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Primary infection with Herpes simplex virus type 1 (HSV1) is subclinical or only mildly 
symptomatic in normal individuals, yet the reason for the body’s effective immune 
defense against this pathogen in the absence of antigen-specific immunity has not 
been well understood. It is clear that human natural killer (NK) cells recognize and kill 
HSV1-infected cells, and those individuals who either lack or have functionally impaired 
NK cells can suffer severe, recurrent, and sometimes fatal HSV1 infection. In this article, 
we review what is known about the recognition of HSV1 by NK  cells, and describe 
a novel mechanism of innate immune surveillance against certain viral pathogens by 
NK cells called Fc-bridged cell-mediated cytotoxicity.
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inTRODUCTiOn

Natural killer (NK) cells are innate lymphoid cells capable of directly recognizing virally infected 
cells without prior antigen exposure (1), and constitute the first line of defense against herpes simplex 
virus type 1 (HSV1) infection (2). Patients with NK cell deficiencies can suffer severe, recurrent, and 
sometimes fatal HSV1 infection (3, 4). The functional status of NK cells is tightly regulated by signal 
inputs from a wide variety of NK cell activating and inhibitory receptors, which coordinately balance 
NK cell function to avoid autoimmune damage under normal physiology (1). HSV1 infection could 
diminish inhibitory signals and/or increase activating signals, leading to NK cell activation. HSV1 
genomic DNA, viral RNA, and proteins are known to induce the production of type I interferons 
(5–7), which can greatly potentiate NK cell function during HSV1 infection (8). Upon activation, 
NK  cells undergo dramatic phenotypic and functional changes, including expressing functional 
markers, secreting cytokines, releasing pre-stored perforin and granzyme B, and lysing target cells 
(Figure 1).

Natural killer cells express the low affinity Fcγ receptor FcγRIIIA/CD16a (CD16a hereafter), 
and are the major effector cells for antibody-dependent cell-mediated cytotoxicity (ADCC), which 
represents the main mechanism for NK cells to recognize and clear HSV1 infection after adaptive 
immunity is established. However, most primary HSV1 infections are asymptomatic or associated 
with only mild symptoms like fever and rash, suggesting HSV1 infection can be efficiently recog-
nized and cleared by the innate immune response before an antigen-specific immune response is 
established (2).
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FiGURe 1 | General rules regulating natural killer (NK) cell activity during herpes simplex virus type 1 (HSV1) infection. NK cells express both inhibitory and activating 
receptors, which balance activity of NK cells. HSV1 infection could shift the balance by secreting type I interferons, expressing activating ligands, decreasing 
inhibitory ligands, and engaging antibodies, which collectively lead to activating signals outweighing inhibitory signals. Activated NK cells produce cytokines, express 
functional proteins, and release granzyme and perforin to kill infected cells.
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Herpes simple virus type 1 is a member of the herpesviridae 
family and has a 150 kb double-stranded DNA genome, which 
contains 84 open reading frames and encodes 74 unique viral pro-
teins (9). During lytic infection, HSV1 expresses a large amount 
of viral proteins in a kinetically regulated fashion, rendering the 
virus-infected cell susceptible to innate immune defense. During 
latency, expression of viral protein is minimized, thus hindering 
recognition of infected cells by the immune system. Although it 
has been suggested that some of these HSV1-encoded proteins 
might directly mediate recognition or evasion by immune cells 
(10–12), it remains controversial as to whether some viral or 
cellular proteins serve as cognate ligands for NK cells to sense 
HSV1 infection. In this review, we summarize the studies of mol-
ecules that are involved in the direct interactions between human 
NK cells and HSV1 lytic infection, discuss potential mechanisms 
for their action, and provide our interpretation for some conflict-
ing studies.

COnTACT SiGnALS

Natural killer cell function is tightly regulated by an array of 
inhibitory and activating receptors that receive input by contact-
ing cognate ligands present on target cells (13). Contact signals 
sparked by the collective interactions between NK cell receptors 
and target cell ligands are essential for the NK  cell to release 
cytotoxic granules and kill target cells (13). Ligands for NK cell 
receptors mostly are cellular proteins (14), however, many viruses 
and fungi have been reported to express proteins that can directly 
bind NK cell receptors and modulate NK cells (15–18). Whether 
HSV1 expresses ligands that are directly recognized by NK cells 
has been controversial.

