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Abstract
In spite of a rapid growth of data processing software, that has allowed for a huge advancement in many fields of chemistry, some
research issues still remain problematic. A standard example of a troublesome challenge is the analysis of multi-component
mixtures. The classical approach to such a problem consists of separating each component from a sample and performing
individual measurements. The advent of computers, however, gave rise to a relatively new domain of data processing –
chemometry – focused on decomposing signal recorded for the sample rather than the sample itself. Regrettably, still a very
few chemometric methods are practically used in everyday laboratory routines. The Authors believe that a brief ‘user-friendly’
guide-like article on several ‘flagship’ algorithms of chemometrics may, at least partly, stimulate an increased interest in the use
of these techniques among researchers specializing in many fields of chemistry. In the paper, five different techniques of factor
analysis are used for the analysis of a three-component system of fluorophores. These algorithms, applied on the excitation-
emission spectra, recorded for the ‘unknown’mixture, allowed to unambiguously determine its composition without the need for
physical separation of the components. An example of using chemometric methods for physical chemistry research is also
provided. For each presented technique of the data analysis, a short description of its theoretical background followed by an
example of its practical performance is given. In addition, the Reader is supplemented with a basic information onmatrix algebra,
detailed experimental ‘recipes’, reference specialist literature and ready-to-use MATLAB codes.

Keywords Spectral data matrices of mixtures . Excitation-emission maps . Fluorescence quenching . Multivariate curve
resolution . Rank annihilation factor analysis . Evolving factor analysis

Motivation

Spectroscopic measurements were and still are widely used
for determination of both composition and physicochemical
properties of the examined samples [1]. However, interpreta-
tion of the obtained spectra, especially in the case of multi-
component samples, is not always straightforward. The ‘tra-
ditional’ way of obtaining selective signal for each substance,
and thus allowing for its unambiguous characterization, is to
physically separate it from a mixture [2–3]. This method has,

however, a natural limitation, as the separation of all mixture
components is not always possible. Often it is also a time
consuming procedure.

Hopefully, with the development of computer science, an
alternative approach to investigating multicomponent samples
has become available. This issue is now addressed by
chemometrics. The chemometric techniques combine together
chemical knowledge, mathematical and statistical apparatus
and numerical optimization routines to effectively extract the
desired information out of the data [4–7]. Consequently, there
is no need to physically separate components from the mix-
ture. All the required information, concerning the individual
signals, is obtained from the computations.

Though there are a plenty of articles in highly specialist
literature describing the basics and the usage of the
cheomometric techniques, yet still, the application of these
methods is rather poorly reflected in the everyday analysis
of the complex spectral datasets. Perhaps it is due to the fact
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that only few of them are explained in a comprehensive way,
that is fully understandable for the non-expert audience and
illustrated with the help of pictorial presentations [7–15].

For this reason, the Authors of this paper attempt to shed an
additional light on some of the ‘flagship’ chemometric
methods used for resolving spectral mixtures, that are seldom
discussed outside the specialist literature. This will include
Target Factor Analysis (TFA) [16–17], Evolving Factor
Analysis (EFA) [18–20], Rank Annihilation Factor Analysis
(RAFA) [21–23] and Generalized Rank Annihilation Method
(GRAM) [24–25]. Each presented algorithm will be provided
with a brief description of its foundations as well as practical
details and illustrative examples of its application followed by
suggested literature references. Main advantages and some
drawbacks will also be discussed.

Four types of supplementary materials have also been in-
cluded. In Appendix A, the extension of the selected mathe-
matical issues can be found. In Appendix B, the detailed
descriptions of the experiments are included, so the measure-
ments can be easily run over. Appendix C contains the
MATLAB codes [26] for all the applied routines (which
may be rewritten in any other freeware programming lan-
guages such as R [27] or Python [28]). Finally, in Appendix
D, the Authors include a set of the originally measured spec-
tral data.

Theoretical Background

A Brief Characteristics of UV-vis Spectroscopy

UV-Vis absorption spectroscopy is one of the most commonly
used methods for determining the composition or physico-
chemical properties of tested samples. As each substance has
its ‘unique’ spectrum, UV-Vis measurements can be (and are)
used for qualitative analysis purposes. Due to a linear relation-
ship between signal and concentration, UV-Vis spectroscopy
is often (and primarily) applied for quantitative analysis. This
relationship is described by Lambert-Beer’s law

A ¼ ε � l � c ð1aÞ
where the proportionality factor between absorbance (A) and
concentration (c) is optical path length (l) multiplied by molar
absorption coefficient (ε).

Similar specification of the sample’s composition may also
be provided by the UV-Vis emission spectroscopy techniques
[29, 30]. Then, however, one basic condition must be fulfilled.
At least one component of the analysed sample has to reveal
fluorescence, phosphorescence or any other type of light emis-
sion phenomenon.

Although the Lambert-Beer’s law does not strictly apply to
emission spectroscopy, for sufficiently (optically) diluted

solutions (absorbance A < 0.1) an analogous linear relation-
ship can be obtained. According to Parker’s law [31].

I em≈2:303 � φem � I source � A ¼ 2:303 � φem � I source � ε � l � c ð1bÞ
where the intensity of emitted light (Iem, signal) is directly
proportional to the concentration of the analyte.
Proportionality factors are then, except the already mentioned
(1a), the quantum yield of the emission process (φem) and the
intensity of the excitation light beam (Isource). Sensitivity of
the measurements can be then easily modified by adjusting the
parameters of the spectrofluorometer light source.

Although the UV-Vis emission measurements are mostly
aimed at delivering the fluorescence or phosphorescence spec-
tra, yet the absorption characteristics of the sample can also be
obtained. The fluorescence excitation spectra are then record-
ed by changing the excitation wavelength and tracking the
resulting signal response at one particular emission wave-
length. In general, as the emitted light intensity is directly
proportional to the absorbance (1b), the fluorescence excita-
tion spectra bear a very strong similarity to the absorption
spectra.

The combination of the excitation and emission spectra
results in the excitation-emission data matrices or maps matri-
ces or (EEM). By changing both the emission and excitation
wavelengths during the measurement, it is possible to charac-
terize, at the same time, both the absorption and fluorescent
(phosphorescent) properties of the sample.

In some cases, the phenomenon of attenuation of the fluo-
rescence emission intensity is also used. Tiny portions of a
substance called the quencher are then added to the sample.
The quencher molecules weaken the intensity of the light
emitted by fluorophores in the processes including the inter-
molecular electron or energy transfer between the fluorophore
and quencher molecules. Mathematically, this weakening of
the fluorescence intensity is described by a linear Stern-
Volmer eq. [29, 30].

