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Abstract

A key challenge for human genetics, precision medicine, and evolutionary biology is deciphering 

the regulatory code of gene expression, including understanding the transcriptional effects of 

genome variation. Yet this is extremely difficult due to the enormous scale of the noncoding 

mutation space. We developed a deep-learning-based framework, ExPecto, that can accurately 

predict, ab initio from DNA sequence, the tissue-specific transcriptional effects of mutations, 

including rare or never observed. We prioritized causal variants within disease/trait-associated loci 

from all publicly-available GWAS studies, and experimentally validated predictions for four 

immune-related diseases. Exploiting the scalability of ExPecto, we characterized the regulatory 

mutation space for all human Pol II-transcribed genes by in silico saturation mutagenesis, profiling 

>140 million promoter-proximal mutations. This enables probing of evolutionary constraints on 

gene expression and ab initio prediction of mutation disease effect, making ExPecto an end-to-end 

computational framework for in silico prediction of expression and disease risk.
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Introduction

Sequence-dependent control of gene transcription is at the foundation of the complexity of 

multicellular organisms. Expression-altering genomic variation can thus have wide impact 

on human diseases and traits. Empirical observations of expression-genotype association 

from population genetics studies1,2 and predictive models based on matched expression and 

genotype data3,4 have provided valuable information for the expression effect of common 

genome variation and their relevance to disease5. However, such approaches are generally 

limited to mutations that are observed frequently and with matched expression observations 

in ideally the relevant tissue/cell type. Moreover, core to the understanding of the regulatory 

potential for both common and rare variants is disentangling causality from association and 

extracting the dependency between sequence and expression effect, which remains as a 

major challenge.

A quantitative model that accurately predicts expression level ab initio from only sequence 

information will provide a new perspective on expression effects of genomic sequence 

variations. The computational approach is especially important in human, where limited 

experiments can be performed directly. Furthermore, ab initio sequence-based prediction is 

capable of extracting causality because of the unidirectional flow of information from 

sequence change to consequent gene expression change. Moreover, we envision that the 

potential of estimating effects for all possible variants, including previously unobserved 

ones, will enable a new framework for the study of sequence evolution and evolutionary 

constraints on gene expression. This will allow direct prediction of fitness impact due to 

genomic changes and the resulting expression alteration using only sequence and 

evolutionary information it contains.

Human gene expression profiles reveal a wide diversity of expression patterns across genes, 

cell types, and cellular states. Yet our understanding of sequences that activate or repress 

expression in specific tissues, let alone our ability to quantify the transcriptional modulation 

strength of a sequence element, is vastly incomplete. Progress in quantitative expression 

modeling has focused on model organisms with relatively small noncoding regions such as 

yeast and fly, and in the context of reporter expression prediction in human cell lines6–10. As 

a result, current sequence-based expression prediction models are limited in accuracy or 

restricted to small subsets of genes, and utilize narrow regulatory regions smaller than 

2kb6–10. As such, sequence-based prediction of expression in human is still a critical open 

challenge, and to our knowledge no prior in vivo expression prediction model can predict the 

effect of sequence alterations, especially in tissue-specific context.

Here we describe ExPecto (see URLs), a tissue-specific modeling framework for predicting 

gene expression levels ab initio from sequence for over 200 tissues and cell types. The 

ExPecto framework integrates a deep-learning method with spatial feature transformation 

and L2-regularized linear models to predict tissue-specific expression from a wide 

regulatory region of 40kb promoter-proximal sequences. A critical feature of this framework 

is that it does not use any variant information for training, enabling prediction of expression 

effect for any variant, even those that are rare or never previously observed.
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The resulting ExPecto models make highly accurate cell-type-specific predictions of 

expression from DNA sequence, as evaluated with known eQTLs and validated causal 

variants from a massively parallel reporter assay. With this capability, we prioritize putative 

causal variants associated with human traits and diseases from hundreds of publicly 

available GWAS studies. We experimentally validated newly predicted putative causal 

variants for Crohn’s disease, ulcerative colitis, Behcet’s disease, and HBV infection, 

demonstrating that these ExPecto-predicted functional SNPs show allele-specific regulatory 

potential while the GWAS lead SNPs do not.

The scalability of our computational approach allowed us to systematically characterize the 

predicted expression effect space of potential mutations for each gene, via profiling over 140 

million promoter proximal mutations. This enabled us to systematically probe the tissue-

specific impact of gene human transcription dysregulation ‘in silico’ at a scale not yet 

possible experimentally, defining the evolutionary constraints on human gene expression. 

We show that the effects of potential mutations on each gene, which we call the gene’s 

‘variation potential’, is indicative of the phenotypic impact of expression-altering mutations.

Integrating expression effect predictions and inferred evolutionary constraints, we propose 

an end-to-end computational framework for full in silico prediction of disease-associated 

regulatory variation, from sequence to expression effects and subsequent fitness impacts. 

This framework is complementary to quantitative genetics and experimental approaches at a 

substantially larger scale and lower cost, including for inferring disease-causal mutations. 

We demonstrate the far-reaching potential of this approach for interpreting clinically-

relevant mutations (even ones not captured by quantitative genetics) by successfully 

predicting disease risk.

Results

Sequence-based cell type-specific expression prediction

To predict the tissue-specific expression from human promoter-proximal sequences, we built 

a modular framework (Fig. 1a, Methods). First, we used deep learning to generate a 

repertoire of potential regulatory sequence representations capable of predicting epigenomic 

effects of any genomic variant from sequence only. This was accomplished with a deep 

convolutional neural network trained to predict 2,002 different histone mark, transcription 

factor and DNA accessibility profiles for over 200 tissues and cell types. This substantially 

extends the epigenomic effect prediction method we described previously11 with redesigned 

architecture, expanded feature space and wider sequence context. Second, through a spatial 

feature transformation approach, the framework integrated predicted sequence-based 

epigenomic information across 40kb region (Supplementary Fig. 1). Third, tissue-specific 

regularized linear models used the transformed epigenomic information, centered around the 

TSS, to predict expression of Pol II transcribed genes in each of the 218 tissues and cell 

types (one model per tissue for all genes). The resulting ExPecto framework is capable of 

predicting cell-type specific gene expression and the effects of genomic variants ab initio, 

having never trained on any variant information (neither matched expression or epigenetic 

data nor any genomic variant data).
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ExPecto makes accurate predictions of gene expression levels from sequence, with 0.819 

median Spearman correlation with observed expression log RPKM across 218 tissues and 

cell types (Fig. 1b). This was evaluated on proximal sequences held out during all training of 

both the regulatory representations and the expression models. When we examined 

information ‘behind’ the predictions, we found that the expression models preferentially 

exploited sequence representations of transcription factors and histone marks 

(Supplementary Table 1). DNase I sequence features, in contrast, had consistently lower 

weights (p = 6.9×10−25 two-sided Wilcoxon rank sum test) likely due to the lack of causal 

dependency information, probably because DNase I hypersensitive sites can be caused by 

binding proteins of various functions.