Heat- or UV-inactivated HSV1 viruses were shown to induce 
IFNα production and promote NK cytolysis, and it was suggested 
that viral proteins were directly responsible for this stimulatory 
immune responses (19–21). However, heat- or UV-inactivated 
HSV1 can still enter host cells and deliver viral genomic DNA, 
which in itself is a potent inducer of type I IFNs (22). Additional 
HSV1-encoded glycoproteins, including glycoprotein B (gB), 
gC, glycoprotein D (gD), and gH/gL, have been reported to 
activate NK  cells (23–27), yet contradicting results have also 
been documented for each of these viral proteins (20, 21, 28). 
The discrepancy shown in these studies may partly arise from 
different experimental conditions: it nonetheless highlights the 
need for more well-designed studies to explore the potential role 
of viral proteins in directly regulating NK cell function.

Lytic HSV1 infection greatly changes the biosynthetic events 
of host cells, most prominently affecting host protein synthesis, 
traffic, and degradation (29). The pattern of cellular NK ligands 
expressed on target cells changes significantly following HSV1 
infection, and provides a recognizable signal for NK  cells to 
distinguish infected cells. Below, we discuss cellular ligands that 
change following HSV1 infection and HSV1 proteins that may 
contribute to direct NK cell recognition of HSV1.

Major Histocompatibility Complex i  
(MHC i) Class i
In addition to presenting antigenic peptides to CD8+ cytotoxic 
T  cells, the MHC I molecule is also the natural ligand for the 
inhibitory killer cell immunoglobulin-like receptors (KIRs) and 
the lectin-like inhibitory receptor CD94/NKG2a, both of which 
are expressed on human NK cells (1). Because of its ubiquitous 
presence on human tissue, MHC I molecules prevent NK cells 
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from attacking healthy self, thereby preventing autoimmunity. 
Therefore, it has been hypothesized that downregulation of MHC 
I during viral infection through many different mechanisms 
could potentially release NK cells from self-inhibition and lead 
NK cells to recognize virally infected cells (30).

Fulfillment of antigen presentation by MHC I needs endog-
enous antigen peptides and the endoplasmic reticulum (ER) 
traffic protein: transporter associated with antigen processing 
(TAP). TAP pumps cytosol antigen peptides into the ER, where 
nascent MHC I molecules are loaded with antigen peptides 
and exported to the cell surface. Empty MHC I cannot pass the 
quality check and are not transported to the cell surface (31). 
HSV1 ICP47, encoded by the Us12 gene, is a soluble, cytosolic 
protein of 88 amino acid residues (32). ICP47 forms a long helical 
hairpin inserting into the central cavity that is formed by two 
TAP subunits (33). By plugging the TAP translocation channel, 
ICP47 precludes binding and traffic of antigenic peptide from the 
cytosol to the ER (33), and prevents transport of MHC I to the 
plasma membrane.

Several in  vitro studies have confirmed that expression of 
ICP47 decreases surface MHC I on HSV1-infected human 
cells and consequently activates NK cells in co-culture (12, 34). 
However, ICP47 binds murine TAP1/2 poorly (30) and does not 
efficiently block traffic of mouse MHC I (35), making it difficult 
to test whether the downregulation of MHC I could affect NK cell 
activation and clearance of HSV1 infection in vivo. Both human 
cytomegalovirus (CMV) Us11 and mouse CMV (MCMV) m152 
have been reported to decrease mouse MHC I presentation 
(32, 36, 37). Orr et  al. thus constructed a recombinant HSV1 
virus expressing HCMV Us11 or MCMV m152, and studied the 
effect of MHC I downregulation on the immune recognition of 
HSV1 infection in mice (34). The recombinant HSV1 viruses 
nonetheless did not decrease MHC I expression on mouse cell 
lines more than the wild type HSV1 (34). Thus, importance 
of downregulating MHC I for clearance of HSV1 infection by 
NK cells in vivo remains unresolved and awaits better models to 
resolve this issue.