I0em
IQem

¼ 1þ KSV � Q ð2Þ

According to the above formula, the emission intensity
ratio of the unquenched sample (I0em) to quenched one
(IQem) is directly proportional to the concentration of the
added quencher (Q). The parameter of this proportionality,
characteristic for a given pair of a fluorophore and its quench-
er, is called the Stern-Volmer quenching constant (KSV).

Spectroscopic Data in Terms of Matrix Algebra

A recorded spectrum, either absorption or emission one, is a
set of numerical values representing the intensity of the mea-
sured signal (x) depending on the wavelength (λ). Thus, from
a mathematical point of view, the spectrum is a data vector x

1600 J Fluoresc (2021) 31:1599–1616



[32].

x ¼ x1; x2; x3;…; xλ½ �

The vector x can be set as a column of values in a data
spreadsheet (Fig. 1). Two or more spectra (vectors) combined
column-wise form a spectral data matrix X:

X¼ x1;x2;x3;…;xn½ �

The spreadsheet will therefore contain an array with dimen-
sions λ x n, where n - number of combined spectra, λ - number
of measurement points (set of wavelengths, Fig. 1).

As the recorded signal is directly proportional to concen-
tration (1a, b), the spectrum xA, measured for a particular
sample of a substance A, can be expressed as the product of
a certain ‘standard’ spectrum sA related to the unit molar con-
centration of the solute A and a proper multiplier cA
representing its actual concentration [5].

xA¼sA � cA
For instance, if three substances, say A, B and C, are mixed

together, the resulting spectrum xABC of their three-
component mixture, will be, due to signal additivity, a linear
combination of three vectors (spectra) representing the indi-
vidual components.

xABC ¼ sA � cA þ sB � cB þ sC � cC ð3Þ

By analogy, a set of spectra x1,ABC, x2,ABC, x3,ABC, …,
xn,ABC, measured for n different mixtures of A, B and C, can
be defined as follows

x1;ABC¼sA � c1;A þ sB � c1;B þ sC � c1;C
x2;ABC ¼ sA � c2;A þ sB � c2;B þ sC � c2;C

…
xn;ABC ¼ sA � cn;A þ sB � cn;B þ sC � cn;C
The above set of equations can be rewritten briefly in ma-

trix notation as

X¼S � CT ð4Þ

By general consent, the matrix S, called a matrix of f (in this
example it equals 3) spectral profiles, contains the standard
spectra sA, sB and sC of ‘pure’ substances A, B and C. The
vectors cA, cB and cC representing the actual concentrations of
components A, B and C are columns of the matrixC sized n ×
3, called a matrix of concentration profiles. Symbol T denotes
the operation of matrix transposition. A graphical scheme il-
lustrating the described matrix factorization is presented in
Fig. 2.

Hence, having a set of ‘standard’ spectra of all components
of a mixture, the concentrations of all substances (A, B and C)
in each sample can be determined by performing a simple
matrix operation:

CT¼SþX ð5aÞ

The symbol S+ denotes a matrix pseudo-inverse

Sþ¼ STS
� �−1

ST

with the property S+S = 1, obtained upon ‘inversion’ of a rect-
angular matrix [33] (as shown in SI - App. A.1).

Fig. 1 Graphical (left) and matrix
representation (right) of spectral
data
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Singular Value Decomposition of a Data Matrix and its
‘Consequences’

In everyday laboratory practice, it oftentimes happens that
both matrices containing the spectral (S) and concentration
(C) profiles of individual components remain unknown, so
the X matrix decomposition given by formula (4) cannot be
directly used. However, by applying a mathematical proce-
dure known as Singular Value Decomposition (SVD), it is
always possible to decompose the data matrixX into a product
of three matrices, by convention usually denoted as U, Λ and
V (Fig. 3) [5].

X¼UΛVT ð6Þ

The SVD matrices U (λ x n) and V (n x n), consisting of
two sets of eigenvectors, are characteristically structured with
the property of column-wise orthonormality(UTU = 1 and
VTV = 1, and in addition VVT = 1) [5, 34]. Matrix Λ (n x n)
is a diagonal matrix containing the singular values of the ma-
trix X.

To understand the meaning and importance of the decom-
position of the data matrix X into a product of three matrices,
which actually do not contain the spectra or concentrations of
pure components, a visual reference to geometrymay bemade
(Fig. 4). The formula (3) defining a spectrum of the mixture
xABC as the sum of the individual components spectra can be
seen as analogous to the space representation of a certain
vector p in the Cartesian coordinate system [32].

p¼x � xþ y � yþ z � z
p ¼ x; y; zð Þ

The versors x, y and z are then identical to the vectors
representing the ‘pure’ components spectra sA, sB and sC.
The multipliers (concentrations) cA, cB and cC stand for the
respective ‘coordinates’. The axes of such a coordinate sys-
tem, in general, do not have to be mutually orthogonal [34].

Consequently, if the spectra of ‘pure’ components are un-
known, the problem arises how to define the axes of such a
coordinate system, that would allow to describe all the collect-
ed mixture spectra. And this is just when the SVD procedure
comes to the aid. One can find a set of potentially useful axes
(Fig. 4) in the matrixU. However, as this matrix contains up to
n eigenvectors u (Fig. 3), the decision has to be made how
many and which of them should be chosen.

Information on how many axes are actually needed to
describe the measurement data matrix X and hence how
many components are present in the mixture, can actu-
ally be gleaned from the diagonal matrix of singular
values Λ. From the point of view of linear algebra,
the recommended dataset consists of as many indepen-
dent variables (geometrically – axes) as is the deter-
mined number of singular values which are distinctively
greater than zero [5]. It is therefore possible to ‘trun-
cate’ the U, Λ and V matrices into the ‘proper’ number

Fig. 2 Scheme showing matrix formulation of Lambert-Beer law. The
data matrix X, containing n spectra of a three-component mixture, is
decomposed into the product ofmatrices S andC, respectively, consisting
of individual spectral and concentration (intensity) profiles of all
components

Fig. 3 Scheme showing the
decomposition of data matrix X
from Fig. 2 into the product of
three matrices U, Λ and VT with
the SVD algorithm. Submatrices,
to which these matrices may be
reduced for the purpose of data
reproduction are marked in grey
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of f columns (Fig. 3 - grey areas). The ‘truncation’ is
commonly marked with a bar above a ‘reduced’ quan-
tity. The cut-off number f is called the number of sig-
nificant factors, principal components or primary latent
variables. A ‘recipe’ for drawing the desired coordinate
system of X dataset is thus finally obtained. Although,
in general, the set Ū of orthogonal axes defined in this
way will not overlap with the ‘original’ axes, corre-
sponding to the ‘pure’ component spectra sA, sB and
sC, the space spanned by the vectors u1, u2 and u3 will
remain identical (Fig. 5):

u1 � λ1 � vn;1 þ u2 � λ2 � vn;2 þ u3 � λ3 � vn;3 ¼ xn;ABC

¼ sA � cn;A þ sB � cn;B þ sC � cn;C

It is therefore quite easy to notice (see SI - App. A.3) that
the vectors u1, u2 and u3 are linear combinations of the pure
component spectra sA, sB and sC.

