
INTRODUCTION

The molecular clock present in nearly every cell is composed 
of transcriptional/translational feedback loop, namely TTFL 
[1]. Although specific components of TTFL are different, the 
governing rules of TTFL are well conserved from fungi to 
vertebrate, including humans [2]. Current understanding of 
the underlying biochemical mechanisms in animal circadian 

clockworks is largely based on earlier studies using the Drosophila 
as a model system [3, 4]. In 1971, the pioneering behavioral 
geneticists Seymour Benzer and Ron Konopka searched for 
mutant flies having defects in daily rhythmic eclosion, a process 
of flies coming out of the pupae that happens mostly early in 
the morning [5]. During this screening, they identified 3 lines 
of mutant flies with affected eclosion rhythm in the population. 
One mutant was arrhythmic; another had a short (~19 hr) period; 
the third had a long period (~28 hr). These mutants were named 
per0, perS, and perL, respectively. A decade later, all three mutations 
turned out to be present on a single gene. This gene was named 
period after the mutants and became the first “clock gene.” Many 
more clock genes were identified through genetic analysis in the 
following years in the Drosophila. Also, homology search revealed 
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the mammalian clock genes, except the Clock. Clock (Circadian 
Locomotor Output Cycles Kaput) was identified in 1994 by 
Takahashi and his colleagues through forward ENU mutagenesis 
screen and is homologous to the Drosophila Clk [6, 7].

In the Drosophila , two basic-helix-loop helix and PAS 
containing transcription factors, dCLOCK (dCLK) and CYCLE 
(CYC) dimerize and induce the transcription of period (per) 
and timeless (tim) by binding to the E box (CACGAG) sequence 
element of genome at midday [8]. The rise in the newly made 
per and tim mRNA leads to the accumulation of PER and TIM 
proteins in the cytoplasm as the herterodimer form during the 
early evening. After a ~4 hr delay in the cytoplasm, PER and TIM 
translocate to the nucleus, presumably in a separate manner, to 
repress the transcriptional activity of dCLK/CYC resulting in a 
down-regulation of their own mRNA levels constituting namely 
the “core-loop.” In the so-called “stabilizing-loop,” the expression of 
dClk is controlled and interlocks with the “core-loop.” dCLK-CYC 
stimulates the expression of two bZip containing transcription 
factors, vrille (vri) and PAR domain protein 1 ε (PDP1ε). While 
VRI represses the expression of dClk at early night, PDP1ε media-
ted stimulation of dClk is followed 3~4 hrs later generating a 
daily rhythmic oscillation of dClk mRNA levels. Due to this 
relationship among the proteins in the feedback loops, dClk 
mRNA levels cycle in an anti-phasic fashion to mRNA levels 
of per, tim, vri, and pdp1ε in a day. On the other hand, overall 
daily levels of cyc mRNA manifests no daily oscillation. Another 
dCLK/CYC downstream clock gene, bHLH orange domain 
putative transcription factor clock work orange (cwo) works as 
an oscillator amplifier by repressing and/or activating dCLK/CYC 
mediated transcription [9-12]. 

In the mammalian system, a similar circuitry operates. CLK 
and CYC homolog BMAL1, posit in the center of interlocked 
TTFL produce Drosophila per gene homolog mPer1, mPer2, 
and mPer3. CLK/BMAL1 dimer also turns on the expression of 
mCryptochrome1 (mCry1) and mCryptochrome2 (mCry2) 
which dimerize with mPER proteins to inhibit the transcriptional 
activity of CLK/BMAL [13]. One twist of the mammalian TTFL is 
that while CRY proteins play a role in transmitting light signals to 
the molecular clock in Drosophila, the mammalian CRY proteins 
work as a repressor for mCLK/BMAL1. Although the mammalian 
TIM protein is also produced, its role in the clock system is not 
yet evident. In the stabilizing loop, retinoid–related orphan 
receptors (RORa, b, c) [14] activate and REV-ERBα inhibits the 
transcription of Bmal1 rather than Clk as in the Drosophila. 
Clock controlled rhythms in many physiological processes and 
behavior are generated by a cyclical gene expression governed by 
this interlocked feedback loop either directly or indirectly [15, 16] 

(For review, see [17]).
At a systemic level, cell-autonomous oscillator is orchestrated 

in a hierarchical network of master and peripheral oscillators. 
In the Drosophila, about 150 neurons in the brain work as a 
master clock driving its circadian behavior [18]. In mammals, 
suprachiasmatic nucleus (SCN) is the master clock synchronizing 
all other peripheral oscillators in various tissues (e.g. liver, heart, 
lung, etc.) [19, 20]. Although peripheral oscillators generate self-
sustained rhythms, without the SCN, as in SCN-lesioned animals, 
rhythms of peripheral tissues become out of phase to an external 
LD cycle and to oscillations in other tissues [21]. Thus, the main 
role of a master clock is considered to be synchronizing peripheral 
oscillators by sending time cues via hormonal and neural pathway.