nKG2D Ligands
NKG2D is one of the major NK  cell receptors involved in 
recognition and killing of tumor cells and virus-infected cells 
(38). In humans, NKG2D is engaged by several ligands, namely 
MHC class I polypeptide-related sequence A and B (MICA and 
MICB) and the UL16-binding proteins 1–6 (ULBP1–6) (39). 
It has been reported that an HSV1-infected cell line had lower 
expression of MICA and ULBP2, which could potentially help 
HSV1-infected cells to evade recognition by NK  cells (40, 41). 
Although the exact mechanism for this downregulation of MICA 
and ULBP2 is unknown, the recycling of membrane protein and 
general inhibition of de novo synthesis of cellular proteins dur-
ing HSV1 infection might contribute to the decrease of NKG2D 
ligand expression (29). NK cells from patients with active HSV1 
infection had a higher level of NKG2D (40), possibly induced by 
an elevated level of type I IFN during HSV1 infection (42). The 
increased NKG2D levels may sensitize NK cells and counteract 
the effect of decreased NKG2D ligand expression on HSV1-
infected cells.

Glycoprotein D
Pierre Lebon reported that diploid cells infected with HSV1 can 
induce IFNα production by peripheral blood mononuclear cells, 
and that HSV1 gD was responsible for this biological effect (23). 
HSV1 gD, encoded by the Us6 gene, is the major glycoprotein 
mediating entry of HSV1 into host cells. It binds two cellular 
receptors: herpesvirus entry mediator (HVEM) and nectin1 
(43). While nectin1 has not been identified to have any regula-
tory function, HVEM is a member of the tumor necrosis factor 
alpha superfamily and plays very diverse roles in modulating 
T-cell function by activating both inflammatory and inhibitory 
signaling pathways (44).

Herpesvirus entry mediator binds many functionally diverse 
cellular proteins, including LIGHT (lymphotoxin-like, exhibits 
inducible expression, and competes with herpes simplex virus gly-
coprotein D for HVEM, a receptor expressed by T lymphocytes), 
lymphotoxin-α, B and T  lymphocyte attenuator (BTLA), and 
CD160. Crystal structure of the HVEM-ligand complex shows 
that the binding sites on HVEM for gD, BTLA, and CD160 are 
overlapping or very close (45). HVEM is ubiquitously expressed 
by both human and mouse immune cells (our unpublished data). 
A recent study showed that HVEM was required for IFNα produc-
tion following Listeria infection in mice (46). Collectively, these 
results suggest that HVEM might not only be the entry mediator, 
but also the immune sensor for HSV1 infection. However, we 
recently reported that expression of gD makes glioma resistant to 
NK cell cytotoxicity (47), and others reported that blocking gD 
did not affect the response of NK cells to HSV1-infected cells (20, 27, 
28). Thus, the role of gD in NK cell response to HSV1 infection 
is yet to be clarified, similar to the role of HVEM in this process.