u�i ¼ ri;A � sA þ ri;B � sB þ ri;C � sC ð7aÞ

Needless to say this relationship is reflexive

si ¼ r′i;1 � u1 þ r′i;2 � u2 þ r′i;3 � u3 ð7bÞ

and can be rewritten in a concise matrix notation as

u�i¼Sri and si¼U
�
r′i ð7cÞ

Of course, the set of linear combination coefficients r and
r’ remains unknown until the true spectra S are recovered.
Nevertheless, the properties of the SVD matrices presented
above are very useful in the analysis of the complex spectro-
scopic data.

Finally, the procedure of data reproduction is also worth
mentioning. It consists of calculating the product of the U, Λ
and V matrices, ‘truncated’ to f columns (Fig. 3)

X¼X
�þE¼U

�
Λ
�
VT� þE ð8Þ

As a result, the original dataset in theXmatrix is ‘idealised’
to the f-variate system. Any imperfections, that do not fit into
the adopted f-component model, are rejected. These ‘misfits’,
collected in the matrix E, known as the error matrix, are often
assumed to represent the undesirable measurement noise [5].

Experimental Model System

To present a practical use of the factor analysis apparatus for
interpretation of spectroscopic data, a model experimental

Fig. 4 Geometric interpretation
of two- and three-component xAB
and xABC mixture spectra. All
spectra (black dots) are represent-
ed by points located in the coor-
dinate system defined by the
‘standard’ spectra of ‘pure’ com-
ponents sA, sB and sC. The coor-
dinates (dashed lines) are identi-
cal to the scaling factors
(concentrations) cA, cB and cC

Fig. 5 Geometric interpretation
of eigenvectors u, obtained by
SVD of the data matrix X. An
appropriate set of such orthogonal
vectors allows to draw a
coordinate system describing the
experimental data points. This is
particularly useful when the
spectra sA, sB and sC of pure’
components, and hence the
‘original’ axes of the system
remain unknown (cf. Figure 4 -
the ‘red’ remains the same, but
have been rotated)
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system was prepared (see SI - App. B). Methanol solutions of
anthracene (A), 9-cyanoanthracene (CNA), 9,10-
dicyanoanthracene (DCNA) and 9,10-diphenylanthracene
(DPhA) were chosen for the study [35–36]. This choice was
motivated by the fact, that anthracene and its derivatives show
an easy to measure fluorescence phenomenon. In addition, the
selected substances can mimic a post-reaction mixture, hypo-
thetically obtained in the synthesis of monocyano derivative
(CNA) from anthracene (A). Dicyano derivative (DCNA) is
then a by-product and DPhA can be treated as an impurity that
should not be present in the reaction system. Thus, a three-
component mixture of A, CNA and DCNAwas prepared with
a proportion of 0.4 cm3, 0.5 cm3 and 0.3 cm3 of base solutions
(see SI - App. B, Fig. 6). In order to maintain the linear
dependence of the signal on concentration (1b), the proper
dilution of all the solutions was kept. The controlled maxi-
mum absorbance was always lower than the limit value of 0.1
(i.e. in Fig. 6) [31].

For each fluorophore, as well as for the mixture, the set of
absorption, excitation (EX) and emission (EM) spectra was
measured (Fig. 7). For the CNA and DCNA samples the
excitation-emission maps (EEM) were also recorded.

A Practical Example of Factor Analysis
Performed on Excitation-Emission Maps

How Many Components Are in a Mixture?

By looking at a single absorption or emission spectrum of the
‘unknown’ mixture (Fig. 6), it is usually very difficult to de-
termine how many components it consists of. However, the
‘pack’ of several spectra grouped in a form of an excitation-
emission map (EEM), seems to be much more informative.
Some ‘extra’ knowledgemay be also revealedwhen a quench-
er is added to the sample (Fig. 8), as intensity of each fluores-
cent species is quenched at a slightly different rate (2).

In the studied case, even a ‘quick look’ at the recorded
EEM reveals that the spectra could be divided into (at least)

two distinct categories (Fig. 8). The first is characterised by a
set of ‘spiky’ bands while the other is predominated by
‘smooth’ and ‘diffused’ bands. This distinction becomes even
more apparent upon the addition of potassium iodide (KI) as a
quencher (Fig. 8 – right panel, SI – Appendix B.4.3).
Therefore, it can be immediately stated that the mixture con-
sists of at least two components. However, in order to deter-
mine the correct number of significant factors responsible for
the total variance of the analysed dataset, a more sophisticated
and reliable method than ‘organoleptic’ assessment should be
employed. Principal Component Analysis (PCA) is one of the
most popular approaches suitable for that purpose [37]. As
PCA was already widely discussed elsewhere (for relevant
examples see [8, 13]), only the main features will be prompted
below.

Since the excitation-emission map can be treated as a data
matrix XMIX, it can be factorized with SVD. A set of singular
values Λ is then obtained (6). Just a reminder, the number of
large non-zero singular values λ (or eigenvalues) should be
equal to the number of significant factors responsible for the
variance of the analysed dataset. In order to distinguish be-
tween significant and zero-like singular values [5, 13], some
statistical criteria as those proposed by Malinowski [38] (S.5,
S.6) can be additionally applied (see Table 1 and SI - App.
A.4).

Complementary, a graphical analysis of the eigenvectors
can also be performed [39]. As significant eigenvectors and
‘pure’ component spectra are mutually related (7a-c, Fig. 5),
the ‘shape’ of a significant eigenvector should somehow re-
semble the shape of the measured UV-Vis spectra (wide and
diffused ‘bands’). On the other hand, all non-significant

Fig. 6 Absorption spectrum of a model three-component mixture (MIX)
with marked contributions of all components (A, CNA, DCNA)

Fig. 7 Fluorescence (continuous line), absorption (dotted line) and
excitation (dashed line) spectra of the studied fluorophores normalised
to a unit maximum
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eigenvectors are expected to have an irregular, chaotic shape,
representing the random incidental noise [39, 5].