Although transcriptional control via interlocked feedback loop 
posits as a framework for the molecular clock, diverse regulations 
employed after the clock genes are transcribed also play crucial 
roles to finely adjust the clock speed to a 24 hr period. Post-
translational modification, most notably phosphorylation of the 
clock proteins, has been extensively studied so far [22-26]. The 
first example was the Drosophila PER, which manifested timely 
progressive phosphorylation and hyper-phosphorylated isoforms 
degraded through a ubiquitin-proteasome system at the early day 
leading to the de-repression of dCLK/CYC transactivation [27-
30]. In turn, another round of the cycle could start the next day. 
Casein kinase 1ε homolog DOUBLETIME (DBT), Glycogen 
synthase kinase 3β (GSK 3β), casein kinase 2 (CK2), and NEMO 
(NMO) are identified as kinases for PER to regulate its levels, 
activity as a repressor, and subcellular localization [31-39]. TIM 
is also phosphorylated by Glycogen synthase kinase 3β and CK2 
regulating its levels and nuclear entry time [40, 41]. More recently, 
numerous studies revealed the diverse regulation of molecular 
clock at the post-transcriptional level. Please refer to the excellent 
recent review for more information [42]. 

One important issue in circadian rhythm is to generate 
oscillation in such a long 24 hr period. Based on a simple oscillator 
model [43], synthetic feedback loop only generates rhythmic 
oscillation with a 2 hr period; thus, imposing a time delay 
between transcriptional activation and repression is inevitable 
to generate such a long rhythm period [44-51]. The observation 
that nuclear accumulation of PER is lagged in both Drosophila 
and mammals by approximately 4~6 hours with respect to the 
peak mRNA levels support this notion [47, 52]. There could be 
various means to impose a time delay between the activation 
of circadian transcription factors and repression by circadian 
repressor proteins. Delaying the nuclear entry time of circadian 
repressor proteins could be employed as a time delay in the clock 
system. This review will focus on how clock speed is regulated by 
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controlling negative circadian regulator’s nuclear entry time.

SUBCELLULAR LOCALIZATION AND NUCLEAR ENTRY REGU­
LATION BY SIGNAL SEQUENCE MOTIF

Traffic between the nucleus and the cytoplasm is carried 
out through specialized apertures, nuclear pore complexes 
(NPCs) [53, 54]. Various carrier proteins are involved in the 
translocation of cargo proteins through NPCs. Cargo proteins 
are targeted for nuclear import by a short nuclear localization 
signal (NLS) sequence motif. A well-known NLS is composed of 
one (monopartite) or two (bipartite) basic amino acid clusters. 
The classic nuclear import pathway uses importin β1 (Impβ1) 
as a carrier, which recognizes NLS as cargo and binds through 
the adaptor molecule importin α (Impα). It is the trimeric cargo 
containing protein complex Impα/Impβ1/NLS that can enter the 
nucleus [55-57]. 

The Drosophila PER protein has a functional bipartite NLS 
sequence at the C-terminus. Albeit with a functional NLS, the 
full-length PER protein expressed in the Drosophila S2 cell 
resides in the cytoplasm, most likely due to the cytoplasmic 
localization domain (CLD) at the C-terminal end of its PAS 
domain [58, 59]. When TIM protein was co-expressed, PER/TIM 
proteins were both detected in the nucleus indicating that the 
heterodimer formation is crucial for nuclear entry [59]. PER and 
TIM consistently accumulated in the cytoplasm in tim0 and per0 
mutant flies, respectively [60-62]. Nonetheless, real-time imaging 
analysis revealed that PER/TIM complex formed in the cytoplasm 
of S2 cells dissociates before nuclear translocation and that dPER 
was detected in the nucleus before TIM in flies’ pacemaker lateral 
neurons, suggesting that presumably PER and TIM independently 
moved to the nucleus in a short period of time [46, 63, 64]. 
Subcellular localization of TIM might be regulated in a slightly 
different manner as to the case of PER [65]. TIM could shuttle 
independently between the nucleus and cytoplasm both in flies 
and S2 cells. The role of PER was suggested to be necessary for 
nuclear retention of TIM in this case. Export from the nucleus 
to the cytoplasm is mediated through the recognition of nuclear 
export signal (NES) sequence. The typical NES is characterized as 
a leucine-rich sequence that is recognized by CRM1/exportin1, 
which belongs to Impβ family [57, 66]. Through a sequence scan, 
several putative NES of TIM were provided, although which one 
might be functional in vivo is not yet proven [65].