Glycoprotein B
Herpes simplex virus type 1 gB promotes viral attachment through 
interaction with cell surface heparin sulfate (48), and also plays an 
essential role in mediating membrane fusion (49). HSV1 gB has 
been reported as having a role in the NK cell lysis of HSV1-infected 
endothelial cells (24–26). A lower lysis of target cells infected with 
HSV1 was observed when viruses were deficient in gB, or when 
Fab fragments of a gB-specific antibody were added to block gB 
(24–26). Leoni et al. reported that gB was able to physically interact 
with toll-like receptor-2 (TLR2) (27). In another study, Kim et al. 
reported that the activation of NK cells by UV-inactivated HSV1 
virions was directly mediated by TLR2 (20). They showed that 
UV-inactivated HSV1 virions could bind the endothelial cell line 
HEK when ectopically expressing TLR2, but not native HEK2 cells 
that lack TLR2. However, the authors did not confirm the expres-
sion of TLR2 on NK cells, or whether the activation of NK cells by 
HSV1 was mediated by the TLR2-gB interaction (20). The expres-
sion of TLR2 in NK  cells is still controversial. Although TLR2 
mRNA has been detectable in human NK cells, TLR2 protein has 
only been noted on decidual NK cells (50), but not on the surface 
of human circulating NK cells (51–55). Another study also showed 
TLR2 was not required for recognizing HSV1 glycoproteins (28). 
Experiments using different strains of HSV1 may have contributed 
to the discrepancies seen within these studies. Collectively, these 
data make it difficult to draw a conclusion regarding the role of gB 
in mediating NK cell recognition of HSV1-infected cells.
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FiGURe 2 | The role of IgG in modulating natural killer (NK) cell function. (A) An HSV1-specific antibody binds to a specific viral antigen and activates CD16a(+) 
NK cells through classical antibody-dependent cell-mediated cytotoxicity (ADCC). (B) It has been proposed that antibodies directed against herpes simplex virus 
type 1 (HSV1) antigens could from a bipolar bridge between a specific viral antigen and the HSV1 IgGFc-binding glycoprotein glycoprotein E (gE), thereby preventing 
ADCC (64). (C) Endocytosis of viral antigens mediated by the hypothetical antibody bipolar bridge. (D) During primary HSV1 infection, non-immune IgG dominates 
while a primary immune response is being generated. In this setting, non-immune IgG can directly bind gE via its interface with the CH2–CH3 region of IgG. (e) 
gE-specific antibody can bind gE via its IgG Fab and prevent gE from binding another IgG at its CH2–CH3 region. (F) HSV1 infection produces large amounts of 
viral antigens of which gE accounts for only a small fraction. Thus, only a small fraction of the total HSV1-specific IgG can potentially form the bipolar bridge on the 
HSV1-infected cell.
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Other Cellular Ligands and viral Proteins
Fitzgerald-Bocarsly et  al. reported that expression of HSV1 
immediate early genes caused the increased susceptibility of 
HSV1-infected fibroblast cells to NK  cell lysis (56). Chisholm 
et al. further pinpointed this NK cell stimulating function to ICP0 
(11). ICP0 is cytosolic protein and theoretically should not be 
able to activate the NK cell directly. The investigators found ICP0 
did not change the expression of MHC I or of NKG2D ligands, 
but induced the expression of some unidentified ligands for 
natural cytotoxicity receptors NKp30, NKp44, and NKp46 (11). 
However, during HSV1 infection, cellular proteins are only rarely 
unregulated due to wide spread disruption of host mRNA (29). 
The finding that ICP0 expression induces expression of ligands 
for natural cytotoxicity receptors, if confirmed, would be very 
helpful for identifying these cellular ligands important for the 
function of NK cells.

THe ROLe OF igG

Globally, 70% of the human population is estimated to be HSV1 
seropositive (57). Once adaptive immunity against HSV1 is 

generated, it is believed that HSV1-specific antibodies could exist 
in the serum at high titer throughout human life and effectively 
prevent infection (58), which is consistent with the rarity of recur-
rent HSV1 infection in immune competent populations even 
though repetitive HSV1 exposure occurs often. NK cells express 
CD16a and are the major effector cells of ADCC (59). CD16a is a 
type I transmembrane protein, whose extracellular domain binds 
Fcγ at the hinge region (60) and whose transmembrane helix and 
intracellular domain couple with the signal transducer CD3ζ 
(61, 62). NK  cells utilize CD16a to recognize antibody-bound 
pathogens, including infected cells. Binding of immune complex 
consequently clusters and phosphorylates CD3ζ and eventually 
leads to the activation of the NK cell and lysis of infected cells 
(Figure 2A) (63).