By looking at the subsequent eigenvectors u of the matrix
XMIX (Fig. 9), it can be noticed that only first three of them
have a ‘regular’ shape. The fourth eigenvector (and all that
follow) remain ‘rugged’ and do not exhibit any characteristic
features. It can be therefore concluded, that the full excitation-
emission map is made up of combinations of only three inde-
pendent spectra, which is fully consistent with the true com-
position of the analysed three-component sample (A +
CNA +DCNA).

In general, on the basis of the applied criteria the number of
fluorescent components in a mixture can be reliably deter-
mined (for the PCA routine –see SI, App. C.1). Yet, it is still
unclear what these substances are or what their concentration
is. The obtained results tend to prove that the computational
analysis of the spectra may successfully replace ‘traditional’
methods, such as chromatography [2] or electrophoresis [3],
which, at this point, could allow obtaining a similar outcome.

Which Substances May Be or Be Not Present in a
Studied Mixture?

If the analysed sample is suspected to contain some known
substances, the SVD of the excitation-emission data matrix
may be used to confirm or reject this presumption. The
Target Factor Analysis (TFA) approach is specifically dedi-
cated for that purpose [16–17, 9]. The first step of TFA is to
estimate a limited set of substances potentially present in a
sample. Then, the adequate spectra of all these substances
obtained either from personal measurements and/or a proper
spectral database should be gathered. Next, a following rea-
soningmay be carried out. If the mixture actually contains one
of the ‘targeted’ substances, its spectrum should be related to
the abstract spectra of the analysed data matrix by a linear
transformation (7a-c, Fig. 5). It means that a proper combina-
tion of the significant eigenvectors u is expected to fully re-
produce the ‘target’ test spectrum sT (7b). At the same time, if
the substance was not present in the analysed sample, then in

Fig. 8 Excitation-emission map recorded for a mixture of three fluorophores before (left) and after addition of potassium iodide as a quencher (right). In
the emmision range of 300–380 nm, characteristic, protruding ‘sharp’ bands (originating from anthracene) can be observed

Table 1 Subsequent f singular
values λ of the XMIX data matrix
(Fig. 8), consisting of 81 fluores-
cence spectra, with the corre-
sponding parameters of relative
σ2 (S. 5) and summaric explained
variance Σ (S. 6). The indicated
number of significant factors (f =
3) is marked with an exclamation
mark (!)

– f=1 f=2 f=3 (!) f=4 f=5 f=n=81

Excitation-emission map without the quencher

λ value 78,436 9158 3975 167 163 0.998

σ2 rel.var. 98.4% 1.34% 0.253% 4.46·10−4% 4.23·10−4% 4,59·10−8%

Σ sum. Var. 98.40% 99.74% 99.995% 99.995% 99.996% 100.0%

Excitation-emission map with the added quencher

λ value 33,726 6552 1736 187 135 1.08

σ2 rel.var. 96.1% 3.63% 0.254% 2.95·10−4% 1.53·10−4% 9,83·10−8%

Σ sum. Var. 96.10% 99.73% 99.981% 99.984% 99.986% 100.0%
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general, neither combination of abstract spectra u will be able
to fully restore its ‘original’ spectrum.

The mathematical formulation of the above conclusion can
be performed in three consecutive steps. Firstly, for the ‘tar-
get’ spectrum sT, the optimum coefficients r of a linear com-
bination of the significant eigenvectors u are determined (7a).

r¼U
�þ

sT

Then, on the basis of the calculated r values, a ‘new’ spec-
trum ŝT is reconstructed from the eigenvectors (7b).

ŝT¼U
�
r

Finally, the reproduced spectrum ŝT is compared to the
‘initial’ one, sT.

sT¼ŝTjsT≠ŝT
Equivalently, it can be said that the ‘target’ test spectrum sT

is projected on the set of the significant eigenvectors, defining
the dimensions of the predicted data-points space (Fig. 5, see
SI - App. A.3). The projection product ŝT is then compared
with the ‘original’ target spectrum sT.

The comparison between the two vectors can be done
graphically. Values of the subsequent elements of sT are then
put on the x-axis and the corresponding values of ŝT are placed
on the y-axis are plotted against them (Fig. 10). If the ‘target’
test spectrum indeed had a contribution to the measured spec-
tra of the analysed mixture, then both sT and ŝT spectra will be
almost identical. A one-to-one correlation (a straight line y =
x) will then be observed. However, if the original and
projected spectrum remain significantly different (the linear
correlation is no longer preserved), it can be concluded, that
the ‘targeted’ substance was not a component of the sample.

The above algorithm (see TFA routine – SI, App.C.3) was
applied on the model excitation-emission map XMIX and a set

of the individual fluorescence spectra of A, CNA, DCNA and
DPhA (Fig. 7) used as ‘targets’ (see SI – Appendix B.4.2). A
linear correlation in the plots (Fig. 10) is observed for the first
three of them, which suggests that the mixture consists of A,
CNA and DCNA. On the other hand, the ‘original’ spectrum
of DPhA and the spectrum ‘assembled’ from eigenvectors u
remain significantly different. The absence of DPhA in the
sample is thus graphically confirmed.

On the basis of the presented example, the target factor
analysis can be seen as the powerful tool to validate the com-
position of an analysed sample, provided that some auxiliary
adequate ‘targets’ are available. Consequently, TFA should be
of great interest especially in synthetic chemistry, as it allows
to assess a purity of the final products in view of the presence
of possible contaminations.

How Much of a Component Is in a Sample?

Factor analysis allows also to determine the amount of a given
substance in a sample, without a need of its physical
separation. One of the algorithms dedicated for this pur-
pose is the Rank Annihilation Factor Analysis (RAFA)
[21–23]. If the adequately ‘calibrated’ spectra, S, of all
components of a mixture are known, then the simulta-
neous determination of all the component concentra-
tions, C, may be performed by the already mentioned
direct matrix calculation (5a)

CT¼SþXMIX

But what if the researcher is interested in determining the
concentration of only few selected components, i.e. the main
products of the synthesis, or a given type of contamination?
As an alternative to preparing a series of calibration solutions
for all the mixture components (also for those, that are not
under consideration), the following reasoning can be

Fig. 9 Top: first four
eigenvectors u obtained for
datasetXMIX (Fig. 8 – left panel).
The first three of them are
characterized by a regular pattern,
while the fourth one reflects a
random, chaotic noise. At the
bottom: the fluorescence spectra
of the three mixture components
(Fig. 7). A correlation can be seen
between the abstract (top) and real
(bottom) spectra (i.e. in extreme
positions – see SI – App. A.3)
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performed. Since in the UV-Vis measurements the signals are
additive, the spectra of a mixture can be presented as the sum
of the spectra of individual components. The excitation-
emission map recorded for the mixture of A, CNA and
DCNA, XMIX, would be then a sum of three matrices