Furthermore, in addition to accurately capturing global expression, ExPecto predictions 

recapitulated the tissue specificity of expression, with expression predictions being 

significantly more similar to the experimental measurements from the correct cell type than 

other cell types on holdout sequences (Fig. 1c). As cell type specificity of gene expression in 

the human body is determined by differential utilization of regulatory DNA sequences, we 

examined whether the framework learned such cell type regulatory specificity. Indeed, our 

expression models could automatically learn to preferentially utilize sequence features from 

the most relevant cell type, even though no explicit tissue labels for these features were used. 

For example, the top weighted sequence features specific for the liver model corresponded to 

binding of seven transcription factors (TFs) in HepG2 cells of liver origin. For the breast-

mammary gland model – all top five positive features are TFs (ERα and GR) in the breast 

cancer cell lines T-47D and ECC-1, and for the whole blood model – all top five features are 

from the blood-derived cell lines and erythroblast cells (Supplementary Table 1).

The ability of ExPecto to predict tissue-specific gene expression from sequence provides the 

basis for estimating transcriptional effects of genomic variation (Fig. 1a,d). These 

computational predictions of variant effect do not use any variant-specific information for 

training and thus can scale to all human population variants and even billions of potential 

small alterations in the human genome. Thus, in contrast to quantitative genetics approaches, 

which detect mostly high frequency variants, the ExPecto approach is not biased by allele 

frequencies and works for both common and rare variants (Supplementary Fig. 2). 

Therefore, we applied exhaustive in silico mutagenesis to probe the effects of over 140 

million variants, including all variants around 23,779 TSSs (Fig. 1d), all GWAS loci, and 

eQTL variants. Below, we demonstrate the potential of ExPecto for accurately identifying 

causal variants for human traits and diseases and complementing quantitative genetics 

approaches by avoiding their limitations and predicting rare and unobserved disease-relevant 

variant effects undetected by quantitative genetics.

Effect of genomic variants on tissue-specific expression

To evaluate ExPecto’s predictions of tissue-specific effects of genomic variants on gene 

expression, we compared with eQTL data from multiple studies. ExPecto’s ab initio 
sequence-based prediction is especially useful for prioritizing causal eQTL variants as it is 

unconfounded by linkage disequilibrium. Thus, even though the majority of eQTL variants 

are expected to cause no expression effect12 (of GTEx lead variants, only 3.5%- 11.7% are 
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estimated to be causal variants, which is <1% of all GTEx eQTL variants13), we expect the 

strong ExPecto predicted effect variants to be highly enriched in bona fide causal variants. 

Among the GTEx-identified eQTLs2, ExPecto correctly predicted the direction of 

expression change for 92% of the top 500 strongest effect variants (Supplementary Fig. 3) 

and provides accurate predictions for tens of thousands of variants (Supplementary Fig. 3). 

This suggests that a high proportion of eQTLs with strong predicted effects are causal in 

contrast to the background, as the eQTL effect direction of non-causal SNPs should be 

independent from the predicted directions. Moreover, ExPecto models for the correct tissue 

provided more accurate predictions than any other tissue (Supplementary Fig. 3). We also 

demonstrated accuracy on three other large-scale eQTL studies on brain, primary immune 

cells and blood respectively14–16 (Fig. 2a).

In addition, ExPecto can accurately predict causal eQTLs when evaluated with data from in 
vitro massively parallel reporter assays (MPRA) in lymphoblastoid cells17. The strongest 

predicted effect variants from the lymphoblastoid expression model differentially activated 

transcription, and the model was able to predict expression change directionality with nearly 

perfect accuracy for top prioritized variants (Supplementary Fig. 4). Notably, the 

lymphoblastoid model outperformed all other tissue models (AUROC=0.815), again 

demonstrating the importance of tissue-specific expression modeling in causal-effect 

predictions.

As expression models can accurately predict causal gene expression effects of SNVs and 

small INDELs among eQTLs, we examined the expression effect of human population 

variants across the full range of allele frequencies (16.5 million variants from the 1000 

Genomes project) (Supplementary Data 1). In contrast to quantitative genetics approaches, 

which detect mostly high frequency variants (Supplementary Fig. 2), the ExPecto approach 

is not biased by allele frequencies and can detect both common and rare variants. Indeed, the 

ExPecto high expression effect variants have similar MAF distribution to all 1000 Genomes 

variants (Supplementary Fig. 2). As expected, variants with stronger predicted expression 

effect are enriched for GTEx eQTLs at all allele frequencies (Supplementary Fig. 5). Thus, 

sequence-based expression models can be powerful tools in the interpretation of rare 

functional variants.

