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To understand basic principles of living organisms one has to know many

different properties of all cellular components, their mutual interactions

but also their amounts and spatial organization. Live-cell imaging is one

possible approach to obtain such data. To get multiple snapshots of a cellu-

lar process, the imaging approach has to be gentle enough to not disrupt

basic functions of the cell but also have high temporal and spatial resolution

to detect and describe the changes. Light microscopy has become a method

of choice and since its early development over 300 years ago revolutionized

our understanding of living organisms. As most cellular components are

indistinguishable from the rest of the cellular contents, the second revolution

came from a discovery of specific labelling techniques, such as fusions to flu-

orescent proteins that allowed specific tracking of a component of interest.

Currently, several different tags can be tracked independently and this

allows us to simultaneously monitor the dynamics of several cellular com-

ponents and from the correlation of their dynamics to infer their

respective functions. It is, therefore, not surprising that live-cell fluorescence

microscopy significantly advanced our understanding of basic cellular pro-

cesses. Current cameras are fast enough to detect changes with millisecond

time resolution and are sensitive enough to detect even a few photons per

pixel. Together with constant improvement of properties of fluorescent

tags, it is now possible to track single molecules in living cells over an

extended period of time with a great temporal resolution. The parallel devel-

opment of new illumination and detection techniques allowed breaking the

diffraction barrier and thus further pushed the resolution limit of light

microscopy. In this review, we would like to cover recent advances in live-

cell imaging technology relevant to bacterial cells and provide a few

examples of research that has been possible due to imaging.

This article is part of the themed issue ‘The new bacteriology’.
1. Imaging techniques
Because a typical bacterial cell is only 1 mm wide and up to 5 mm long, live-cell flu-

orescence imaging of bacteria has its specific challenges. Conventional wide-field

epifluorescence microscopy is to date the most commonly used method to study

subcellular features in bacteria. The lateral resolution of this technique is limited

to approximately 200–250 nm by the diffraction barrier and the axial resolution

is limited to approximately 500–700 nm. Laser scanning confocal microscopy

(LSCM) can produce improved axial resolution and contrast in samples thicker

than the focal plane (approx. 0.5 mm) owing to the focused laser beam and the pin-

hole in front of the detector that significantly reduces out-of-focus haze. However,

considering the small size of bacteria, major disadvantages of LSCM are the scan-

ning process, which limits temporal resolution, and the need for more excitation

energy resulting in increased photobleaching. Therefore, LSCM is usually applied

when three-dimensional (3D) sectioning of a sample is required to study inter-

actions of pathogens with eukaryotic cells [1–3] or organization of bacterial

biofilm structures [4,5]. The signal-to-noise ratio can be significantly improved
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Table 1. Comparison of imaging techniques. TIRF, total internal reflection fluorescence; HILO, highly inclined laminated optical sheet; STED, stimulated emission
depletion; SIM, structured illumination microscopy; PALM, photoactivation localization microscopy; STORM, stochastic optical reconstruction microscopy. For
references, see text.

diffraction-limited super-resolution

wide-field confocal TIRF HILO STED SIM PALM/STORM

lateral

resolution x,

y (nm)

200 – 250 180 – 250 200 – 250 200 – 250 �50 �50 – 100 �10 – 20

axial resolution

z (nm)

500 – 700 500 – 700 �100 500 – 700 �20 – 100 �200 – 300 �20 – 100

limitations poor contrast weaker intensity surface

only

uncertain

depth

high

phototoxicity

data processing, image

reconstruction artefacts

slow, data

processing

advantages fast, sensitive optical

sectioning

fast,

sensitive

high

contrast

fast, no data

processing

all probes highest

resolution
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in both LSCM and epifluorescence microscopy using deconvo-

lution algorithms, although this requires a considerable

computing power and may be time consuming [6–8]. Total

internal reflection microscopy (TIRF) and highly inclined lami-

nated optical sheet microscopy (HILO) exploit advantages of

using different sample penetration depths. This enables single

molecule tracking in or close to the membrane using TIRF

[9,10] and visualization of cytoplasmic organized structures

via HILO [11–13] in live bacteria.