Similar to the Drosophila, the mammalian negative regulator’s 
subcellular localization is affected by the interaction with its 
partner proteins. Exogenously expressed mPER1 or 2 in COS7 
and NIH3T3 cells can accumulate in the nucleus in the presence 

of co-expressed mCRY proteins [67] or mPER3 [68]. Although 
the mCRY protein is retained in the nucleus when expressed in 
tissue cultures, the observation that the co-expression of mPER2 
lacking NLS motif induced the retention of CRY in the cytoplasm 
supports the idea that mPER plays an important role in the nuclear 
localization of CRY as well. Consistently, putative NLS sequence 
motifs were identified from mPER1, 2, 3 and CRY1, 2 proteins 
[68-73]. Nonetheless, the predominant nuclear localization of 
mPER2 in the liver of mCry1/mCry2 deficient mouse might 
suggest that the role of CRY is not necessarily for the nuclear entry 
per se, but rather for stabilizing PER in the nucleus [73]. Taken 
together, the nuclear accumulation of circadian repressor proteins 
such as dPER and TIM in Drosophila and mPERs and mCRYs 
in mammals are inter-dependent on partner proteins. How can 
interaction between binding partners affect nuclear localization 
of clock repressor proteins? The interaction between the partner 
proteins (e.g. PER/TIM, mPER/CRY, mPER1/mPER3, mPER2/
mPER3) might adopt the conformation that allow their NLS 
unmasked, leading to the recognition by their carrier proteins. 

TIMELY CONTROL OF NUCLEAR ENTRY BY PHOSPHORYLA­
TION OF CLOCK PROTEINS

The Drosophila PER protein has 250 putative phosphorylation 
sites which suggest that critical functions of dPER might be 
controlled by the dynamic regulation of phosphorylation. 
Indeed, progressive phosphorylation of dPER occurs in a timely 
manner, and the phosphorylation status of dPER is different 
depending on the time of day [27]. Numerous reports indicated 
that phosphorylation of dPER is involved in a tight regulation of 
nuclear entry time. Glycogen synthase kinase 3β homolog, shaggy 
(sgg), promotes nuclear entry of dPER via direct phosphorylation 
of dPER [32] and/or indirect effects by phosphorylating TIM [41]. 
CK2 also promotes the nuclear entry of dPER in the Drosophilia 
pacemaker neurons [34, 36, 74]. CK2 is a tetrameric holo-enzyme 
composed of a catalytic subunit α2 and a regulatory subunit 
β2. Both α2 subunit mutant Timekeeper (Tik) and β subunit 
mutant andante flies manifest delayed nuclear entry time of 
dPER. When GSK 3β or CK2 activity was down-regulated either 
by mutation or decreased protein expression, circadian periods 
lengthened with concomitant delayed nuclear entry of dPER in 
pacemaker cells [34, 36, 41, 74]. On the other hand, DBT hindered 
the nuclear accumulation of dPER in the pacemaker neurons of 
Drosophilia. This notion is supported by the observation that in 
dbtP and dbtAR mutant flies, of which kinase activity is severely 
compromised, dPER is predominantly present in the nucleus even 
without TIM [33,75]. However, dbtS flies which have reduced 
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DBT kinase activity, exhibited delayed nuclear entry of dPER [76] 
which complicate the role of DBT on dPER nuclear entry. Given 
that another DBT allele which supposedly has decreased kinase 
activity-dbtL- manifested lengthened circadian periods [77], we 
prefer the idea that dbtS and dbtL flies might exert the effects in 
a more qualitative and not in a quantitative manner; suggesting 
DBTS and DBTL mutant proteins induced the alteration of 
phosphorylation sites on dPER, ultimately leading to the different 
outcomes in the length of the circadian periods. Taken together, 
while de-novo synthesized, hypo-phosphorylated dPER by DBT 
at specific sites, is retained in the cytoplasm, and the interaction 
with TIM would somehow relieve the cytoplasmic retention 
via antagonizing DBT mediated phosphorylation on dPER in 
Drosophila [75, 78]. This antagonizing effect could be afore-
mentioned GSK3, CK2 mediated phosphorylation. Nonetheless, 
the duration of cytoplasmic retention of dPER might also be 
controlled by other posttranslational modifications (see below).