Prioritizing and experimental study of causal GWAS variants

We next applied ExPecto’s variant expression effect predictions to prioritize causal variants 

from disease/trait loci of 3,000 GWAS studies18 (Supplementary Table 2). While GWASs 

reveal the genetic basis of human diseases and traits by identifying a multitude of associated 

loci, this approach generally lacks the resolution to pinpoint causal genomic variants due 

mainly to linkage disequilibrium. Assessing overall performance of ExPecto prioritized 

variants, we found that loci with the stronger predicted effect variants were significantly 

more likely to be replicated in a different GWAS study (p = 6.3×10−189, two-sided Wald test 

with logistic regression, Fig. 2b, see also Supplementary Fig. 6 for analysis using only 

p<5×10−8 variants). Moreover, the stronger predicted effect GWAS LD variants were more 

likely to be the exact replicated variant (p = 5.6×10−14, two-sided Wald test with logistic 

regression). For instance, an earlier Venous Thromboembolism GWAS19 identified 

Zhou et al. Page 5

Nat Genet. Author manuscript; available in PMC 2019 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rs3756008 as the lead causal variant, however, ExPecto-prioritized LD variant rs4253399 

near the F11 locus was discovered with a later study using a larger cohort20 (Supplementary 

Fig. 7a). Similar examples include variants in autoimmune diseases-associated loci 

(rs7528684, rs2618476)21–26 (Supplementary Fig. 7b-c). These results support the potential 

of using predicted expression effect information to improve identification of causal 

associated loci from GWAS studies.

We then focused on immunity-related diseases and experimentally measured the expression 

alteration effects of the top three ExPecto-prioritized SNPs and compared their allele-

specific regulatory potential to that of the lead SNPs from the corresponding GWASs (Fig. 

3a,c,e). We found that these expression effect-prioritized LD SNPs, while having no prior 

evidence of functionality, showed transcriptional regulatory activity whereas lead GWAS 

SNPs did not (as measured by reporter expression assays). (Fig. 3b,d,f). The top ExPecto-

prioritized SNP, rs1174815, is predicted to decrease the expression of IRGM, an innate 

immune response gene significantly associated with Crohn’s disease, ulcerative colitis and 

general inflammatory bowel disease, and indeed we observed significantly decreased 

reporter expression (Fig. 3a-b, p = 3×10−6). The second top SNP rs147398495, associated 

with Behcet’s disease and near CCR1, a chemokine receptor gene, also significantly 

changed transcriptional regulatory activity (Fig. 3c-d, p = 7×10−10). For a Chronic HBV 

infection-associated GWAS locus, our third top SNP, rs381218, was predicted by ExPecto to 

affect the expression of HLA-DOA, a MHC II gene functional in B-cell lysosomes, and 

indeed, results in 4-fold change in reporter activity (Fig. 3e-f, p = 1×10−9). In all these cases, 

none of the lead SNPs in the seven GWASs showed significant differences in transcriptional 

regulatory activity. Importantly, the directionalities of the expression changes for all three 

top LD variants were also correctly predicted by ExPecto (Supplementary Table 2). This 

demonstrates the potential of expression-prediction based causal variant prioritization for 

identifying disease and trait-associated alleles of true functional impact.

Variation potentials and evolutionary constraints of genes

A substantial gap still exists between predicting expression effect and estimating subsequent 

phenotypic consequences. The complexity of human as an organism poses significant 

difficulties in predicting phenotypic or disease consequences of expression alteration where 

perturbations of different genes elicit distinct consequences. As our model enables 

exploration of tissue-specific expression effects of genomic sequence variation at an 

unprecedented scale, essentially providing an ‘in silico’ assay of every possible mutation’s 

effects, it enables us to analyze the trace of selection on the regulatory sequences from the 

space of all potential mutations. We propose that the collective effects of potential mutations 

on each gene, which we call the gene’s ‘variation potential’ (VP) (Supplementary Fig 8.), is 

indicative of the phenotypic impact of expression-altering mutations. Furthermore, we found 

that variation potential is indicative of innate expression properties of genes (e.g. tissue 

specificity of expression and activation/repression status).

We computed a catalog of predicted effects for more than 140 million mutations that include 

all possible single nucleotide mutations 1kb upstream and downstream of the TSS for each 

Pol II-transcribed gene. This identifies over 1.1 million mutations with a strong predicted 
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expression effect (at high confidence). As expected, mutations with predicted negative effect 

(mutations predicted to decrease expression) were generally positioned at the immediate 

upstream of the TSS near −50bp (Supplementary Fig. 9), which is the typical position of 

core promoter elements27. Also reassuringly, the bases with stronger predicted mutation 

effects showed significantly higher evolutionary constraints both in the modern human 

population (Supplementary Fig. 10a) and in ancestral evolutionary history (Supplementary 

Fig. 10b).

We observed that tissue-specific variation potential of a gene is highly predictive of 

expression properties for that gene (Figure 4). Specifically, we can predict both whether a 

gene is ubiquitous versus tissue- or condition-specific and whether a gene is active or 

repressed (Figure 4a,b, Supplementary Fig. 11, Supplementary Data 2). Genes with low VP 

magnitude are characteristically ubiquitously expressed genes involved in essential cellular 

processes (e.g. splicing, translation, protein folding, and energy metabolism) (Figure 4b). In 

contrast, genes with high VP magnitude are tissue-specific (e.g. synaptic transmission genes) 

or condition-specific (e.g. innate immune response genes) (Supplementary Fig. 11). Among 

non-ubiquitous genes, VP’s directionality (positive/negative cumulative mutation effect) in a 

given tissue predicts that gene’s activation status: negative VP predicts actively expressed 

genes and positive VP indicates repressed expression in the modeled tissue (Supplementary 

Fig. 11). For example, synaptic transmission genes have negative VP and are thus predicted 

to be actively expressed in brain tissue. On the contrary, in non-neuronal tissues. they have 

positive VP and are thus predicted to be repressed (as in Figure 4a) (Supplementary Data 2). 

In a given tissue, genes with strong positive predicted VP indeed appear to be repressed, as 

they are expressed significantly higher in other tissues compared to genes with similar 

expression level but low VP magnitude (analysis based on GTEx, Supplementary Fig. 12). 

Thus, variation potentials are not simply reflecting the magnitude of gene expression, but 

rather distilling expression properties from sequence.

