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Chronic myelogenous leukemia (CML) is a type of cancer with a series of characteristics
that make it particularly suitable for observations on leukemogenesis. Research have
exhibited that the occurrence and progression of CML are associated with the
dynamic alterations of histone modification (HM) patterns. In this study, we analyze
the distribution patterns of 11 HM signals and calculate the signal changes of these
HMs in CML cell lines as compared with that in normal cell lines. Meanwhile, the
impacts of HM signal changes on expression level changes of CML-related genes
are investigated. Based on the alterations of HM signals between CML and normal
cell lines, the up- and down-regulated genes are predicted by the random forest
algorithm to identify the key HMs and their regulatory regions. Research show that
H3K79me2, H3K36me3, and H3K27ac are key HMs to expression level changes of
CML-related genes in leukemogenesis. Especially H3K79me2 and H3K36me3 perform
their important functions in all 100 bins studied. Our research reveals that H3K79me2
and H3K36me3 may be the core HMs for the clinical treatment of CML.

Keywords: chronic myelogenous leukemia, histone modification, gene expression level changes, H3K79me2,
H3K36me3

INTRODUCTION

Chronic myelogenous leukemia (CML) is a malignant hematopoietic stem cell disease of the bone
marrow and owns a series of characteristics that make it particularly suitable for observations on
leukemogenesis (Liu et al., 2015; Radivoyevitch et al., 2020; Wu et al., 2020). It is characterized
by the (9:22) translocation and resultant production of the constitutively activated BCR-ABL

Abbreviations: CML, chronic myelogenous leukemia; HM, histone modification; RF, random forest algorithm; TSS,
transcription start site; DEGs, differential expression genes; RPKM, reads per kilobase of exon model per million mapped
reads; AUC, area under the receiver operating characteristic curve; IncMSE, percent increase in the mean squared error.
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tyrosine kinase (Vos et al., 2016; Wang et al., 2016; American
Cancer Society, 2019). As a subtype of leukemia, the annual
incidence of CML is one to two cases per 100,000 adults,
accounting for 15–25% of newly diagnosed adult leukemia cases
and 14% of overall leukemia (American Cancer Society, 2019). In
the past two decades, due to the discovery of targeted drugs, such
as imatinib mesylate (O’Brien et al., 2003; Rousselot et al., 2007),
the 5 years survival rate of CML has increased from 31% for
patients diagnosed in the early 1990s to 68% for those diagnosed
from 2007 to 2013 (American Cancer Society, 2019). Though
the application of targeted drugs is expected to overcome CML,
the persistence of leukemia stem cells indicates that additional
strategies for treating CML need to be researched.

Studies have revealed that the pathogenesis of CML is
associated with the activation of oncogenes and inactivation
of tumor suppressor genes. The loss-of-function mutations of
these CML-related genes are linked to the dynamic alterations of
histone modifications (HMs) (Zhang and Li, 2017, 2020; Zhang
et al., 2017, 2018). As an integral part of HMs, histone acetylation
and methylation are the most investigated modifications that
are reversible, and the aberrations of HMs and the mutations
of their modulators are associated with leukemogenesis (Zhang
et al., 2004; Funata et al., 2017). The loss of histone H3 and
H4 acetylation is attributed to the imbalanced recruitment of
histone deacetylases and results in transcription repression of
tumor suppressors in leukemia (Esteller, 2007). For example,
promoter histone hypoacetylation leads to PDH1 silencing (Ma
et al., 2010) and decreases the mRNA and protein level of BCR-
ABL in CML and LAMA-84 cells (Nimmanapalli et al., 2003),
while hyperacetylation induces the expression of p21 and/or p27
(Polakova et al., 2013).

As reported in a series of recent publications (Bu et al.,
2018; Dhall et al., 2019), the traditional methods used to
identify core HMs and their regulatory regions are based on
immunoassay techniques. Although these methods are sensitive
and precise, they require expensive instrumentation, time-
consuming processes, well-trained personnel, and site-specific
antibodies. In this study, we first analyze the distribution
differences and employ statistical analyses for 11 HM signals
in CML cell lines as compared with that in normal cell lines.
On this basis, we explore the effects of HM signal changes in
various genomic regions on gene expression changes. Finally,
based on the signal changes of HMs in leukemogenesis, random
forest (RF) algorithm, and subset construction, the key HMs
and genomic regions are identified. Our study provides a better
understanding of the impacts of HMs on gene expression
level changes in CML and theoretical guidance for the clinical
research of CML.