In mammals, the regulation of nuclear entry via phosphorylation 
of mPER is inconsistent depending on types of cells and kinds of 
proteins studied. Casein kinase 1 delta (CKIδ) and CKIε are two 
paralogs of mammalian CKI, both target mPERs as substrates 
regulating their stability and subcellular localization [79, 80]. 
Although some degree of functional redundancy of CKIε and 
CKIδ was observed, depending on the tissues, one might act 
more dominant than the other, as shown in the study where 
the depletion of CKIδ resulted in a long circadian period in the 
absence of behavioral effect with the depletion of CKIε [81]. In 
HEK293T cells, ectopically expressed mPER1 enters the nucleus 
while mPER2 resides in the cytoplasm [72]. This observation 
provided the idea that there must be a mechanism to prevent the 
premature nuclear entry of mPER1. This turned out to be a CKIε 
mediated phosphorylation of mPER1 via masking of NLS motif 
on mPER1 [72]. Interestingly, the co-expression of mCRY1 in 
the presence of CKIε and mPER1 brings all three components in 
the vicinity, and this trimeric complex can enter the nucleus [82]. 
Thus, mCRY1 is able to negate the CKIε mediated cytoplasmic 
retention of mPER1. This phenomenon is very closely related to 
the situation where DBT dependent phosphorylation retards the 
nuclear entry of dPER in Drosophila lateral neurons. In contrast, 
in other cell types, e.g. COS7 cells, CKIε mediated phosphorylation 
of Ser-661 and Ser-663 is a prerequisite for the nuclear entry of 
mPER1 [83]. Similarly CKIε and CKIδ induced phosphorylation 
of mPER3 accelerated nuclear translocation in COS7 cells while 
mPER1 and mPER2 were not affected by the co-expression of 
these kinases [79]. The inconsistent results regarding the effects of 
CKI mediated phosphorylation of mPERs in nuclear translocation 
might be attributed to the in vitro cell culture system of studies.

O­GLCNACYLATION MODULATES CLOCK PROTEIN LOCALI­
ZATION

Recent findings have indicated that the extent of O-GlcNAc 
modification on dPER was correlated with nuclear translocation 
of dPER in Drosophila [84]. Aside from phosphorylation, the 
hydroxyl groups of Ser/Thr residues on proteins can also be 
modified with O-GlcNAc (O-GlcNAcylation) [85, 86]. Two 
enzymes mediate reversible addition of the β-N-acetylglucosamine 
moiety to the hydroxyl side chains of Ser/Thr residues of protein 
substrates; namely, glycosyltransferase (O-GlcNAc transferase; 
OGT) and β-N-acetylglucosaminidase (O-GlcNAcase; OGA) 
[87, 88]. Numerous findings reveal a complex interplay between 
phosphorylation and O-GlcNAcylation [89,90]. In the case of 
MYC, threonine 58 in the transactivation domain (TAD) is either 
O-GlcNAcylated or phosphorylated by GSK3 in a competitive 
manner regulating transactivation potential of MYC [91,92]. 
Stability of p53 is regulated by other modes of interplay between 
O-GlcNAcylation and phosphorylation; competitive occupancy at 
different sites. Treatment of MCF-7 cells with streptozotocin-OGA 
inhibitor- increased O-GlcNAcylation at serine 149 on p53. This 
O-GlcNAcylation represses the phosphorylation on threonine 155 
leading to the inhibition of the interaction with the UPS system, 
ultimately resulting in the accumulation of p53 proteins in the cells 
[93]. O-GlcNAcylation of proteins might lead to an increase in 
phosphorylation at other sites as seen in the example of IRS-1 [94]. 
In the mouse liver, O-GlcNAcylation of IRS-1 directly correlates 
with an increase in serine 307, 632/635 phosphorylation, which 
are sites known to attenuate insulin signaling [94]. 