We hypothesize that this connection between variation potentials and expression properties 

of genes is imposed by evolutionary constraint. Specifically, we propose that genes strongly 

enriched with mutations of predicted negative effects are under positive evolutionary 

constraint (i.e. decreasing expression of that gene is deleterious) and vice versa (Figure 4a 

third panel, c,d, Supplementary Fig. 13, Methods). Supporting this differential evolutionary 

constraints hypothesis, both variant allele frequencies in human populations and 

evolutionary conservation evidence supports divergent selection signatures for genes with 

putative positive and negative constraints (p < 1.6×10−14 in all cases by two-sided Wald test 

with logistic regression on coefficient of interaction term). Specifically, for putative positive 

constraint genes, variant sites predicted to decrease expression have lower allele frequency 

and higher evolutionary conservation, as compared to negative constraint genes, and vice 

versa (Figure 4d). These divergent selection signatures are not simply driven by gene 

expression levels, because randomly selecting genes with matching expression levels do not 

show differential selection (Supplementary Fig. 14). Moreover, genes with stronger inferred 

evolutionary constraints are significantly more enriched in GWAS disease genes 

(p=6.1×10−53 two-sided Wald test with logistic regression), indicating that changes in 

expression of these genes are more likely to lead to adverse consequences (Supplementary 

Fig. 15).
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Ab initio inference of disease risk alleles

With the inference of putative evolutionary constraints, we have collected key components 

for a regulatory disease mutation analysis framework that addresses both the impact of a 

variant on gene expression and the fitness impact of expression alterations (Figure 4a). 

Recognizing regulatory disease mutations is very challenging because both of these 

problems are difficult to address experimentally5. Our proposed computational sequence-

based approach addresses these problems genome-wide, even for mutations that have not 

been previously observed experimentally.

We thus assess the ability of our approach to predict disease risk ab initio from sequence. At 

the individual variant level, we predict whether a specific sequence alteration is likely to be 

deleterious or protective via integrating the expression effect and variation-potential-based 

constraint directionality through the constraint violation score (Methods). For example, if a 

variant causes a positively constrained highly expressed gene to substantially decrease 

expression, it is likely to be deleterious (Figure 4a fourth panel). We then evaluated our 

predictions on the curated pathogenic regulatory mutations in human gene mutation database 

(HGMD) and the prioritized putative causal LD SNPs derived from GWAS catalog18,28.

Most strong ExPecto predicted effect mutations from HGMD are predicted to decrease 

expression (Fig. 5a), and correspondingly, all of them are near genes with putative positive 

evolutionary constraints as would be expected from our findings above. Positive constraints 

are also consistent with the current understandings of these diseases as caused by deficiency 

of certain proteins, such as coagulation factor genes F7 and F9 for factor VII deficiency29 

and Haemophilia B respectively; PROC and PROS1 genes for blood clotting disorders 

caused by protein C deficiency and protein S deficiency; APOA1 and LDLR for 

hypolipoproteinemia and hypercholesterolemia caused by apolipoprotein deficiency and 

decreased receptor-mediated endocytosis of LDL cholesterol deficiency respectively. 

UNC13D, essential for intracellular trafficking and exocytosis of lytic granules is associated 

with hemophagocytic lymphohistiocytosis type 330. Decreased expression of the BTK gene, 

an essential gene for B cell development and maturation, causes agammaglobulinemia31. 

HNF1A mutation is well known as a major cause for maturity onset of diabetes (MODY)32 

and considered important in beta-cell differentiation33.

Only one HGMD disease mutation was predicted to strongly increase transcriptional activity 

and it is near a gene with putative negative constraints in all tissues, TERT (Fig. 5a). TERT 
encodes telomerase reverse transcriptase, and overexpression of TERT thus supports 

unconstrained proliferation. Indeed, mutations in the TERT promoter were found to be 

highly recurrent in 71% of melanoma samples34, as well as in many other cancer types 

including bladder and central nervous system cancers35, and many of these mutations 

generate new ETS binding sites and increase transcriptional activity in reporter assays, 

consistent with our predictions. Note that even though HGMD disease mutations are known 

to be deleterious, these results demonstrate that ExPecto can correctly predict the disease 

allele versus the non-disease allele without any prior knowledge of disease association.

To assess the potential for ExPecto to predict disease risk for relatively common variants in 

the population, we evaluated whether constraint violation scores were predictive for GWAS 
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risk loci. Positive violation scores suggest the alternative allele is likely more deleterious 

while a negative violation score suggests the reference allele is likely more deleterious. This 

GWAS evaluation standard directly includes both deleterious and protective variants (risk 

alleles are reference alleles for 37 loci, alternative alleles for 63 loci). Our approach is 

significantly predictive (p=0.002, Wilcoxon rank sum test, AUC = 0.67, Fig. 5b, 

Supplementary Data 3) of the known risk alleles detected from GWAS studies. This 

evaluation thus demonstrates that predicted effects that violate inferred constraints are 

predictive of risk alleles in GWAS, indicating that ExPecto can predict which allele is 

deleterious or protective without any prior variant-disease association information. Together 

our results suggest this approach as a promising direction for large-scale prediction of 

disease risks, which will be especially useful for interpreting the enormous amount of 

potential disease mutations for which there is with little or no prior knowledge.

Discussion

ExPecto thus provides robust and scalable ab initio, sequence-based prediction of variant 

effects, enabling genome-wide studies of human genomic variation and disease. We 

demonstrated that computational prediction of causal variants in trait-associated loci, 

including eQTLs and GWAS disease-associated loci, is capable of identifying causal 

variants, and this can be routinely performed at whole-genome level. Our approach can 

potentially be further combined with statistical models (reviewed in Pasaniuc & Price36) for 

further improvement on causal variant identification. Moreover, as the method is equally 

applicable to rare or common variants, it allows wider application to mutation space outside 

the power of traditional quantitative genetics.

The ExPecto expression models also make possible the probing of variation potentials and 

evolutionary constraints through in silico mutagenesis analysis. We expect these predictions 

of evolutionary constraints on gene expression to be especially valuable for understanding 

human disease by identifying the fitness consequence of expression alteration that are 

otherwise very difficult to study in human. We propose using variation potentials as a proxy 

for evolutionary constraints, and we show that with only sequence information, it is possible 

to predict the disease risk allele of HGMD regulatory mutations with very high accuracy and 

to identify GWAS risk alleles.