One of the most important developments during the last

two decades was clearly the advent of super-resolution

imaging [14]. Breaking the diffraction barrier has enabled ima-

ging of structures in eukaryotic as well as bacterial specimens

with highest precision. Depending on the super-resolution

approach being used, lateral resolution of single objects can

be pushed to 45–62 nm in structured illumination microscopy

(SIM) [15], to approximately 50 nm in stimulated emission

depletion (STED) [14] and to approximately 20 nm in photo-

activated localization microscopy (PALM) or stochastic

optical reconstruction microscopy (STORM) [16,17]. All these

techniques have certain advantages and disadvantages that

need to be considered for experimental set-up, and live-cell

imaging has been especially challenging for several reasons

(see table 1 or a more detailed description in Yao & Carballido--

Lopez [18]). When super-resolution data are processed and

analysed, it is very important to ensure that no artefacts are

generated during the process by choosing adequate controls

[19,20]. Arguably, the most popular approach for live-cell

super-resolution imaging to date is SIM, because common

fluorophores can be used. Moreover, SIM allows the generation

of a reconstructed super-resolution image with acquisition

times of 0.1 to a few seconds [15,21,22]. So far, STED imaging

of live cells has been much more challenging due to the high

energy of light that is required for the process of STED and

the resulting phototoxicity and bleaching [15,23]. New

approaches that use extremely stable fluorophores [24,25] or

gated-STED (G-STED) [26,27] are now able to overcome this

limitation. Although the application of localization-based tech-

niques is currently limited in live-cell imaging by comparably

long acquisition times, the use of small molecules and their

relatively poor applicability to bacterial systems, as well as
photon yield of fusion proteins such as mEos or PAmCherry,

several improvements have been implemented in recent years

to bypass these problems [28–30]. In addition, considerable

progress has been made using different PALM modes in bac-

terial live-cell imaging [19,31–34]. For further reading, we

recommend an excellent review by Yao & Carballido-Lopez

highlighting diverse aspects of bacterial live-cell imaging

techniques and applications [18].

The combination of different cutting-edge microscopy

approaches as well as complementation with other technologies

now presents opportunities to study cells in unprecedented detail.

Recently developed techniques include correlated cryo-PALM-

CET (cryo-electron tomography) [35], cryogenic super-resolution

correlative light and electron microscopy (csCLEM) [36], correla-

tive multicolour 3D SIM and STORM [37], instant live-cell

super-resolution imaging via nanoinjection-based labelling [38],

scanning electrochemical microscopy combined with micro-3D

printing [39] and correlative live-cell and super-resolution

microscopy [40]. However, these recent technological advances

have so far been applied primarily in eukaryotic cells and adap-

tation for bacterial cell imaging could be challenging, because of

the smaller size and volume and the specific procedures

(e.g. washing of excess dye) needed to successfully generate

high-quality images.
2. Tags
Green fluorescent protein (GFP) has been used as genetically

encoded fluorescent reporter for gene expression and protein

localization studies since the first description in 1994 [41]

and variants developed now cover the whole spectrum of vis-

ible light—from the 355 nm excitable Sirius [42] to 702 nm

excitable near-infrared iRFP720 [43]. Importantly, one should

consider that the application of specific tags and the desired

readout, namely fluorescence, might be disturbed by auto-

fluorescence of inherent compounds such as flavin or

NADH/NADPH. Depending on the nature of the compounds

or their presence in different species, background fluorescence

could be generated at different wavelengths [44]. Usually, this

is circumvented by application of tailored filter sets in modern



Table 2. Recommended labels for different techniques. þþ, very good;
þ, good; (þ), possible, but not demonstrated yet; —, poor/not applicable;
FP, fluorescent protein; pa-FP, photoactivatable FP; ps-FP, photoswitchable
FP; pc-FP photoconvertible FP; TC-tag, tetracystein-tag; UAA, unnatural
amino acid incorporation; FbFPs, flavin binding fluorescent proteins; FA-tag,
fluorescence-activating tag. For references see text.

diffraction
limited

super-resolution

STED SIM
PALM/
STORM

‘conventional’

FPs

þþ þþb þþb —

pa-FPs/ps-

FPs/pc-FPs

þ þ þc þþ

SNAP-/ CLIP-/

HALO-taga

þþ þþ þþ þþ

TC-tag þþ (þ) (þ) þ
UAAa þþ þþ þþ þþ
FbFPs þ — (þ) þ
FA-tag þþ (þ) (þ) (þ)

aOnly in combination with small organic dyes.
bHigh fluorophore stability and brightness required.
cOnly with pc-FPs.
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microscopes that allow the discrimination of fluorescence of a

particular tag from the cellular autofluorescence. One of the

major drawbacks of commonly used fluorescent proteins

(FPs) is their tendency to oligomerize when they are fused to

a protein of interest. This may result in the formation of foci-

like structures, usually at the cell pole, or alter the dynamics

of the protein of interest. This problem is especially pro-

nounced for proteins that form oligomeric structures [12].