O-GlcNAc modification of dPER was evident in Drosophila 
S2 cells and in flies. More interestingly, O-GlcNAcylation of 
the dPER protein is temporally regulated. In flies, peak level in 
O-GlcNAcylation of dPER was observed during the first half of 
the night before a massive phosphorylation of dPER occured [84]. 
Remarkably, genetic manipulation of O-GlcNAc levels by either 
down- or up-regulating OGT in clock cells speeds up or slows 
down the pace of circadian behavioral rhythms, respectively. In 
the key pacemaker neurons in flies, the timing of dPER nuclear 
translocation is advanced in ogt knockdown flies and delayed 
in ogt overexpressing flies. Because O-GlcNAcylation of dPER 
mainly occured when it was retained in the cytoplasm, authors 
suggested the compelling hypothesis that O-GlcNAcylation gates 
the timing of when dPER translocates from the cytoplasm to the 
nucleus possibly via the interplay between phosphorylation and 
O-GlcNAcylation.

mPER2 is also modified with O-GlcNAc. Consistent with the 
observation in flies, conditional knockout of OGT shortened the 
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circadian locomotor period [95]. Interestingly, O-GlcNAcylation 
can occur on S662 always together with O-GlcNAcylation on S671 
[95]. O-GlcNAcylation on S662 decreased the phosphorylation 
on S662 suggesting the possible antagonism between O-GlcNAc 
and phospho- modification. It has been well known that 
phosphorylation on S662 is tightly linked to the familial advanced 
sleep phase syndrome (FASPS) in humans. People having FASPS 
disorders have a phenotype of early morning awakening and early 
sleep times together with a shortened circadian rhythm [96]. Two 
genes have been identified to be related with the FASPS disorder- 
S662G mutation on dPER or hypomorphic T44A mutation on 
CKIδ [96, 97]. A later study further revealed that phosphorylation 
of S662 was necessary for serial phosphorylation of S662-S674 
cluster, which somehow leads to the increase in mPer2 transcript 
levels [95]. Another study suggests different roles for S662 
phosphorylation, which is stabilizing mPER2 from degradation 
by blocking nuclear export [98]. Although the role of S662 
phosphorylation on the metabolism of mPER is still controversial, 
the mPER2 nuclear localization might also be regulated by 
controlling O-GlcNAc modification of mPER2, as similar to that 
of the Drosophilia.

CONCLUSION

To be able to sustain a 24 hr rhythm period, timely control of 

nuclear translocation is crucial in both Drosophila and mammals 
[99]. Strong nuclear accumulation of major circadian repressor 
protein-PER- is lagged several hours to the times of  peak 
transcript levels. This delayed nuclear entry was controlled via 
post-translational modification of PER, namely phosphorylation 
that may be affected by the interaction with other partner proteins 
(TIM in Drosophila and mPERs or CRYs in mammals) and/or 
dynamic interplay with other post-translational modifications (e.g. 
O-GlcNAcylation) (Fig. 1). One important feature of the circadian 
clock system is that it may be able to re-synchronize to changes in 
time-cues when travelling through different time-zones. To be able 
to re-synchronize, cellular oscillators may be able to easily adapt to 
the extracellular time-cues. Recently, studies about PTM crosstalk 
in regulating the function of a protein have been accumulating 
(for review, [100]). Currently, more than 450 PTMs are listed in the 
protein data base [101]. As shown in the control of nuclear entry 
of PER proteins by possible crosstalks between O-GlcNAcylation 
and phosphorylation, other PTM crosstalks might play crucial 
roles in controlling nuclear entry of clock proteins and other 
functions as well. Future studies in this direction will shed light on 
understanding the detailed biochemical underpinnings of nuclear 
entry regulation of clock proteins. 

Fig. 1. A model for the timely nuclear entry of circadian repressor proteins in Drosophila and mammals. Newly synthesized circadian repressor protein 
(orange circle) is modified in the cytoplasm (gray box) over the course of time resulting in conformational changes. Conformational changes might 
unmask the NLS, which is recognized by carrier proteins mediating the transport through the nuclear pore complex (NPC). Mainly, phosphorylation (P) 
of repressor protein seems to control the timely nuclear translocation of repressor protein. Nonetheless, interaction with the other repressor protein (green 
circle) and crosstalk with other posttranslational modifications (e.g. O-GlcNAcylation, G) might regulate timely phosphorylation of repressor protein 
(orange circle).
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