The prediction of expression effects and evolutionary constraints thus provides an end-to-

end computational framework for regulatory disease mutation analysis. While the ExPecto 

models are accurate, scalable, and robust, there is still potential for future improvement in 

both accuracy and coverage of predictable variants. More comprehensive chromatin 

profiling, especially of chromatin marks and transcription factor binding, additional data 

capturing ultra-distal regulatory sequences, especially those mediated by long-range 

interactions, and epigenetic inheritance mechanisms that affect expression independently 

from sequence, such as imprinting via DNA-methylation could be incorporated into the 

ExPecto framework and are likely important for improvement of sequence-based expression 

models.

Zhou et al. Page 9

Nat Genet. Author manuscript; available in PMC 2019 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the long run, we expect that sequence-based expression analysis will become an important 

part of research and clinical studies of whole genome sequences, especially for identifying 

clinically relevant non-coding variants and expression perturbations. Such analyses could, in 

the future, be used for grouping patients in drug and other treatment trials, disease 

subtyping, and eventually personalized treatment. At the same time, we expect that tapping 

into human genome evolution information, allowed by sequence-based expression modeling, 

will provide valuable insights required for the comprehensive understanding of the healthy 

and disease modes of human gene expression.

Online Methods

ExPecto framework architecture

The ExPecto sequence-based expression prediction framework includes three components 

that act sequentially (Figure 1a). First, a deep neural network epigenomic effects model 

scans the long input sequence with a moving window and outputs predicted probabilities for 

histone marks transcription factors, and DNase hypersensitivity profiles at each spatial 

position. Then a series of spatial transformation functions summarize each predicted spatial 

pattern of chromatin profiles to generate a reduced set of spatially transformed features 

(Supplementary Figure 1). Last, the spatially-transformed features are used to make tissue-

specific predictions of expression for every gene by regularized linear models.

The first component of ExPecto uses a deep convolutional neural network to transform 

genomic sequences to epigenomic features. Our approach generates a cell-type specific 

model for 2,002 genome-wide histone marks, transcription factor binding and chromatin 

accessibility profiles (based on training data from ENCODE and Roadmap Epigenomics 

projects45,46, Supplementary Data 4), substantially extending the deep learning-based 

method that we described previously11 with redesigned architecture and more features. 

Specifically, the model architecture was extended to double the number of convolution 

layers for increased model depth, broader genomic context was incorporated with increased 

window size (2000bp), and the new model was trained to predict twice as many regulatory 

features for over 200 cell types (Supplementary Note). Critically, this deep learning model 

does not use any mutation data for training. The deep convolutional neural network model 

predicts epigenomic features of a 200bp region, while also using the 1800bp surrounding 

context sequence. For each Pol II-transcribed gene, surrounding its representative 

transcriptional start site (TSS, see the ‘Identification of representative transcription start 

sites’ section below), the deep convolutional neural network model scans the genomic 

sequence between +20kb upstream and −20kb downstream to predict spatial chromatin 

organization patterns using a moving window with 200bp step size, yielding 200 spatial bins 

with a total number of 400400 features.

The second component of ExPecto is the spatial transformation module that reduces the 

dimensionality of the learning problem by generating spatially-transformed features 

(Supplementary Fig. 1). The spatial transformation module reduces the input dimensionality 

with ten exponential functions weighting upstream and downstream regions separately, with 

weights based on relative distance to TSS (transformed features with higher decay rate are 

more concentrated near TSSs). This effectively reduces the number of features 20 fold to 
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20020. The exponential functions were prespecified (based on empirical selection) and not 

learned during training. This spatial feature transformation followed by learning linear 

model retains the flexibility of learning spatial patterns, which is equivalent to learning a 

smooth nonlinear spatial pattern function f  constrained to the space of linear combinations 

of basis functions corresponding to the feature transformations.

Finally, to make tissue-specific expression predictions, spatially-transformed features are 

used to predict gene expression levels for each tissue (quantified by log RPKM) with L2-

regularized linear regression models fitted by gradient boosting algorithm47,48. Specifically, 

the full models including both spatial transformation and linear models are specified as 

below.

expression = ∑
d ∈ D

∑
i

pid ∑
k

1(td < 0) βup
ike

−ak
td

200bp
+ ∑

k
1(td > 0)βdown

ike

−ak
td

200bp
 

where pid is the predicted probabilities for chromatin feature i at region d relative to the TSS, 

and D represents the set of 200 × 200bp spatial bins within 20kb of the TSS. 1 represents the 

indicator function which equals one when the specified condition is satisfied and zero 

otherwise. td represents the mean distance of region d to the TSS. For example, the −200bp 

to 0bp bin has a distance of −100 bp and the −400bp to −200bp bin has a distance of 

−300bp. βup
ik and βdown

ik are the learned expression model coefficients of chromatin feature 

i and exponential function index k for upstream and downstream regions respectively. The 

decay constant for exponential function k is indicated by ak, where 

a = 0.01,     0.02,     0.05,     0.1,     0.2 . Note that model coefficients βup
ik and βdown

ik are 

shared across spatial bins indexed by d due to spatial transformation, thus significantly 

decreasing the number of fitted parameters (by 20 fold) and reducing ovefitting. All 

hyperparameters of ExPecto are chosen by empirical evaluations, including the number and 

values of exponential terms, model design, and window sizes, while all the neural network 

model weights and linear model coefficients are learned from data. The +/- 20kbp (40Kbp) 

window size around the TSS maximizes ExPecto accuracy. While smaller windows decrease 

prediction performance, increasing the window size to 50kb, 100kb or even 200kb gives 

negligible performance gain (Supplementary Fig. 16).

Application of ExPecto for sequence-based gene expression level prediction across 
tissues

While ExPecto models can be trained on any expression profile, here we used 218 tissue 

expression profiles from GTEx, Roadmap epigenomics and ENCODE projects. A 

pseudocount was added before log transformation (0.01, except for 0.0001 for GTEx tissues 

(which were averaged across individuals) due to high coverage from pooling multiple 

samples). The linear expression models were trained with L2 regularization parameter 
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lambda=100, shrinkage parameter eta=0.01 and basescore=2 for 100 rounds. The training 

and prediction time of ExPecto is detailed in Supplementary Table 3.