XMIX¼XAþXCNAþXDCNA

combining the contributions of particular components.
Analogically, by measuring the excitation-emission map

for a calibration sample of an individual component, i.e.
CNA, a reference EEM matrix, YCNA, is obtained. Because
the signal remains directly proportional to the concentration
(1a, b), for any pair of the corresponding entries of the XCNA

and YCNA matrices, the following relation is fulfilled.

xCNA

yCNA
¼ cx

cy
¼ τ0 ð11Þ

The searched, unknown concentration of CNA in the
analysed sample is denoted by cx, while the well determined
concentration of the standard by cy. In the matrix notation, the
above can be written as

XCNA ¼ cx
cy

� YCNA ¼ τ0 � YCNA

The scaling parameter τ0 is here the ratio of the CNA con-
centration in the analysed and reference (calibration) sample.
Consequently, the XMIX matrix can be presented as:

XMIX¼XA þ τ0 � YCNAþXDCNA

Of course, the value of τ0 remains unknown as is cx.
However, it can easily be determined by the following
scheme. Let the reference YCNA matrix, scaled by any τ pa-
rameter, be subtracted from XMIX. A resulting difference ma-
trix DMIX will be then produced.

DMIX¼XMIX−τ � YCNA¼XA þ τ0−τð Þ � YCNAþXDCNA ð12Þ

In general, the number of significant factors determined for
the matrix DMIX will be three (f = 3), as was in the case of the
data matrix XMIX. However, if the value of the arbitrarily
adopted parameter τ is coincidentally equal to τ0, then the
difference matrixD0

MIXwill consist only of two components:

D0
MIX¼XMIX−τ0 � YCNA¼XAþXDCNA

as the contribution of CNAwill be annihilated. As a result, the
number of significant non-zero singular values of DMIX will be
reduced by one (from three to two). The ‘last’ significant singular
value λf (in the studied case – the third one) will be, then, a kind
of an ‘indicator’, that can be used to find the ‘correct’ value of τ.
As τ ‘approaches’ τ0, the value of λf decreases and at ‘critical
point’ (τ = τ0), it will reach a value close to zero. Although a
random search for the optimal τ value is always possible, a def-
initelymore efficient approach is to launch a systematic search.A
sequence of scaling parameters τ is then produced (i.e. τ = 0.00,
0.01, 0.02, ..., 1.00) and the evolution of the f-th singular value of

Fig. 10 Schematic diagram of the TFA procedure carried out for an
‘unknown’ sample and spectra of four ‘target’ substances: A, CNA,
DCNA and DPhA (black lines). The first three of them are well
reproduced by a combination of eigenvectors (red lines), which seems

to confirm their presence in a mixture. For the spectrum of DPhA, this
regularity does not exist, which indicates that it was not a component of
the sample
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DMIX is traced. This is the so called iterative variant of rank
annihilation factor analysis [21, 22]. An alternative, direct version
[23] of this approach will be discussed inChapter 4.5 (GRAM).

In the case of a model mixture of three fluorophores
discussed here, an exemplary quantitative RAFA procedure
(RAFA routine – see SI, App.C.4) will consist in determining
the amount of CNA acting as the main reaction product. The
excitation-emission maps for the calibration sample (0.5 cm3 /
10 cm3, see SI - App. B) have to be then recorded (Fig. 11).
For comparison, the DCNA contribution, corresponding to the
by-product, will also be quantified.

At this point, it is worth to briefly describe the method of
‘idealising’ the measured data by their reproduction based on
SVD (see routineC.2 in SI, App. C). The analysis of the SVD
matrices obtained for the YCNA matrix (Chapter 4.1) yields
one significant singular value λ and one pair of vectors u and
vT (only one variable - CNA). By reproducing the excitation-
emission matrix of CNA as (8)

Y
�

CNA¼u1λ1v
T
1

a noticeable ‘improvement’ in the shape of EEM can be
observed (Fig. 11). Compared to the ‘raw’ data, the random
noise and residues from the Rayleigh scattering band, which
are a characteristic obstacle for the analysis of the excitation-
emission maps, are successfully removed.

With the use of the reference ‘idealised’ YCNA and YDCNA

excitation-emission maps, the contribution to the recorded
mixture signal of both CNA and DCNA (12) can be deter-
mined. The iterative RAFA algorithm (Fig. 12) shall be ap-
plied to find in the set of τ values the optimal scaling factor τ0,
related to the minimum of the third (f = 3) singular value of the
difference matrices

DMIX¼XMIX−τ � YCNA and D′MIX¼XMIX−τ ′ � YDCNA

In the result, two optimal scaling parameters of 0.98 and
0.58 are obtained for CNA and DCNA, respectively.

Therefore, in order to determine the concentrations of these
compounds in the analysed sample one needs to multiply τ0
values by the analyte concentrations cy (11) in the calibration
samples.

cCNAx ¼ τ0 � cCNAy ¼ 0:98 � 0:50 cm3=10cm3
� � ¼ 0:49 cm3=10cm3

� �

cDCNAx ¼ τ0 � cDCNAy ¼ 0:58 � 0:50 cm3=10cm3
� � ¼ 0:29 cm3=10cm3

� �

Compared to the actual concentrations of CNA and DCNA
in the mixture, equal to 0.50 and 0.30 [cm3/10 cm3] (see SI -
App. B 2.3), respectively, the results are, to say the least, very
satisfactory.

As it is demonstrated on the above example, the RAFA
technique allows to independently determine the concentra-
tions of the selected mixture constituents, without need of
their physical separation. This is a great advantage in compar-
ison to ‘traditional’ methods of quantitative analysis, as the
separation of all mixture components is oftentimes difficult,
time-consuming [2–3] and sometimes even impossible.

In Search of the Signal Selectivity

In the case of the sample analysis when the number of prelim-
inary information is strongly limited, a rather intuitive ap-
proach is to reduce the complex system to a set of one-
component subsystems, for which the recorded signal would
be selective. A search for such selective subsystems among
the whole dataset can be conducted using certain techniques
offered by factor analysis [18–20, 40].

As it was already proven, the number of significant singu-
lar values λ obtained for the data matrixXMIX is strictly relat-
ed to the total number of principal components attributed to
the analysed system [5, 38]. The question which now should
be addressed is whether or not there are any slices of the
matrix, that are dominated by only one component. To find
the answer, and ultimately to define the selective spectral re-
gions of the EEM, the ‘whole’ matrix can be ‘sliced’ into
smaller segments, for which a systematic analysis of the

Fig. 11 Excitation-emission map of CNA calibration sample before (A)
and after (B) reproduction. On the difference map (C) a ‘rugged’ struc-
ture, representing instrumental noise, and Rayleigh scattering band

residuals (marked with red lines and arrows) are observed. For compar-
ison, a miniature of EEM of the pure solvent (methanol) is shown (D)
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number of significant factors should be performed. As there
are many hints suggesting how to systematically divide the
‘full’ data matrix into submatrices (i.e. [18, 40]), the Evolving
Factor Analysis (EFA) [18–20] approach will be discussed
here as an example.

