time and convenience. Reluga14 introduced a population game where the payoff of individuals is characterized 
by the individual’s behavioral strategy and the average behavioral strategy adopted by the population. Let cS the 
aggregate daily investment adopted by the susceptible population and cS the specific susceptible individual’s 
investment. The impact of social distancing is defined by a function σ(cS) which is the relative risk of disease 
at daily investment cS in social distancing. Here, we consider a differential game for a susceptible individual 
choosing his or her best investment strategy in social distancing relative to the aggregate investment strategy 
of susceptible population as whole and a differential game for a semi-susceptible individual choosing his or her 
best investment strategy in social distancing relative to the aggregate investment strategy of semi-susceptible 
population as whole. The modified version of the equations with social distancing according to differential game 
approach is as follows:

where 

1.	 c1(t) =
cS(t)
cI

 and cS(t) the specific susceptible individual’s investment.

2.	 c2(t) =
cM(t)
cI

 and cM(t) the specific semi-susceptible individual’s investment.

3.	 c1(t) =
cS(t)
cI

 and cS(t) the aggregate investment in social distancing by the susceptible people.

4.	 c2(t) =
cM(t)
cI

 and cM(t) the aggregate investment in social distancing by semi-susceptible individuals.
5.	 cI the cost of infection.
6.	 σ is the relative risk and σ(c1(t)) = 1

p(1+c1(t))
, σ(c2(t)) =

1
p(1+c2(t))

.

It is assumed that N = S(t)+M(t)+ E(t)+ I(t)+H(t)+ R(t)+ D(t)+ V(t) where N is the number of people in 
the population and the parameters are described in Table 1. Note that if the investment in social distancing exceeds 
the cost of infection, then social distancing is not economical, and so 0 ≤ c1(t) ≤ 1 and 0 ≤ c2(t) ≤ 1. The dimen-
sionless version of the equations is obtained as follows (let β1 = β, β2 = b1β1, δ1 = δ, δ2 = b2δ1, 0 < b1, b2 < 1):

(4)

dS(t)

dt
= − (1− α)(σ (t))β1

S(t)

NI
(t)− αS(t),

dM(t)

dt
= − β2(σ (t))

M(t)

NI
(t),

dE(t)

dt
= (1− α)β1

S(t)

NI
(t)+ β2

M(t)

NI
(t)− γE(t),

dI(t)

dt
= γE(t)− νI(t),

dH(t)

dt
= νI(t)− δ1H (t)− δ2H (t),

dR(t)

dt
= δ1H (t),

dD(t)

dt
= δ2H (t),

dV(t)

dt
=αS(t).

(5)

dS(t)

dt
= − (1− α)σ(c1)β1

S(t)

NI
(t)− αS(t),

dM(t)

dt
= − σ(c2)β2

M(t)

NI
(t),

dE(t)

dt
= (1− α)σ(c1)β1

S(t)

NI
(t)+ σ(c2)β2

M(t)

NI
(t)− γE(t),

dI(t)

dt
= γE(t)− νI(t),

dH(t)

dt
=νI(t)− δ1H(t)− δ2H(t),

dR(t)

dt
= δ1H (t),

dD(t)

dt
= δ2H (t),

dV(t)

dt
= αS(t),
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After this, the hat-notation will be dropped and the dimensionless parameters will be used. The expected 
present values are calculated (the expected present value is the average value one expects after accounting for 
the probabilities of all future events, and discounting future costs relative to immediate costs) because of the 
exact time spent and the precise payoff are not predicted and so we use the Markov process. For each state, the 
expected present values denoted by V and justify in the following equation14:

where h  is  the discount rate.  We wi l l  take h = 0 as  discassed by Reluga 25.  Also, 
v(t; c1(t), c2(t)) = (−c1(t),−c2(t),−1+ (c1(t)+c2(t))

2 ,−1+ (c1(t)+c2(t))
2 , 0, 0, 0, 0) and

Therefore, we have:

(6)

dS′(t)

dt
= − (1− α)σ(c1)S

′(t)I′(t)− αS′(t),

dM′(t)

dt
= − σ(c2)M

′(t)I′(t),

dE′(t)

dt
= (1− α)σ(c1)S

′(t)I′(t)+ σ(c2)M
′(t)I′(t)− E′(t),

dI′(t)

dt
=E′(t)− I′(t),

dH′(t)

dt
= I′(t)−H′(t),

dR′(t)

dt
=H′(t)

dD′(t)

dt
=H′(t),

dV′(t)

dt
= αS′(t),

S′ =
β

γ

S

N
, M′

=
β

γ

M

N
, E′ =

β

γ
E, I′ =

β

γ
I, I′ =

β

ν
H,

R′
=

β

δ
R, D′

=
β

δ
D, V′

=
β

γ
V, t̂ = γδt

(7)−
.
V = (QT

− hI)V+ v

Q(t; c1(t), c2(t)) =





−σ(c1(t))(1− α)I′ − α 0 0 0 0 0 0 0
0 − σ(c2(t))I

′ 0 0 0 0 0 0
σ(c1(t))(1− α)I′ σ(c2(t))I

′ − 1 0 0 0 0 0
0 0 1 − 1 0 0 0 0
0 0 0 1 − 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
α 0 0 0 0 0 0 0





Table 1.   Description of parameters.

Parameters Description

N Population (million)

γ−1 Latent time (day)

ν−1 Hospitalization time (day)

S0 Initial susceptible cases

M0 Initial semi-susceptible cases

E0 Initial exposed cases

I0 Initial infection cases

H0 Initial hospitalized cases

R0 Initial recovered cases

D0 Initial death cases

V0 Initial vaccinated cases
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B y  s o l v i n g  a b o v e  e q u a t i o n s  s i m u l t a n e o u s l y ,  i t  i s  o b t a i n e d 
VE′ = −1, VI′ = −

(c1(t)+c2(t))
2 , VH′ = −1, VR′ = 0, VD′ = 0, VV′ = 0 and have the following system:

Now the purpose is finding c1∗(t) and c2∗(t) , so it is used the maximum principle:

Results and discussion
Infectious diseases are a threat to the health of the population. One of the easiest ways for individuals to reduce 
the risk of infection during an epidemic is to decrease their rate of contact with infected individuals. However, 
the value of these actions depends on how the epidemic progresses. Few cases analyses indicate how changes in 
behavior will change the epidemic wave. The policies included large-scale quarantine, strict controls on travel, 
and extensive monitoring of suspected cases, and as a rule, social distancing was applied by individuals and 

(8)

−dVS′(t)

dt
= − ((1− α)σ(c1(t))I

′(t)+ α)VS′ (t)+ (1− α)σ(c1(t))I
′(t)VE′(t)− c1(t)

−dVM′(t)

dt
= − σ(c2(t))I

′(t)VM′(t)+ σ(c2(t))I
′(t)VE′(t)− c2(t)

−dVE′(t)

dt
= − VE′(t)+ VI′(t)

−dVI′(t)

dt
= − VI′(t)+ VH′(t)

−dVH′(t)

dt
= − VH′(t)+ VR′(t)+ VD′(t)− 1

−dVR′(t)

dt
= 0

−dVD′(t)

dt
= 0

−dVV′(t)

dt
= 0

(9)

dS′(t)

dt
= − (1− α)σ(c1)S

′(t)I(t)− αS′(t),

dM′(t)

dt
= − σ(c2)M

′(t)I(t),

dE′(t)

dt
= (1− α)σ(c1)S

′(t)I′(t)+ σ(c2)M
′(t)I′(t)− E′(t),

dI′(t)

dt
=E′(t)− I′(t),

dI′(t)

dt
= I′(t)−H′(t),

dR′(t)

dt
=H′(t),

dD′(t)

dt
=H′(t),

dV′(t)

dt
= αS′(t),

−dVS′(t)

dt
= − ((1− α)σ(c1(t))I

′(t)+ α)VS′(t, c1, c1)− (1− α)σ(c1(t))I
′(t)− c1(t)