The gene-wise expression prediction performance was evaluated on whole chromosome 

holdout of chr8 (990 genes), which was withheld at all stages of the ExPecto training 

(sequences were not used for training either the linear expression models or the neural 

network regulatory effects model). We chose a whole chromosome holdout to provide a 

more conservative evaluation and minimize overlap of regulatory regions. To further 

minimize the possibility of overfitting through homology, we removed all chr8 genes with 

paralogs on other chromosomes, and this does not negatively affect performance (Spearman 

correlation 0.819 for all 990 chr8 genes, 0.821 for after removal of 184 paralogous genes).

For interpretation of tissue-specific signals captured by the models, the most informative cell 

type-specific sequence features from expression models were extracted as follows:

1
nk

∑
k

βik
c − 1

nkncells
∑
c'

∑
k

βik
c'

βik
c  represent in the coefficient for chromatin feature i, exponential function k in cell type/

tissue c. nk represents the number of exponential functions ( nk = 10 in this case, considering 

both upstream and downstream coefficients), and ncells represents the number of all cell type/

tissue models. c' is index for cell type/tissues. To enable comparison across features from 

different datasets, we used models retrained with a uniform pseudocount of 0.0001 for all 

tissue or cell types. The top features with higher than tissue-average coefficients were then 

selected.

Variant expression effect prediction

Gene expression effect is naturally estimated by the difference of predicted expression levels 

for reference and alternative allele, which is measured by the predicted log fold change. As 

the expression effect models are linear combinations of regulatory feature predictions, 

expression effect prediction computation can be simplified to a function of the variant 

chromatin effects p and distance to TSS t

effect p, t = ∑
δ   ∈   Δ

∑
i

piδ
alt − piδ

ref  ∑
k

1(t < 0)  βup
ike

−ak
t + δ

200bp + ∑
k

1(t > 0)βdown
ike

−ak
t + δ

200bp

where piδ
ref and piδ

alt are the predicted probabilities for chromatin feature i with reference 

allele or alternative allele at position δ relative to the variant position, βup
ik and βdown

ik are 

the expression model coefficients of chromatin feature i and exponential function index k for 

upstream and downstream variants, respectively. The decay constant for exponential 

function k is indicated by ak and the distance to TSS is indicated by t. Notably the predicted 

variant regulatory effect includes both effects at the variant site and at adjacent positions (as 
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long as the variant is within range of 2000bp context sequence window for that region), thus 

the variant expression effect considers regulatory effects in 9 positions specified by 

Δ = 0bp,   − 200bp,   − 400bp,   − 600bp,   − 800bp,   + 200bp,   + 400bp,   + 600bp,   + 800bp   .

For small INDELs, we compensate or truncate the alternative allele sequence equally on 

both sides to total 2000bp.

Evaluation of ExPecto tissue-specific expression effect predictions

The GTEx v6 eQTLs, the 1000 Genomes phase 3 variants, and GWAS Catalog data were 

downloaded from the websites (see URLs). HGMD regulatory mutations were from HGMD 

professional version 2014.4 and filtered to category DM, which represents “disease-causing/

pathological” mutations reported to be disease causing in the original literature.

The in vitro reporter assay eQTL effects were predicted with modifications for adapting to 

the difference between in vitro reporter assay and in vivo expression, as only a short element 

is cloned to a fixed position upstream of a reporter gene in reporter assay. Specifically, we 

used regulatory effect models trained on 230bp input window instead of 2000bp, and only 

the in-place chromatin effect but not effect on adjacent regions were computed, as these 

sequences were not cloned to the reporter vector. The position relative to TSS is fixed at 

−100bp.

We evaluated ExPecto prioritization of GWAS loci by examining their replication of 

prioritized loci across studies. In Supplementary Fig. 17 we compare ExPecto to DeepSEA11 

(which predicts just the epigenomic component of the variant effect) in this task. ExPecto 

predicts variant effects on gene expression while DeepSEA can identify variant effects that 

do not lead to significant expression change.

Computation of GWAS linkage disequilibrium SNPs

To systematically screen for SNPs in linkage disequilibrium with the reported GWAS lead 

SNPs from GWAS catalog, we first computed linkage disequilibrium for all 88 million 

variants in 1000 Genomes phase 3 genotype data (see URLs), which includes >99% of SNP 

variants with a frequency of >1% for a variety of ancestries49. Linkage disequilibrium 

between SNPs in five populations EAS, SAS, AMN, AFR and EUR were computed with 

PLINK v1.90b. In total, we found 390,085 variants in LD r2 >0.75 with 15571 distinct 

GWAS catalog reported variants. We then used ExPecto to systematically predict expression 

effects for all LD variants to their nearest TSS.

Experimental validation of prioritized candidate GWAS causal SNPs

We experimentally validated the top three ExPecto-prioritized variants that had no prior 

evidence for functionality, and which were associated with four immune-related diseases in 

seven GWAS studies. Specifically, we used a luciferase assay to compare the ability of risk 

versus non-risk alleles to drive expression for the above ExPecto prioritized variants and the 

seven lead SNPs reported by the corresponding GWAS studies.

All genomic sequences were retrieved from hg19 human genome assembly. For each risk 

allele (reference or alternative), Genewiz synthesized a 260 nucleotide fragment: 230 was 

Zhou et al. Page 13

Nat Genet. Author manuscript; available in PMC 2019 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



human genomic sequence and 15 nucleotides matched each flank of the plasmid cloning 

sites (Supplementary Table 4). Each fragment was cut with KpnI and BglII and cloned into 

pGL4.23 (minP firefly luciferase vector) (Promega) cut with the same enzymes. For 

luciferase assay, 2×104 BE(2)-C cells were plated in 96-well plates, and 24 hours later 

transfected with Lipofectamine 3000 (L3000-015, Thermofisher Scientific) and 75ng of 

variant-containing pGL4.23 plasmid (Supplementary Table 4), and 4ng of pNL3.1 NanoLuc 

plasmid, for normalization of transfection conditions. 42 hours after transfection, 

luminescence was detected with the Promega NanoGlo Dual Luciferase assay system 

(N1630) and BioTek Synergy plate reader. Four to six replicates per variant were tested in 

each experiment. The experiment was performed 2-5 times for the variants. For each 

sequence tested, the ratio of firefly (variant) luminescence to NanoLuc (transfection control) 

luminescence was calculated and then normalized to empty vector. Statistics were calculated 

by combining fold over EV values from each biological replicate.