Since the excitation-emission map can be viewed as a set of
n fluorescence (or excitation) spectra, the initial submatrixM1

can be defined as its segment, consisting of ‘first’ f consecu-
tive spectra, where f is the number of significant factors deter-
mined for the ‘whole’ original dataset XMIX. For this
submatrix, the SVD procedure is performed, and f singular
values λ are determined. On their basis it is possible to esti-
mate how many significant factors are responsible for the
variance of the currently analysed EEM segment. The second
‘slice’M2 of the matrixXMIX is then constructed by augment-
ing the submatrixM1 by one more consecutive spectrum (f +
1). Again, the SVD procedure is carried out. The cycle of
augmenting the submatrix Mi (Fig. 12) and calculating its
singular values λ is looped until the size of this expanding
submatrix reaches the size of the original data matrix XMIX.
The algorithm for systematic construction of submatrices may
also be initiated from the ‘opposite side’ of the analysed data
matrix. The matrixM1 would then consist of the ‘last’ f spec-
tra (n, n - 1,…, n - f + 1) and it will be expanded to include the
spectra localized on its ‘left’ side. To distinguish between this
two equivalent ‘directions’ of the sumbatrix augmentation, the
names ‘forward’ and ‘backward’ are used (Fig. 12) [19].
Moreover, the data matrix can be ‘sliced’ vertically as well
as horizontally (Fig. 13). In the case of EEM it means that one
of these modes would allow for the analysis of the spectral
selectivity in the excitation while the other in the emission
spectra.

Finally, by comparing significance of the singular values λ,
obtained in each iteration, for instance graphically (see
Fig. 14), the analysis of how the number of significant factors
evolves with the size of the expanding submatrix (and thus
with the wavelength range) can be done.

The example of the EFA procedure (see EFA routine - SI,
App. C.5) will be illustrated here on the data matrix XMIX

(Fig. 8). The ‘scanning’ procedure was performed by aug-
menting an initial set of three (f = 3) emission (columns) and
excitation (rows) spectra in both ‘forward’ and ‘backward’
directions (from ‘red-to-violet’ and from ‘violet-to red’, Fig.
13). The outcomes presenting the evolution of λ values in both
excitation and emission wavelengths are displayed in Fig. 14.
The interpretation of the presented plots is as follows. ‘Going
forward’ from longer to shorter excitation wavelengths (‘red-
to-violet’) it can be observed that up to 425 nm, only one λ is
noticeably different from zero. Thus, the signal is selective in
this range (DCNA). Then, the second singular value becomes
significant (two components up to 385 nm), and finally, at the
385 nm wavelength – also the third. In the ‘backward’ direc-
tion, practically from the very beginning (300–305 nm) all
three λ evolve simultaneously, which means that there is no
selective range at the ‘violet edge’ of the mixture excitation
spectrum.

Interpretation of the EFA plot for the emission spectra is
just analoguous. However, in contrast to the excitation spec-
tra, the backward EFA indicates that at the ‘very end’, the
signal comes from only one component, which does not fully
correspond to the reality (Fig. 7). A two-component signal,
related to CNA and DCNA should be observed in the range of
505–550 nm (Fig. 14 – top panel). Unfortunately, the spectra
of these two substances in this range remain practically iden-
tical and therefore, mathematically, the dataset is associated
with only one component. This is a perfect example of one of
the main problems encountered in factor analysis. Combining
mathematical and chemical methods do not always has to be
consistent.

Nevertheless, by combining the obtained results (colored
surfaces in Fig. 14), the discussed EFA algorithm allows to
determine in which regions of the excitation-emission map the
recorded signal remains selective and how complex the other
segments of EEM are (Fig. 15). As a result, the single-

Fig. 12 Graphical visualisation of
the iterative RAFA algorithm.
The singular values λ obtained for
the difference matrices DMIX (12)
are plotted against a set of the
corresponding scaling parameters
τ used for their construction. The
optimal value τ0 corresponds to a
minimum value of the ‘last’
significant singular value (third).
Just for comparison, the evolution
of the second one is also shown.
The applied logarithmic scale
allows for easier observation of
the extremes
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component spectral ranges may be picked out, which substan-
tially facilitates the analysis of the studied system. In such a
case the spectra of ‘pure’ components can directly be gathered
into one block.

Sample as a ‘Black Box’

When faced with ‘fully’ unknown samples, any technique
allowing at least to estimate the individual excitation or emis-
sion spectra of its components is extremely useful. One such

means is the Generalised Rank Anihilation Method (GRAM)
[24, 25]. Because GRAM is an ‘extended’ version of the
RAFA approach (Chapter 4.3) [23], the algorithm is in an
analogousmanner focused on finding such a transformation of
the pair of the data matricesXMIX andYMIX, that would result
in annihilation of the signal coming from one of the fluores-
cent species (12).

Since GRAM, unlike ‘classical’ RAFA, enables determi-
nation of more than one component at the same time, the
successful usage of this method calls for meeting another

Fig. 13 Schematic diagram of
EFA. ‘Scanning’, that is stepwise
augmentation of the analysed
submatrix M may take place in
two directions – forward or back-
ward (from the shortest to longest
wavelength or vice versa), and in
two modes varying either the ex-
citation or emission wavelength

Fig. 14 Curves normalized by their maximum values, showing the
evolution of significant singular values of XMIX as a function of the
adopted range of the excitation (left) and emission wavelengths (right).
Single component area is marked in grey (MIX 1), two component in red

(MIX 1 + 2) and three component in blue (MIX 1 + 2 + 3). For compar-
ison, at the top of the plots the spectra of individual mixture components
are presented

1610 J Fluoresc (2021) 31:1599–1616



condition. Relative contributions of all components to the re-
corded signal have to be mutually different between the two
compared samples. This condition is obeyed when the ratios
of all the concentrations are different for XMIX and YMIX.
However the required variability may be also fulfilled by ad-
dition of a small portion of a quencher to the examined mix-
ture (see SI – Appendix B.4.3). According to the Stern-
Volmer eq. (2), the intensity of the emitted light will decrease
for each fluorophor in a slightly different way (Fig. 8). Thus,
the individual contributions of all components to the total
spectrum would differ before and after the addition of the
quencher.