−dVM′(t)

dt
= − σ(c2(t))I

′(t)VM′(t, c2, c2)− σ(c2(t))I
′(t)− c2(t)

(10)c1
∗(t) = argmax

c1

(t)((1− α)σ(c1(t))I
′(t)+ α)VS′(t, c1, c1)+ (1− α)σ(c1(t))I

′(t)+ c1(t),

(11)c2
∗(t) = argmax

c2

(t)σ(c2(t))I
′(t)VM′(t, c2, c2)+ σ(c2(t))I

′(t)+ c2(t),

(12)c1
∗(t) =

√
(1− α)I′(t)(VS′ (t, c1, c1)+ 1)

p
− 1,

(13)c2
∗(t) =

√
I′(t)(VM′(t, c2, c2)+ 1)

p
− 1.
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governments. In this study, two models have been studied. In the first model, the population was divided into 
seven possible states: Susceptible (S), Exposed (E), Infected (I), Hospitalized (H), Recovered (R), Death (D), and 
Vaccinated (V). The model is called, “SEIHRDV”. After getting infected, an individual enters the hospitalized 
compartment and at the end of this state either recovers or dies. The rates of changes in each state are, β (S to 
E), γ (E to I), ν (I to H), δ1 (H to R), δ2 (H to D) and α (S to V). The average latent time, γ−1 is considered 2 days, 
so the rate of transmission, between E to I was considered γ = 0.5 . The hospitalized time is considered 14 days 
and therefore ν−1 is set to 0.07. The infectious rate, the recovered rate and the mortality rate are defined as the 
ratio of the number of daily diagnosed COVID-19 patients at time t to the number of accumulated COVID-19 
patients at time t , the ratio of the number of daily recovered COVID-19 patients at time t to the number of 
accumulated COVID-19 patients at time t , and the ratio of the number of daily died COVID-19 patients at time 
t to the number of accumulated COVID-19 patients at time t , respectively. These parameters were estimated 
using WHO data for each country. In order to reduce and control the spread of COVID-19, social distancing is 
a non-pharmaceutical strategy that was considered in the model and the system (2) modified to the system (3). 
This system solved numerically by using the estimated parameters in Table 2. Social distancing is an attitude of 
behavior and changing the behaviors can decrease contact rates and that makes to reduce the transmission of 
infectious and control the diseases. The number of confirmed death per day published by several media can affect 
the behavior of individuals in social distancing. Therefore, here we approximate the social distancing effect as 
the ratio of the number of daily died at time t to the number of accumulated patients at time t.

In the second model, we assume that some part of population have lower susceptibility to infection. In general, 
factors such as age, smoking, obesity and genetic factors can affect disease susceptibility26. Therefore, we added 
a new compartment called semi-susceptible denoted by M, and assume that their infection rate to COVID-19 
is half the infection rate of susceptible people to it. The new model is SMEIHRDV. In this new model, for each 
country, M0 =

15
100N and the rates of changes in states are, β1 (S to E), β2 = 1

2β1 (M to E) and the remaining 
parameters are the same as the SEIHRDV model. Social distancing was considered in this model and the system 
(4) was solved numerically, by using the estimated parameters in Table 2. The confirmed and predicted infected 
cases of the SMEIHRDV and SEIHRDV models is shown in Fig. 3, for Japan (from 22th January to 23th June 
2020), Italy (from 31th January to 23th June 2020), Belgium (from 4th February to 23th June 2020), Germany 
(from 27th January to 23th June 2020), Nigeria (from 28th February to 23th June 2020) and Egypt (from 14th 
February to 23th June 2020). The blue dots denote the reported infected cases and the black (or less width) and 
blue lines represent the model simulation results, respectively. The comparison of the results of two models 
shows that the SMEIHRDV model provides better estimation with the reported WHO data. Therefore, the semi-
susceptible compartment improves the result of the model in the prediction of infected individuals.