Systematic profiling of variation potentials and evolutionary constraints by in silico 
mutagenesis

We systematically predicted all (over 140 million) possible single nucleotide substitution 

variations across all human promoters within 1kb of the representative TSS on both sides. 

Gene-wise variation potentials were summarized by two measures: directionality, which is 

computed as the sum of predicted log fold-changes for all mutations per gene, and 

magnitude, which is computed as the sum of all absolute predicted log fold-changes. We 

find that genes with negative variation potential directionality (i.e. mutations tend to cause a 

decrease in tissue-specific expression) are actively expressed in the modeled tissue (see 

Figure 4b, Supplementary Fig. 11). We infer that these genes are under positive evolutionary 

constraint, and thus are vulnerable to inactivating mutations. On the other hand, we find that 

expression of genes with positive variation potential (i.e. mutations cause an increase in 

tissue-specific expression) is repressed in the modeled tissue (see Figure 4b, Supplementary 

Fig. 11). We infer that these genes are under negative evolutionary constraint, and thus are 

vulnerable to activating mutations. Note that evolutionary constraints cannot simply be 

inferred from gene expression levels (Supplementary Fig. 14).

We use the directionality score to measure the tendency of the potential mutation effect to be 

biased toward positive or negative, which we propose indicates negative and positive 

evolutionary constraints, respectively (Supplementary Figure 13). The distribution of mean 

predicted mutation effects across genes was modeled as a mixture of a Gaussian null 

distribution, a positive constraint component and a negative constraint component. While the 

true null distribution is unknown, a conservative estimate of empirical null distribution can 

be obtained by assuming the other components are only observed at the two tails and 

estimating a Gaussian distribution using central quantiles of the data, similar to the idea used 

for measuring local FDR50. We fit the empirical null distribution with the truncated 

Gaussian MLE method implemented in the locfdr R package50. With empirical null 

distribution estimation and density estimation of overall distribution of gene-wise average 

predicted effects, we can then compute probabilities of genes belonging to the positive or 

negative constraint components. Probability > 0.5 for each component is used for assigning 

genes to putative positive or negative evolutionarily constrained genes.
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Analysis of conservation and allele frequency for variants

For estimating recent divergence in the modern human population, we used allele 

frequencies among the 1000 Genomes project phase 3 individuals. For estimating divergence 

from human-chimpanzee common ancestor, the proportion of divergent sites was computed 

from the high confidence divergence sites from51. For estimating divergence among 10 

primate species (including humans), we computed proportion of accelerated evolution sites 

based on primates phylop scores (see URLs). Accelerated evolution sites were decided with 

the threshold of phyloP < −2.3 which corresponds to p-value<0.005 for accelerated 

evolution.

Ab initio inference of disease risk alleles

We used the ExPecto-prioritized GWAS LD variants (as described above) for risk allele 

prediction. We included GWAS LD variants with r2 > 0.75 in a matched 1000 Genomes 

population, and variants for which the risk allele is ambiguous (different GWAS studies 

pointing to conflicting risk alleles) were excluded. Only GWAS studies for disease or 

disease related traits were included. The constraint violation score was computed as the 

product of the predicted variant effect of the prioritized LD variant and the variation 

potential directionality score of the nearest TSS. The median constraint violation score 

across all non-cancer tissue or cell types for each variant was used.

Identification of representative transcription start sites

Most expression profiling datasets were quantified to gene level, as it is often challenging to 

achieve accurate quantification of TSS expression level from short read sequencing. Even 

though training expression model should ideally utilize TSS-specific expression 

quantification, gene level expression measured by RNA-seq or microarray are usually a good 

approximation of transcription level from the representative TSS of each gene52,53, and are 

usually measured with higher sequencing depth. We determined representative TSS for each 

Pol II transcribed gene based on quantification of aggregated cap analysis of gene 

expression(CAGE) reads in the FANTOM5 project54. Specifically, a CAGE peak is 

associated to a GENCODE gene if it is within 1000bp from a GENCODE v24 annotated 

transcription start site (lifted to GRCh37 coordinates). Peaks within 1000bp to rRNA, 

snRNA, snoRNA or tRNA genes were removed to avoid confusion. Next, we selected the 

most abundant CAGE peak for each gene, and took the TSS position reported for the CAGE 

peak as the selected representative TSS for the gene. For genes with no CAGE peaks 

assigned, we kept the annotated gene start position as the representative TSS. The selected 

TSSs showed significantly higher conservation level compared to the annotated gene start 

positions (p = 5.7×10−8, Supplementary Fig. 18).

Statistical analysis

All details of the statistical tests are specified in the associated text or figure legend. 

Association between two variables is tested via linear regression (or logistic regression if 

one the variable is categorical) with the null hypothesis that the slope coefficient is zero. For 

comparing evolution and population genetics signatures between putative positive and 

putative negative constraint genes, we test the null hypotheses that the coefficient of the 
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interaction term is zero in a logistic regression model specified by the formula 

y     e   +   t   +   e   ·   t,. where y is a binary variable representing evolutionary or 

population genetic information about a site, e represents the ExPecto predicted expression 

effect, t represents the inferred putative constraint type, and e   ·   t represents the interaction 

term.

Life Sciences Reporting Summary

Further information on experimental design is available in the Life Sciences Reporting 

Summary.