MATERIALS AND METHODS

Data
The human genome location information (hg19) is downloaded
from the UCSC database. Genes encoding mature messenger
RNA are chosen out. To avoid the possibility that some genes
may be the alternative transcripts of the same gene, only one gene

with the same name is kept. The genome-wide profiles of 11 HMs
and polyA plus RNA-seq data in GM12878 (B-lymphoblastoid
cell, normal) and K562 (CML cell, cancer) are deposited in
the ENCODE database. The corresponding accession numbers
are displayed in Supplementary Table S1. For visualization, the
raw bam-format data is converted to bed format by using the
BEDtools software (Quinlan and Hall, 2010).

Formulation of the Histone Modification
Signal Levels
For the i-th gene, the reads number of the k-th HM in DNA
regions flanking the transcription start site (TSS) (−5 to 5 kb)
is normalized by Eq. (1).

Hk
i = (hki × 109)/(hk × L) (1)

in which Hk
i represents the normalized signal level, and hki is the

reads number of the k-th HM mapped into the DNA regions
flanking the TSS of the i-th gene. hk denotes the k-th HM
sequencing depth, L is the length of the DNA regions flanking the
TSS. 109 is used to keep the consistent magnitude with RPKM (in
the process of calculating RPKM, the unit of the exon length is
kilobase and the counting unit of mapped reads is million).

To further investigate the signal distributions and roles of 11
HMs in CML, we divide the DNA regions flanking the TSS into
100 bins, each of 100 bp in size. Then, the signals of HMs are
normalized by using the following Eq. (2),

Hk
ij = (hki,j × 109)/(hk × Lj) (2)

Where Hk
ij represents the signal level of the k-th HM in the j-th

bin of the i-th gene. hki, j is the total reads that the k-th HM locates
in the j-th bin of the i-th gene, and Lj is the length of the j-th bin.
The HM signal levels in DNA regions flanking the TSS or in each
bin are averaged for biological replicates.

Correlation Analysis of Histone
Modification Signals and Gene
Expression Level Changes
For analyzing the relations between HM signals in different bins
and gene expression level changes, we first use the “DEGSeq”
R package to calculate the RPKM value of each RefSeq gene in
normal and CML cell lines through polyA plus RNA-seq data.
The RPKM value (reads per kilobase of exon model per million
mapped reads) describes gene expression level (Mortazavi et al.,
2008). Next, the differential expression genes (DEGs) between
normal and CML cell lines are identified by the “DESeq2” R
package. A total of 2,267 genes with adjusted p < 0.01 and
log2(FC) > 1 are defined as up-regulated DEGs (up-DEGs),
and 2,567 genes with adjusted p < 0.01 and log2(FC) < −1
are judged as down-regulated DEGs (down-DEGs). Then, for
the up-/down-regulated DEGs, according to the ratios of the
HM signals/gene expression levels in CML cells to that in
normal cells, we implement Spearman correlation analysis of
HM signal changes in each bin and gene expression level
changes. Similarly, the relations among any pair of HMs in
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DNA regions flanking the TSS were also performed by Spearman
correlation analysis.

The Prediction of Up-DEGs and
Down-DEGs in Chronic Myelogenous
Leukemia
For exploring the impacts of various HMs on the expression level
changes of leukemia-related genes, we employ the signal changes
of HMs to predict the up- and down-DEGs in CML through the
random forest algorithm. The random forest algorithm is built by
bootstrap samples and designed to accommodate non-linearities
between the prediction variables and response, which can
robustly avoid the over-fitting phenomenon (Mehrmohamadi
et al., 2016). The studied DEGs are randomly selected with two-
thirds as the training set and the rest as the testing set. The
random forest model is built in the training set and subsequently
applied to the testing set to predict the up- and down-DEGs.
To test the stability of these predictions, the above-mentioned
procedures are repeated 10 times. Based on the average sensitivity
(Sn) and specificity (Sp), we calculate the area under the receiver
operating characteristic curve (AUC). The AUC is finally adopted
to measure the impacts of HM signal changes on the expression
level changes of leukemia-related genes.