For the considered example of a three-component model
mixture, in terms of the individual signal annihilation, a set of
three optimal scaling factors τ0 should be obtained (8).

D0
MIX¼XMIX−τ0 � YCNA¼XAþXDCNA

These can be estimated by the iterative algorithm (Figs. 16,
12), already discussed in Chapter 4.3 (RAFA), applied to a
pair of the excitation-emission maps recorded before (YMIX)
and after (XMIX) the addition of KI (Fig. 8).

Although it can be clearly seen that the contributions of
all three components (A, CNA, DCNA) to the variance of
the resulting difference spectral matrix are successively
‘eliminated’, it is not possible to assign which τ0 value
refers to which analyte. The obtained information seems
to be rather ‘useless’ for the purpose of the quantitative
analysis of the sample.

However, with the use of a ‘smart’ mathematical trans-
formation of matrices XMIX and YMIX it is possible to
obtain the optimal scaling parameters τ0 and relate them
to the excitation SEX and emission SEM spectra of all the
components. This approach, known as non-iterative ver-
sion of GRAM [23–25], consists of three main steps (SI -
App. A.5). First, one of the data matrices (preferably the
‘reference’ one) is decomposed with the SVD algorithm
(here it is YMIX).

YMIX¼UΛVT

Next, from the second data matrix (here XMIX) and the
truncated (f = 3) SVD matrices(Fig. 3), a helping square ma-
trix H is formed [24]

H¼U
�T

XMIX V
�
Λ
�−1

for which the eigenvector-eigenvalue problem is finally solved.

Hr ¼ τ0r

Fig. 15 Excitation-emission map
of the model mixture from Fig. 8
after determining the amount of
significant factors by EFA
method (Fig. 14). Spectra (black
lines) coming from the marked in
grey selective regions (MIX 1) are
plotted on the side walls. Two-
component regions are indicated
in red (MIX 1 + 2) and three-
component in blue (MIX 1 + 2 +
3)

Fig. 16 Graphical visualization of the iterative RAFA algorithm for a
three-component system (A, CNA, and DCNA). The plot shows three
minima of the third singular value. However, a direct correspondence
with particular components is not established

1611J Fluoresc (2021) 31:1599–1616



The sequentially calculated eigenvalues are identical to the
optimal scaling factors τ0 (11) (Fig. 16), while the setR of the
associated eigenvectors rmay be used to obtain the excitation
and emission spectra of ‘pure’ components (7c, see SI - App.
A.5, [24]).

SEM¼U
�
R

STEX¼R−1 Λ
�
V
�T

The assignment of all τ0 values to all mixture components
is then possible.

The fluorescence emission and excitation spectra, ‘extract-
ed’ from the model excitation-emission maps by the direct
GRAM approach (see GRAM routine - SI, App. C.6), are
presented in Fig. 17. As can be noticed, the calculated spectra
exhibit a very high similarity to the spectra recorded for indi-
vidual components.

This indicates that GRAM may be successfully used for
both qualitative and quantitative analysis of complex mix-
tures. It is worth to note that for the former purpose no special
conditions have to be fulfilled. In the latter case, however, a
proper calibration sample has to be prepared (just like in the
‘classical’ RAFA), because the presented quencher addition
technique is not suitable for determination of the absolute
concentrations.

Eventually, it can be mentioned, that if needed, the spectra
estimated by GRAM may be refined with some dedicated
algorithms, allowing for example to remove (residual) nega-
tivities (i.e. ALS [41] – basics of the approach - see SI - App.
A.6, routine – App. C.7).

Factor Analysis in Physico-Chemical Studies

Since the methods of factor analysis are widely used in phys-
icochemical studies of multi-component systems (i.e. in

kinetics and thermodynamics) [42–45], at the very end of this
article, an example of such application will be briefly
discussed.

As far as the model system of three fluorophores (A, CNA,
and DCNA) is concerned, the physicochemical characteristics
may involve, for instance, an estimation of the Stern-Volmer
quenching constants KSV for each substance (2). For that pur-
pose, the decay of the individual emission intensity, caused by
the addition of a quencher, should be evaluated. Determining
the ratio of the fluorescence intensities measured before (I0em)
and after (IQem) the addition of a certain amount Q of the
quencher (2), brings into the scene the already discussed
GRAMor RAFA approach (Chapters 4.3 and 4.5). To reduce
the time consumption of the research, the spectral measure-
ments can be made at only a few (here at least three, f = 3)
excitation (or emission) wavelengths producing the spectra
with a contribution from all three components (MIX 3 range
in Figs. 14 and 15). The excitation lines of 345, 355 and
365 nm may serve as an example (see SI – Appendix B.4.3).
The fluorescence spectra are then measured for the
unquenched sample and each time when a successive portion
of the quencher Q is added to the mixture. As the result, the
‘reference’ matrix Y0 (Q = 0) as well as a set of consecutive
XQ1, XQ2, XQ3 etc. data matrices are obtained. Using either
iterative or direct version of GRAM, a set of optimal scaling
parameters τ0 is determined for all the pairs of matricesY0 and
XQ (XQ =XQ1, XQ2, …).

DQ¼XQ−τ � Y0

Due to the fact that Y0 is treated as the ‘reference’ matrix,
the obtained parameters τ0 describe the ratio of the quenched
(IQem) to unquenched (I0em) fluorescence intensity for all the
components at a certain level Q of the quencher concentration.
Thus, the reciprocal values of τ0 are identical to the intensity
ratios as defined by the Stern-Volmer eq. (2).

Fig. 17 The fluorescence excitation (left) and emission spectra (right)
obtained by GRAM technique (continuous lines) applied on the
excitation-emission maps of the model mixture (Fig. 8). For the sake of

comparison, the spectra measured individually for A, CNA and DCNA
(dotted lines, Fig. 7) are also presented
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I0em
IQem

¼ τ0
−1 ¼ 1þ KSV � Q

Consequently, in order to determine the values of the Stern-
Volmer quenching constants KSV, the reciprocals of τ0 are
plotted against the quencher concentration Q (Fig. 18), and
then a linear regression (2) is performed with a unit intercept.
The slope of a straight line of best fit drawn through the data
points determines the value of KSV (Table 2). The full routine
can be found in SI, as Appendix C.8.

An alternative, though less ‘direct’ approach, is to obtain
three sets of the fluorescence quenching spectra of single
fluorophores. With the use of EFA (Figs. 14 and 15) it can
be noticed that both anthracene and 9,10-dicyanoanthracene
exhibit selective emission in certain wavelength regions of the
EEM. Therefore, by performing measurements under such
spectral conditions, one can directly obtain a ‘pure’ signal of
the quenched fluorescence for both A and DCNA (Fig. 18,
Table 2). In this way, however, a selective signal for
cyanoanthracene cannot be extracted. Thus, a more sophisti-
cated method should be applied.