Data and code availability

The data supporting the findings of the study are available within the paper and its 

supplementary information files. The source code is available (see URLs).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Deep learning-based sequence model accurately predicts cell type-specific gene 
expression
a) Schematic overview of the ExPecto sequence-based gene expression prediction 

framework. The predictive model contains three components, a deep convolutional neural 

network trained on chromatin profiling data that converts sequence to regulatory features, a 

spatial feature transformation module, and a linear model that predicts gene expression from 

transformed nonlinear regulatory representations.

b) Sequence-based gene expression predictions on holdout genes are highly correlated with 

RNA-seq observations. Predicted log RPKMs on 990 genes from the holdout chromosome 
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chr8 (x-axis) were compared with experimentally measured log RPKMs (y-axis) in each of 

the six example tissues. Spearman correlations between predicted and observed values are 

shown.

c) Cell type-specific expression models capture transcription tissue-specificity. The heatmap 

shows, on holdout genes, correlations between cell type specific expression profiles 

measured by log fold change over cell-type-average and the sequence-based predicted log 

fold changes.

d) Predicted mutation effects from in silico mutagenesis of promoter-proximal regions of 

23,779 genes showed substantial variation, as indicated by color. The predicted effects for 

different variants at the same position were averaged. Genes were sorted by gene-wise 

average predicted mutation effects. Only positions with larger than 0.5 average absolute log 

fold change were shown. −1000 is upstream of the TSS and +1000 is downstream (by base 

pair). The whole blood model predictions are shown.
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Figure 2. Tissue-specific prediction of expression-altering variations
a). eQTL direction prediction accuracy increases with predicted magnitude of variant effect. 

Each line shows performance for one eQTL study. x-axis represents the predicted effect 

magnitude cutoff, as measured by absolute log fold-change. y-axis represents the accuracy 

of predicting the expression change directionality for the variants above the corresponding 

effect magnitude.

b) GWAS loci with stronger predicted effect variants are more likely to be replicated by 

separate studies. The generalized additive model fitted curve of replication probability was 

shown with 95% confidence interval. x-axis shows the max predicted expression absolute 

log fold-change across all non-cancer tissues. A GWAS locus is considered as replicated if it 

is within 10kb to the reported SNP of a different study.
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Figure 3. Prioritize putative causal variants from GWAS loci with expression effect prediction
(a, c, e). ExPecto expression effect prediction prioritizes putative causal SNPs in 

inflammatory bowel disease (a), Behcet’s disease(c), and chronic hepatitis B infection (e) 

GWAS loci. Linkage disequilibrium r2 scores between the reported variant and LD variants 

in the study population were shown in the top panel (variants are indicated by the × 

symbols) and the predicted expression effects (maximum across tissues) were shown in the 

bottom panel (variants are indicated by the dot symbols). The upper panels (GWAS-

associated variants) showed the reported SNP(s) from the GWAS studies, indicated by the 

dashed lines, and all variants in LD with this variant (r2 > 0.25). The lower panels (ExPecto 

predicted effect) showed the predicted effects of all LD variants and the ExPecto-predicted 

causal variant is indicated by the dashed line.

(b, d, f) Luciferase reporter assay test verified predicted differential transcriptional 

regulatory activities of sequence elements with the risk allele and with the non-risk allele of 

prioritized variants, while showing no difference for the GWAS lead variants. Three top 

prioritized variants near IRGM37–42 (b), CCR143(d), and HLA-DOA44 (f) showed 

differential transcriptional regulatory activity in the predicted direction while the reported 

GWAS SNPs show either no transcriptional activation activity or no detectable activity 

alteration. Luciferase activity is normalized by the empty vector, which is indicated by the 

dotted line. Statistical significance was based on two-sided t-test. Each allele was tested with 
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at least 11 total replicates from 3 independent experiments (n=11 for the rs7616215 non-risk 

allele, n=12 for all other alleles). Central values of the boxplot represent the median, box 

extends from 25th to 75th percentiles, and whiskers extend to the maximum and minimum 

values.

Zhou et al. Page 23

Nat Genet. Author manuscript; available in PMC 2019 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Variation potential is predictive of gene regulatory specificity, activation status, and 
evolutionary constraints
a). Schematic overview of association between variation potential, gene expression, and 

evolutionary constraints.

b). Gene expression specificity and activation status can be predicted from the magnitude 

and directionality of gene variation potential. The position of each gene set is computed as 

the cumulative mutation effects (directionality) and cumulative absolute mutation effects 

(magnitude) across all genes in the set. Each gene set is colored by the directionality of 
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variation potential. See Supplementary Fig. 11 for relationship between VP and gene-wise 

expression properties. Whole blood model predictions are shown as examples here.

c). Inference of genes with putative directional evolutionary constraints from variation 

potentials. Each dot represents a gene. x- and y- axis shows the cumulative predicted 

mutation effects (log fold-change) of positive and negative impact mutations within 1kb off 

TSS, respectively. See Methods and Supplementary Fig. 13 for details in determining 

threshold for calling putative constrained genes. This example shows predictions from the 

subcutaneous adipose tissue model.

d). Evolution and population genetics signatures show differential selective pressure for 

mutations in putative positive and negative constraint genes across evolutionary time scales. 

Selection pressures across mutations with different predicted effects (x-axes) are estimated 

based on proportion of high variance sites among primate species (phyloP < −2.3 which 

corresponds to p < 0.005 for acceleration; left panel y-axis; primates), divergent sites 

between human and the inferred human-chimpanzee common ancestor (mid panel y-axis; 

human-chimpanzee), and common variant sites (minor allele frequency > 0.001) in human 

populations (right panel y-axis; human population). The error bars show 90% confidence 

intervals.
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Figure 5. Ab initio prediction of allele-specific disease risk integrating predicted expression 
effects and inferred evolutionary constraints
a). HGMD regulatory disease mutations with strong predicted effects are violators of the 

putative evolutionary constraints. y-axis shows the ExPecto predicted effects of annotated 

deleterious mutations (maximum across tissues). x-axis shows the inferred evolutionary 

constraints measured by variation potential directionality score (sum of gene-wise predicted 

mutation effects within 1kb to TSS) of the maximum predicted effect tissue. Negative effect 

mutations with nearest gene being putatively constrained to be high expressing are shown in 

blue and positive effect mutations with nearest gene being putatively constrained to be low 

expressing are shown in red.

b). Prioritized GWAS LD variant constraint violation score is predictive of whether the 

reference allele or the alternative-risk allele is the risk allele. The y-axis and x-axis shows 

the true positive rate and false positive rate of the receiver-operating characteristic, which 

shows prediction performance of constraint violation score for the GWAS disease risk allele. 

The constraint violation score is the product of predicted variant effect and the variation 

potential directionality score. The median constraint violation score across all non-cancer 

tissue or cell types for each variant were used.
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