Antibody Bipolar Bridging
Herpes simplex virus type 1 expresses an IgGFc-binding protein 
glycoprotein E (gE), which binds human IgG1, IgG2, IgG4, but not 
IgG3. HSV1 gE alone binds Fc of IgG with low affinity, however, 
it can form a heterodimer with glycoprotein I (gI) (65). Although 
gI has no direct contact with IgG, the gE–gI complex binds Fc 
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FiGURe 3 | Structural basis for Fc-bridged cell-mediated cytotoxicity 
(FcBCC). (A) Model structure of gE-IgG1Fc-CD16a ternary complex showing 
the non-overlaping binding of herpes simplex virus type 1 (HSV1) 
glycoprotein E (gE) and CD16a to IgGFc. CD16a is shown as magenta, gE is 
shown as blue, two monomers of IgGFc dimer are shown as green and lime. 
(B) A new type of IgG-mediated natural killer (NK) cell activation called 
FcBCC is shown. IgGFc molecules bound by gE are still accessible for 
CD16a and able to cluster CD3ζ, thereby activating NK cells to kill 
HSV1-infected targets prior to the development of a antibody-specific 
immune response.
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with much higher affinity than gE alone (66, 67). HSV1 gE–gI 
complexes have been shown to participate in “antibody bipolar 
bridging,” whereby a single anti-HSV1-specific IgG antibody 
simultaneously binds to an HSV1 antigen using its Fab region 
and to gE via its Fc region (Figure 2B) (64). It has been proposed 
that such antibody “bipolar bridging” could block the access of 
the NK cell’s CD16a to the Fc portion of the anti-HSV1-specific 
IgG antibody (68, 69), and induce endocytosis of viral antigens 
(Figure 2C) (70). Therefore, antibody bipolar bridging was pro-
posed to reduce classical ADCC and provide a mechanism for 
innate immune evasion following HSV1 infection (68, 69).

Although the antibody bipolar bridge has been tested in 
several experiments (68, 69), its existence and role in inhibiting 
ADCC in  vivo remains controversial for several reasons. First, 
HSV1-specific antibody only accounts for a small fraction of 
the whole human IgG pool (58). The probability of gE to bind a 
predominant non-HSV1-specific IgG molecule is much greater 
than the probability of gE interacting with an HSV1-specific 
antibody that is already bound on the same infected cell, even 
without considering the steric hindrance that might not favor the 
forming of such bipolar bridge (Figure 2D). Second, gE is a major 
HSV1 antigen and gE-specific antibodies exist in most HSV1 
seropositive serum. The gE-specific antibodies use Fab to bind 
gE and potentially block gE interaction with the IgGFc of other 
antibodies (Figure 2E). Third, gE constitutes only a small portion 
of all viral antigens that express HSV1-infected cells and HSV1-
specific antibodies coated on HSV1-infected cells far outnumber 
all that gE could bridge (Figure  2F). Therefore, the bipolar 
bridge of IgG and gE, even if it existed, should not contribute 
significantly enough to reduce ADCC of HSV1-infected cells in a 
seropositive individual. Lastly and most importantly, the crystal 
structure of the gE-IgG1Fc complex shows that gE binds IgG1Fc 
at the CH2–CH3 interface, a site that is distinct from the Fcγ 
hinge region where CD16a binds (71). Therefore, HSV1 gE and 
CD16a are not mutually excluded from binding the same IgG, 
and the assumption that gE could prevent CD16a from binding 
the same IgG molecule is without structural basis (Figures 3A,B).

Fc-Bridged Cell-mediated Cytotoxicity 
(FcBCC)
Instead of inhibiting NK cell cytotoxicity, we recently reported 
that the expression of the Fc-binding protein gE on HSV1-
infected glioma cells actually stimulated NK cell activation and 
cytotoxicity, and co-expression of gE and gI further enhanced 
NK cell activation. Primary human NK cells are naturally coated 
with IgG molecules, and we found that the response of human 
NK cells toward gE or gE–gI directly correlated with the indi-
vidual’s NK  cell surface density of IgG (47). Further, as noted 
earlier, the crystal structure of the gE-IgG1Fc complex showed 
that gE binds IgG1Fc at its CH2–CH3 region, a site that is distinct 
from the Fcγ hinge region, where CD16a binds (71). We, there-
fore, proposed that HSV1 gE, IgGFc, and CD16a could form a 
ternary complex (Figures 3A,B). The gE-IgGFc-CD16a complex 
was confirmed and responsible for relaying the activating signal 
for NK cells upon encounter with HSV1-infected glioma cells in 
the absence of specific anti-HSV1 antibodies (47).