Sn = 1−NU
D

/
NU

Sp = 1−ND
U
/
ND

(3)

Where NU and ND are the number of up- and down-DEGs in the
testing dataset, respectively. NU

D is the number of up-DEGs that
are incorrectly recognized as down-DEGs, and ND

U is the number
of down-DEGs that are incorrectly recognized as up-DEGs.

Statistical Analysis
The interaction network among HMs is built by Cytoscape
software (Shannon et al., 2003). Student’s t-test is utilized,
and P-values less than 0.01 are considered to be statistically
significant. To measure the contributions of each of the 11 HMs
in the same bin to the expression level change of CML-related
genes, the percent increase in the mean squared error (IncMSE)
is calculated. Due to the non-sense of “IncMSE” values when
they are considered outside of the current bins, we rank the
information parameters by converting their “IncMSE” values to
orders. Information parameters with lower rank values indicate
higher contributions. Cluster analysis is employed by Euclidean
distance (Liberti et al., 2014). The R/Bioconductor software
packages and “Origin_9.1” are used for data statistical analysis
and result visualization.

RESULTS

Histone Modification Signal Levels Vary
Obviously in Chronic Myelogenous
Leukemia
Recent investigators have revealed that the pathogenesis of
CML is closely related to the dynamic changes of HMs
(Zhang and Li, 2017, 2020; Zhang et al., 2017, 2018). In this
research, according to Eq. (2) and Student’s t-test, we calculate
and investigate the distributions and statistical difference (p-
value) of HM signals across the 100 bins within normal and
CML cell lines. The results are shown in Figure 1. Among
the 11 HMs, except H2AFZ and H3K4me2, the rest of the
HMs display remarkably dynamic changes in CML cells as

FIGURE 1 | Statistical differences of histone modification signal levels between normal and chronic myelogenous leukemia cells across the 100 bins within the DNA
regions flanking transcription start site (TSS). Position 0 represents the TSS.
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compared with that in normal cells. The changes of H2AFZ
signals mostly appear in the downstream regions of TSS, and
H3K4me2 signal changes are significantly concentrated in the
upstream regions of TSS.

Correlation Analysis of Histone
Modification in Various Regions and
Gene Expression Level Changes in
Chronic Myelogenous Leukemia
Previous studies and our findings have reported that the changes
in HM signals play key roles in gene expression changes (Zhang
et al., 2011, 2018; Liu et al., 2013; Zhang and Li, 2017, 2020).
To investigate the impacts of each HM in different bins on
gene expression changes, we first identify the DEGs between
normal and CML cells. Next, for the up- and down-DEGs, we
calculate the ratios of HM signals/gene expression levels in CML

cells to that in normal cells, respectively, and then the relations
between HM signal changes and gene expression changes are
implemented through Spearman correlation analysis. The results
are shown in Figures 2A,B and Supplementary Figure S1.

For the down-DEGs, except H3K27me3, H3K4me3, and
H4K20me1, the signals of other HMs reduce significantly in
most bins within CML cells (Supplementary Figure S1A).
The signals of H3K27me3 increase in all 100 bins within
CML cells, and the ratio of the H3K27me3 signals in CML
cells to that in normal cells reaches 1.7 in the −31st bin.
The signals of H3K4me3 rise from the −15th to the 50th
bins, and the maximum ratio is 1.9 in the 5th bin. The
H4K20me1 signals are slightly enhanced from the −19th to
the 50th bins. Cluster analysis exhibits that the impacts of
HM signal changes on the expression level changes of down-
DEGs are divided into two categories. The first category includes
H3K27me3, H3K9me3, and H4K20me1, which are repressive