This most probably happens due to avidity effects where the

FP acts as scaffold promoting unspecific aggregation [12]. To

circumvent this problem, monomeric versions of many FPs

were generated by introducing charged residues (e.g. the

A206 K mutation in GFP variants) [45]. Oxygen dependence

of many commonly used fluorophores has been an issue pre-

venting experiments in anaerobic conditions [46] and long

maturation time as well as low photostability has hindered

observation of processes in real time [47]. The size of GFP

and its derivatives (approx. 25–30 kDa) presents another

downside, because it might interfere with protein folding,

function or localization of fusion proteins. Furthermore, com-

pared with organic fluorophores, FP quantum yield (F) is

much lower, which limits their use in several applications,

for example, in super-resolution microscopy. Such demanding

approaches thus are pushing the development of alternatives.

In this section, we discuss selected probes, focusing

especially on recent developments and applications for

bacterial live-cell imaging (see also table 2).

(a) Recent advances in natural cofactor-based
fluorescent proteins

Near-infrared FPs were engineered from bacteriophytochromes

that incorporate biliverdin, allowing deep-tissue imaging in
living organisms due to long excitation/emission wavelengths

of light with very low absorption [48,49]. Almost all variants of

near-infrared FPs, however, are dimeric and the first monomeric

variants described were later found to be dimeric at higher

concentrations [50]. Only recently has a true monomeric

version (mIFP) been developed and used for in vivo imaging in

eukaryotic cells by Yu et al. [50].

A very interesting class of FPs that are now becoming more

and more popular is flavin-based fluorescent proteins (FbFPs).

These proteins harbour LOV (light, oxygen or voltage sensing)

domains that bind flavin mononucleotide (FMN) thus render-

ing blue-light absorbing FPs. Overall, they are small, pH and

thermostable FPs that also perform well under anaerobic

conditions. One FbFP variant known as miniSOG can addition-

ally generate reactive oxygen species, making it suitable for

applications like correlated light and electron microscopy

[51,52]. One of their major advantages might be, however,

that FbFPs are particularly small (12–16 kDa) compared with

GFP and its variants (25–30 kDa). Recently developed mono-

meric versions of these proteins exhibit quantum yields

between 0.2 (phiLOV2.1) [53] and 0.51 (CreiLOV) [54]. These

proteins are promising candidates to circumvent the problem

of steric hindrance of a larger GFP molecule. Interestingly,

Losi et al. [55] demonstrated that the LOV domain-containing

photoreceptor YtvA of Bacillus subtilis can be used for super-

resolution microscopy (Fluorescence PhotoActivation Localiz-

ation Microscopy or FPALM) in bacteria. Nevertheless, to

date there are few bacterial in vivo studies using FbFPs thus

more are needed to assess the full capacity of LOV-based repor-

ters [54]. A detailed review on FbFPs can be found in Buckley

et al. [56].

Another member of natural cofactor-based FPs is UnaG, a

small (approx. 14 kDa) protein of the Japanese eel (unagi),

which was found to bind bilirubin with high affinity and

specificity [57]. This non-covalent binding of the cofactor

induces fluorescence even under anaerobic conditions [57].

Even though bacteria do not produce bilirubin, it can be

added to the medium as it can pass the membrane and

bind to UnaG in the cytosol [57].
(b) Chemical labelling of proteins or polypeptides
All previously mentioned examples of proteins exploit the inter-

actions with natural occurring substrates. Interestingly, there is a

variety of peptide or protein tags that are non-fluorescent on

their own, but are able to specifically bind synthetic compounds.

This class includes, for example, so-called fluorogen-activating

proteins (FAPs) [58,59]. FAPs were initially restricted to cell

surface labelling [58] but have been evolved to also target intra-

cellular proteins of interest in recent years [60–62]. A targetable

near-infrared photosensitizer (TAP) FAP that has been

described by He et al. allows researchers to study protein inacti-

vation, targeted-damage introduction and cellular ablation with

unprecedented precision [63].