Although HSV1 gE does not bind mouse IgG (72), mouse 
NK cell FcγR (CD16a) binds human IgG with high affinity (36). 
This led us to test whether human IgGFc alone could bridge 
mouse NK cells and HSV1-infected cells, and promote clearance 
of HSV1 infection in vivo. We found infusion of human IgG1Fc 
fragments alone protected mice from lethal HSV1 infection in a 
manner dependent on NK cells and gE, as did other human IgG1 
therapeutic antibodies not targeting any HSV1 antigens (47). It is 
well established that protective functions of IgG against infection 
and cancer require utilization of both its Fab and Fc domains. 
NK cell activation via gE-IgGFc-CD16a differs from the classical 
IgG function of ADCC by not requiring any antigen-specific 
antibody, and limits virus infection before the establishment 
of adaptive immunity. We thus named this process of innate 
immune recognition FcBCC (Figure 3B).

Fc-bridged cell-mediated cytotoxicity represents a previously 
unappreciated mechanism of innate immune cell recognition 
of and response to a primary viral infection mediated only 
by the Fc domain of IgG bound to FcγR and recognizing the 
pathogen expressing an Fc binding protein, as well as naked 
CD16a recognizing the Fc domain of IgG bound to the infected 
cell’s Fc-binding protein. The experimental evidence for FcBCC 
is consistent with the observation that most primary HSV1 
infections are clinically asymptomatic and/or self-limited. It is 
also highly likely that FcBCC is responsible for the rapid NK cell 
clearance of oncolytic HSV1 in the setting of malignant glioma 
(73), and clearance of infection by many other members of the 
herpesviridae family encoding similar or identical Fc-binding 
proteins (37, 69). FcBCC of HSV1-infected glioma by CD16a(+) 
NK cells is abrogated in the absence of the HSV1 binding protein 
gE (47). Previous studies suggesting that NK  cell activation is 
enhanced in the absence of HSV1 gE were all conducted in the 
presence of anti-HSV1 antibodies (64, 68, 69); the caveats of the 
conclusions drawn from those studies were discussed above and 
illustrated in Figures  2D–F. It is possible that the anti-HSV1 
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antibodies induce endocytosis of viral antigens in a gE–gI 
dependent fashion (70), thereby reducing NK cell activation via 
classical ADCC. Under this circumstance, the absence of HSV1 
gE would inhibit the endocytic process, resulting in more surface 
expression of viral targets and consequently improved classical 
ADCC.

COnCLUSiOn AnD FUTURe DiReCTiOnS

Natural killer cell recognition of HSV1 infection is the synergistic 
result of multilayer activating and inhibiting signals, involving 
soluble factors, contact signals, and IgG molecules. IgG plays the 
central role for recognition and clearance of HSV1 infection by 
NK  cells during both primary and recurrent infection. During 
primary infection, non-immune IgG can coat infected cells via 
the interaction of IgGFc with gE and facilitate clearance of HSV1 
infection by CD16a(+) NK cells through FcBCC. Once adaptive 
immunity is established, HSV1 infection is recognized and bound 
by HSV1-specific IgG and cleared by NK cells through classical 
ADCC.

It is relatively less studied how other contact signals contribute 
to the NK cell activation. It is technically challenging to dissect 
the contribution of individual viral components to evade or 
activate NK cell recognition, because (1) these viral components 
may only exert the effect in special host cells, at particular stages 

of infection, and dependent on the strain of HSV1 virus; (2) they 
share redundancies in shaping the function of NK  cells; thus 
removing one would not be enough to show the difference in 
affecting NK cell function; (3) multi-functional nature of many 
viral proteins makes it difficult to compare data acquired from 
wild type HSV1 viruses with those from gene-specific deficient 
HSV1 viruses, because loss of viral genes may change not only 
the phenotype related to interactions with NK cells, but may also 
impact the virus’ replication and life cycle. HSV1 is a human 
pathogen and patients with NK  cell deficiency almost always 
develop severe HSV1 infections. So, a better way to study the 
interaction of HSV1 infection and NK  cells is to look into the 
molecular basis of the deficiency causing the patient susceptibility 
for HSV1 infection. This will help expand our knowledge about 
NK cells beyond HSV1 infection.
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