FIGURE 2 | Correlation analysis between histone modification (HM) signal changes and gene expression changes. Spearman correlation analysis of HM signal
changes and gene expression changes for down-regulated differentially expressed genes (DEGs) (A) and up-regulated DEGs (B). (C) Receiver operating
characteristic (ROC) curves for H3K79me2, H3K36me3, and H3K27ac. (D) The distributions of area under the ROC curve (AUCs) for all possible combinations of
HMs. The blue curve describes the best prediction accuracy of the one-HM until 11-HM models. The frequency of each HM in the studied three-HM model (E) and
four-HM models (F). (G) AUCs in the 100 bins flanking the transcription start site. (H) The rank for the predictive ability of each HM across the 100 bins. A HM with a
lower rank (higher IncMSE) value indicates a higher predictive ability for gene expression changes.
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epigenetic markers (Segal et al., 2018), while other HMs that
promote gene expression are classified into the second category
(Bernt et al., 2011). Our study shows that the increased signals
of HMs in category 1 and the decreased signals of HMs
within category 2 together lead to the down-regulation of gene
expression (Figure 2A).

For the up-DEGs, except H3K27me3, the signals of other
HMs are increased across all bins within CML cell lines
(Supplementary Figure S1B). For example, the maximum ratio
for H3K4me3 is 4.9 in the −9th bin, and the maximum ratio
for H3K79me2 reaches 3.4 in the −27th bin. The signals of
H3K27me3 slightly decrease in all 100 bins within CML cells.
Cluster analysis displays that the influences of HM signal changes
on the expression changes of up-DEGs are also divided into two
categories. The reduced signals of HMs (especially H3K27me3)
in category 1 and the increased signals of HMs in category 2
together induce the up-regulation of gene expression levels, and
those HMs in category 2 have stronger inducibility within the
upstream regions of TSS (Figure 2B).

H3K79me2 and H3K36me3 Exert Their
Important Regulatory Functions on Gene
Expression Level Changes in All 100
Genomic Regions
Although HMs within two categories cooperatively regulate gene
expression, their functions are not identical (Budden et al., 2014,
2015). For further exploring which HMs contribute more to the
expression level changes of leukemia-related genes, based on the
ratios of HM signals in CML cells to that in normal cells across
the 100 bins, we predict the up- and down-DEGs by RF model.
The AUC is used to measure the prediction abilities.

Of the 11 MHs, H3K79me2, H3K36me3, and H3K27ac
achieve better prediction results, and the AUCs are greater
than 0.85 (Figure 2C). Therefore, H3K79me2, H3K36me3,
and H3K27ac may be the more crucial HMs in inducing the
expression changes of leukemia-related genes. Across the 100
bins, H3K79me2 signals in the −13th, −9th, −7th, −18th, and
−8th are relatively important for the expression regulation of
leukemia-related genes; H3K36me3 signals in the −37th, −31st,
−41st, −40th, and −42nd are more crucial for the expression
changes of leukemia-related genes; H3K27ac signals in the −5th,
−6th,−2nd,−3rd, and−8th play key roles in predicting the up-
and down-DEGs in CML (Supplementary Table S2).

To validate this finding, the ratios of HM signals in CML
cells to that in normal cells within the DNA regions flanking
the TSS are calculated (see Eq. 1) and regarded as the input
parameters to predict the up- and down-DEGs. A total of
2,047 RF models are built based on all possible combinations
of HMs by choosing n out of the 11 HMs (n = 1, 2, . . .,
11). The predicted results of all combinations and the best
prediction accuracy of the one-, two-, and until 11-HM models
are displayed in Figure 2D. As shown, although models with
more HMs are generally more predictive, the predictive powers
will reach the summit when the models are with three types of
HM. The best three-HM model includes H3K4me2, H3K36me3,
and H3K79me2, and the prediction accuracy is AUC = 0.92.

Though it is important to identify the best combination of
HMs, we also need to consider the presence of HM which
can effectively increase the predictive accuracy. We thus focus
on the combinational models of three types of HMs with
AUCs reaching at least 95% of the AUC of the 11-HM model.
By counting the frequency of each HM in these combination
models, we find that H3K79me2, H3K36me3, and H3K27ac
appear more frequently (Figure 2E). The same analysis for four-
HM models is supplemented, and analogous consequences are
found (Figure 2F).