In the following, the game theory of social distancing was presented and in order to obtain the best investment 
strategy in social distancing, we used the dimensionless version of the dynamic the system (5) and a differential 
game for a susceptible individual choosing his or her best investment strategy in social distancing relative to the 
aggregate investment strategy of susceptible population as whole and a differential game for a semi-susceptible 
individual choosing his or her best investment strategy in social distancing relative to the aggregate investment 
strategy of semi-susceptible population as whole. Since the exact time spent and the precise payoff are not 
predicted, so we used the Markov process. The system (6) that is a dimensionless version of the SMEIHRDV 
model, was used to determine the transition-rate matrix. This model was simulated to investigate the effect of 
vaccination and the investment in social distancing to drop the epidemic peak. The aggregate investment strategy 
of susceptible individuals denoted by c1(t) and the aggregate investment strategy of semi-susceptible denoted 
by c2(t) . Here, it was used the maximum principle to find the best strategy of the investment in social distanc-
ing for a susceptible individual ( c1∗ ) and for a semi-susceptible individual ( c2∗ ), and they were obtained in (12) 
and (13). Finally, the SMEIHRDV model was simulated for when the vaccine was released for Coronavirus. We 
investigate the effect of the behavior of individuals in vaccination in the epidemic process. The different vaccine 
coverage were examined in the epidemic process for the infected cases in Egypt (see Fig. 4) and Germany (see 
Fig. 5). The number of total infected individuals ( at the epidemic peak) in Egypt decreased from 540 to 200 as 
the vaccination coverage changes from 0.2 to 0.6 (see Fig. 4). Also, in Germany, the number of infected cases at 
the epidemic peak is approximately 320 and it has reduced to 120 by the increasing vaccine coverage from 0.2 to 

Table 2.   Parameters estimated from the observed data in Germany (DE), Italy (IT), Belguim (BE), Egypt (Eg), 
Nigeria (NG) and Japan (JP) inferred from the World Health Organization.

Parameters Value-DE Value-IT Value-BE Value-EG Value-NG Value-JP

N (million) 80 60 11.5 102 195 126.5

γ−1 2 2 2 2 2 2

ν−1 14 14 14 14 14 14

E0 2 2 2 2 2 2

I0 1 2 1 1 1 1

H0 0 0 0 0 0 0

R0 0 0 0 0 0 0

D0 0 0 0 0 0 0

V0 0 0 0 0 0 0
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0.6 (see Fig. 5). In Fig. 6, the effect of the best investment strategy in social distancing was studied in COVID-19 
progress in Germany; the forecast of the epidemic growing tendency for infected cases through the SMEIHRDV 
model with the best investment strategy in social distancing. The results show that the best investment strategy 
in social distancing reduces the epidemic peak for infected cases and also by increasing the vaccine coverage, 
the epidemic peak for infected cases in Germany decreases. The number of infected cases at the epidemic peak 
is approximately 200 and it has reduced to 55 by the increasing vaccine coverage from 0.2 to 0.6.

Figure 3.   Fitting the models with real data. The number of infected individuals predicted by the “SEIHRDV” 
and the “SMEIHRDV” models for Japan (from 22th January to 23th June 2020), Italy (from 31th January to 
23th June 2020), Belgium (from 4th February to 23th June 2020), Germany (from 27th January to 23th June 
2020), Nigeria (from 28th February to 23th June 2020) and Egypt (from 14th February to 23th June 2020). The 
blue dots denote the reported infected cases and the black (or Less width) and blue lines present the results of 
the “SEIHRDV” and the “SMEIHRDV” models, respectively. The deSolve package version 1.2827 in R software 
version 4.0.328 was used to generate the figure (http://​desol​ve.r-​forge.​rproj​ect.​org/).

Figure 4.   Simulation, the forecast of the epidemic process. The forecast of the epidemic growing tendency 
for infected cases through the SMEIHRDV model in Egypt. The results show that by increasing the vaccine 
coverage, the epidemic peak for infected cases decreases. The number of infected cases at the epidemic peak 
is approximately 540 in Egypt and it has reduced to 200 by the increasing vaccine coverage from 0.2 to 0.6. 
N = 102, 000, 000.

http://desolve.r-forge.rproject.org/
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