Table 2 Stern-Volmer quenching
constants KSV (2) determined
with use of GRAM, selective
signal analysis, and ‘sequential
RAFA ‘cascase’ techniques (Fig.
19). For comparison, the Stern-
Volmer constants determined in-
dependently for each of the ‘pure’
components are also presented

– GRAM Selective signal RAFA ‘cascade’ Pure substances

KSV A [M−1] 24.12±0.18 23.77±0.19 27.74±0.23 19.06±0.04

KSV CNA [M−1] 164.3±1.7 - #2 161.3±1.3 141.2±1.2

KSV DCNA [M−1] 227.4±5.4 210.1±2.4 210.1±2.4 175.0±1.0

R2
min

#1 0.99766 0.99945 0.99945 0.99980

#1 - R2
min - the smallest value of the coefficient of determination R2 obtained for a given set of A, CNA and

DCNA Stern-Volmer plots;

#2 – there is no selective region for CNA;

Fig. 18 Stern-Volmer plots
describing the fluorescence
quenching process occurring in
the analyzed mixture (Table 2).
The data points were obtained by
GRAM, RAFA ‘cascade’ and se-
lective signal analysis. For com-
parison, the results of measure-
ments conducted individually for
‘pure’ substances are also shown
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The EFA performed on the excitation-emission map reveals
that the signal coming from CNA can be observed in some two-
component regions (MIX 2, Fig. 15). As the spectra of fluores-
cence quenching of both A andDCNA are known, the RAFA (or
GRAM) technique can now be used to eliminate the signal con-
tribution from the counterpart fluorophore by its annihilation.
Analogically, the same procedure can be applied to decompose
spectra, where the signal comes from three components. An ex-
emplary algorithm, allowing to obtain the series of the quenched
fluorescence spectra of A, CNA and DCNA is presented below.

1. The spectra are recorded in the region selective for
DCNA, using excitation line 425 nm.

2. Simultaneously, the two-component fluorescence spectra
(CNA+DCNA) are measured with the excitation wave-
length of 400 nm and the three-component spectra (A +
CNA +DCNA) as excited with the 355 nm line.

3. RAFA algorithm is applied on the first two datasets (min-
imum of the second singular value is searched). The
resulting two-component spectra are then ‘purified’ from
the signal contribution of DCNA. Consequently, the CNA
spectra of quenched fluorescence are obtained (Fig. 19 –
step 1).

4. The annihilation of the DCNA signal contribution is then
performed in an analogous manner for the three-

component dataset (the evolution of the third singular
value is traced). Then RAFA is repeated for the resulting
two-component mixture (A + CNA, second singular val-
ue). As the CNA contribution disappears, the obtained
spectra represent the ‘pure’ signal of A (Fig. 19 – step 2).

4′. Alternatively, one can simultaneously determine the spec-
tral contribution of CNA and DCNA to the third spectral dataset
(for both constituents the third singular value is traced indepen-
dently). Then, both matrices, containing the ‘pure’ spectra of
these compounds are subtracted from the data matrix containing
the spectra of the three-component system. The final result
should be identical as that in the previous step-wise approach.

When the above algorithm is completed (see routine App.C.9
in SI), the three series of quenched fluorescence spectra of indi-
vidual components are recovered from the multi-component
dataset (Fig. 19). The Stern-Volmer plots are then obtained in
the ‘classical’way, that is by direct calculation of the proper ratios
of the unquenched to quenched emission intensities (Fig. 18). The
resulting Stern-Volmer constants KSV can be found in Table 2.

Comparing the values of the Stern-Volmer constants ob-
tained by GRAM, ‘cascade’ RAFA and selective region anal-
ysis (Table 2), it can be concluded that all these approaches
remain consistent, as they provide very similar results.

Fig. 19 Example of ‘cascade’RAFA procedure allowing to extract ‘pure’
spectra of all components by comparing three different datasets. In step
one (upper panel), DCNA signal (recorded selectively) is annihilated
(minimum of λ2) from a two-component spectral dataset. Thus, individual
spectra of CNA are obtained. In step two, DCNA and CNA contributions
are subtracted from ternary spectra. As a result, ‘pure’ spectra of A are

recovered. The subtraction can be performed either sequentially or simul-
taneously. In the first case, a three-component spectral dataset is deprived
of DCNA contribution - λ3 - and the resulting two-component spectral
data matrix - of remaining CNA variance - λ2’. In the second case, the
contributions of both DCNA and CNA to a ternary mixture spectral
dataset are estimated directly - 2 x λ3)
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What is worth to be noticed is the fact that the Stern-
Volmer quenching constants estimated for all three compo-
nents in a mixture are slightly different from those determined
independently for single-component solutions (see SI –
Appendix B.4.2). The higher values obtained in the case of
the former ones may likely suggest, that some subtle, addi-
tional interactions between themolecules in the mixture occur.
This effect usually evades observation when the system is
separated into components in order to perform the analysis
in a ‘traditional’ way.

The above example clearly shows that some phenomena
unveiled by the methods of factor analysis remain ‘unavail-
able’ for classical analytical techniques.

A Brief Summary

Themain purpose of the examples discussed in this article was
to highlight the opportunities and benefits of applying the
chemometric methods in the everyday laboratory routine.

On a few practical examples it was shown that factor anal-
ysis techniques can be successfully used in order to a) estimate
the number of components in the examined sample (PCA), b)
search for the selective signal in the spectra of a mixture
(EFA), c) validate whether the particular substance is present
(or not) in the sample (TFA) and d) perform qualitative and
quantitative analysis of the sample (RAFA & GRAM). It is
worth to mention that all the results were obtained only by the
computer analysis of the datasets, measured for the mixtures.
No physical separation of the components was required at any
step of the undertaken analysis, which gives an alternative to
‘traditional’ approaches such as chromatography and
electrophoresis.

Although the potential offered by the recalled techniques is
believed to be already noticed, it should be admitted that it is
just a ‘tip of the iceberg’. Nowadays, the number of all avail-
able algorithms and their variants is practically countless.
Moreover, the techniques may be combined together in both
highly specific as well as general way, which only multiplies
the total number of tools suitable for the analysis of spectral
datasets offered by chemometrics.

Unfortunately, this ‘mathematized’ treatment of quantita-
tive aspects of the spectroscopic data seems to be not so pop-
ular and sometimes even unknown within numerous commu-
nities of chemists and spectroscopists. Therefore, by publish-
ing this article, the Authors hope to bring the factor analysis
algorithms closer to creative individual researchers working in
various domains of chemistry.
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