Besides this, we further analyze which genomic regions and
which HMs in these genomic regions contribute more to the
expression level changes of leukemia-related genes. For the 11
HMs in the same bin, we take the ratios of each HM signal
in CML cells to that in normal cells and select them as the
inputs of the RF model to predict the up- and down-DEGs.
The predicted results (AUCs) are shown in Figure 2G. Within
the upstream 5 kb regions of TSS, the AUCs change slightly,
while in the downstream regions of TSS the AUCs change
dramatically and the further away from the TSS, the worse the
predictive results are. The best predictive result appears in the
−21st bin. These results show that the upstream regions of TSS
(especially the −21st bin) may contribute more to the regulation
of gene expressions. Meanwhile, by calculating the IncMSE values
for each of the 11 HMs in the same bin, we measure their
contributions to the prediction of up-DEGs and down-DEGs
(see Figure 2H and Table 1). It is noteworthy that H3K79me2
plays the most important role in almost all 100 bins, followed by
H3K36me3. H3K27ac is relatively important for the regulation
of gene expressions from the −20th to the 10th bins. H3K4me1
exerts its regulatory function from the 10th to the 50th bins.
H3K4me3 has a crucial impact on gene expression changes in the
−50th to−10th bins and the 20th–50th bins.

DISCUSSION

Understanding the roles and influences of HM signal changes
on the expression level changes of leukemia-related genes can
help to reveal new tumorigenesis mechanisms and therapeutic
strategies. In this study, by analyzing the alterations of HM
signals and their impacts on gene expression changes, we notice
that H3K79me2, H3K36me3, and H3K27ac have crucial effects
on gene expression changes. The signals of these three HMs
are significantly increased or decreased in 100 bins flanking
the TSS for the up- or down-DEGs within CML cells, and the
signal changes of these three HMs are positively correlated with
the expression changes of leukemia-related genes, especially for
H3K79me2 and H3K36me3.

As important HMs, H3K79me2 is related to DNA replication
initiation (Fu et al., 2013), maintaining enhancer–promoter
interactions (Godfrey et al., 2019), transcriptional regulation,
cell cycle regulation, and DNA damage response (Anh Tram
and Zhang, 2011). H3K36me3 plays its important functions in
alternative splicing (Luco et al., 2010), DNA mismatch repair
(Li et al., 2013), chromatin remodeling (Pfister et al., 2014),
transcription elongation (Carvalho et al., 2013; Wen et al., 2014),
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TABLE 1 | The most important histone modifications in each of the 100 bins.

Bin Imp_HM Bin Imp_HM Bin Imp_HM Bin Imp_HM

−50 H3K79me2 −25 H3K79me2 1 H3K79me2 26 H3K79me2

−49 H3K79me2 −24 H3K79me2 2 H3K79me2 27 H3K79me2

−48 H3K79me2 −23 H3K79me2 3 H3K79me2 28 H3K79me2

−47 H3K79me2 −22 H3K79me2 4 H3K79me2 29 H3K79me2

−46 H3K79me2 −21 H3K79me2 5 H3K79me2 30 H3K79me2

−45 H3K79me2 −20 H3K79me2 6 H3K79me2 31 H3K79me2

−44 H3K79me2 −19 H3K79me2 7 H3K79me2 32 H3K36me3

−43 H3K79me2 −18 H3K79me2 8 H3K79me2 33 H3K4me1

−42 H3K79me2 −17 H3K79me2 9 H3K79me2 34 H3K4me1

−41 H3K79me2 −16 H3K79me2 10 H3K79me2 35 H3K4me1

−40 H3K79me2 −15 H3K79me2 11 H3K79me2 36 H3K4me1

−39 H3K79me2 −14 H3K79me2 12 H3K79me2 37 H3K79me2

−38 H3K79me2 −13 H3K79me2 13 H3K79me2 38 H3K4me3

−37 H3K79me2 −12 H3K79me2 14 H3K79me2 39 H3K79me2

−36 H3K79me2 −11 H3K79me2 15 H3K79me2 40 H3K4me1

−35 H3K79me2 −10 H3K79me2 16 H3K79me2 41 H3K36me3

−34 H3K79me2 −9 H3K79me2 17 H3K79me2 42 H3K79me2

−33 H3K79me2 −8 H3K79me2 18 H3K79me2 43 H3K79me2

−32 H3K79me2 −7 H3K79me2 19 H3K79me2 44 H3K79me2

−31 H3K79me2 −6 H3K79me2 20 H3K79me2 45 H3K4me1

−30 H3K79me2 −5 H3K79me2 21 H3K79me2 46 H3K79me2

−29 H3K79me2 −4 H3K79me2 22 H3K79me2 47 H3K79me2

−28 H3K79me2 −3 H3K79me2 23 H3K79me2 48 H3K79me2

−27 H3K79me2 −2 H3K79me2 24 H3K79me2 49 H3K79me2

−26 H3K79me2 −1 H3K79me2 25 H3K79me2 50 H3K4me3

and DNA double-strand break repair (Carvalho et al., 2014).
These functions are related to chromatin readers with proline–
tryptophan–tryptophan–proline domains, which interact with
methylated lysine residues (Vermeulen et al., 2010), and the
Setd2-mediated pattern changes of H3K36me3 and H3K79me2
are associated with transcriptional deregulation of a novel set
of genes including ASXL1 and ERG (Bu et al., 2018). Not
surprisingly, the broad roles of H3K79me2 and H3K36me3 make
them increasingly important in treating developmental defects
and diseases. Besides that, our previous studies (Zhang and
Li, 2017, 2020; Zhang et al., 2018) demonstrate that 86.2% of
expressed sequence tags are enriched in gene body regions.
Of these tags in the gene body regions, 90.8% of tags are
distributed in intron regions. These results indicate that the signal
changes of H3K79me2 and H3K36me3 enriched in the gene body
regions may induce the variations of chromatin accessibility and
afford environments which provide greater flexibilities for gene
expression regulation.

H3K27me3 is tightly associated with the repression of
transcription in embryonic stem cells and neural, epidermal,
and hematopoietic stem cells (Wang et al., 2009; Young et al.,
2011; Gasiuniene et al., 2019; Dunican et al., 2020). It occurs
together with H3K4me3 (activating mark) in regions referred
to as bivalent domains, which often appear in the promoter
regions of lineage-specific transcription factors (Azuara et al.,
2006; Bernstein et al., 2006). Bivalent domains consist of these
two HMs simultaneously, which can keep genes poised to

respond to developmental cues (Igolkina et al., 2019; Zeng et al.,
2019). Among the down-DEGs, we observe that H3K27me3 and
H3K4me3 occur together and have marked increases from the
−20th to the 50th bins. The down-regulation of down-DEGs
indicates that leukemogenesis may prompt H3K27me3 to exert
a stronger inhibitory effect than the activation of H3K4me3.

We also assess the impacts of combinations of HMs on
gene expression changes and observe that several core HMs
can effectively regulate gene expression. A possibility underlying
these phenomena may be the functional similarities among
these HMs. We thus carry out pairwise Spearman correlations
for the signals of 11 HMs in the up- and down-DEGs.
For the up-DEGs, there are three remarkable clusters that
positively link to each other and promote gene expression
(Figure 3A). They are (H3K36me3, H3K79me2), (H3K4me3,
H3K4me1, H3K9ac, H3K27ac), and (H2AFZ, H3K4me2). For
these three clusters, the pairwise Spearman correlations are
greater than 0.6 (Figure 3C). Among the down-DEGs, two
significant clusters that positively correlate to each other and
activate gene expression are identified (Figure 3B). They
are (H3K4me2, H3K79me2, H3K9ac, H3K27ac) and (H2AFZ,
H3K4me1, H3K4me3). The pairwise Spearman correlations
are also greater than 0.6 for these two clusters (Figure 3D).
Overall, our research indicates that signal alterations of
several core HMs are sufficient to regulate gene expression.
Among these HMs, H3K79me2, and H3K36me3 exert their
important regulatory roles in each of the 100 bins, and
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FIGURE 3 | Correlation between various histone modifications (HMs) in the up-regulated and down-regulated differentially expressed genes (DEGs). Heat map of
Spearman correlations for the signals of 11 HMs in the up-regulated DEGs (A) and down-regulated DEGs (B). The interaction network among HMs whose Spearman
correlations are greater than 0.6 in the up-regulated DEGs (C) and down-regulated DEGs (D). The bolder the line, the stronger the correlation that it represents.

H3K27ac performs its regulatory roles from the −20th
to the 10th bins.
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