Tagging systems also belonging to this category are SNAP-

tag [64], CLIP-tag [65] and HALO-tag [66]. SNAP-tag labelling

is very popular in the eukaryotic field, partially due to the com-

mercial availability of many different substrates that are often

tailored for specific uses. One of the latest additions to the

palette of SNAP-/CLIP-tag or HALO-tag fluorogens are

near-infrared silicon-containing rhodamine (SiR) dyes that

can be used in super-resolution applications [67]. Interestingly,

in 2011, Sun et al. described the fast-labelling variant SNAPf,
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which allows labelling without or with very little washing [68].

Because most chemical labelling approaches require multiple

washing steps in order to reduce fluorescence signal of

unreacted probes, thus potentially limiting several

applications, the use of this tag might be advantageous.

SNAP-tag labelling of bacterial fusion proteins for fluor-

escence microscopy has initially been performed with fixed

Escherichia coli cells due to the high amount of dye that remains

in the bacterial cells after staining and the corresponding excessive

washing needed [12]. Imaging of SNAP-tag fusion proteins in live

E. coli cells has been achieved using quenched SNAP-tag sub-

strates [69]. However, labelling efficiency varied significantly

and a comparably low signal-to-noise ratio was reported [69].

When these substrates were further analysed in eukaryotic cells,

highly unspecific staining of cellular structures was observed

[70]. Altogether, SNAP-tag labelling seems to be a very efficient

and reliable system in eukaryotic cells, however, imaging of live

bacterial cells expressing SNAP-tag labelled proteins still faces

considerable challenges. Nevertheless, a few groups have

achieved SNAP-tag labelling in living bacteria [31,71,72] and con-

tinuous development of fluorescent compounds as reported

recently by Grimm et al. [73] might in fact increase the amount

of possible applications and make this system more attractive

for the prokaryotic field. Furthermore, specific HALO-tag label-

ling of cytoplasmic and periplasmic proteins in E. coli was quite

recently achieved in a study by Ke et al. [74].

Considerable progress on a fluorescence-activating tag has

been recently achieved by engineering variants of cellular reti-

noic acid binding protein II (CRABPII). CRABPII is a small

protein (15.6 kDa) that belongs to the family of intracellular

lipid-binding proteins and mutants have earlier been shown

to form iminium-based pigment with retinal, thus rendering

a colorimetric pH sensor [75]. Yapici et al. have further

manipulated this system by generating CRABPII variants

that covalently bind cell-permeable merocyanine aldehyde,

which is non-fluorescent on its own [76]. This leads to the for-

mation of an iminium and generates a permanent resonating

cation, resulting in a red-shifted cyanine dye [76]. The CRAB-

PII/chromophore complex is pH stable and has red-shifted

emission (605–619 nm). In addition to that, it not only yields

high quantum efficiency (up to 39%) but also exhibits slightly

faster photobleaching when compared with mRFP [76]. In

their study, Yapici et al. further applied this technique to

stain live E. coli cells expressing a mutant CRABPII. Fluor-

escence appeared highly specific (minimal background) and

very fast (less than 1 min), supporting in vitro assayed proper-

ties of the tag [76]. Altogether, this fluorescence-activating tag

seems to be a very useful tool, harbouring different properties

to commonly used FPs and thus making it an interesting new

probe for imaging approaches in live cells.

Quite recently, a yellow fluorescence-activating and absorp-

tion shifting tag (Y-FAST) has been evolved from PYP-tag [77].

Y-FAST is an approximately 14 kDa, monomeric protein

fusion tag that binds a non-toxic, cell-permeable fluorogen

(HBR or HMBR). HBR and HMBR exhibit strong yellow fluor-

escence when bound to Y-FAST and excited with blue light.

Moreover, these compounds can be obtained relatively easily

by one-step chemical synthesis. A key advantage of Y-FAST is

that binding of the substrate is instantaneous (milliseconds),

highly specific and also fully reversible. Binding of H(M)BR to

Y-FAST significantly increases quantum yield and also induces

an absorption red shift. Owing to the remarkable properties and

reaction dynamics it is applicable to various systems/
organelles/cell types, allowing, for example, the following of

protein synthesis in near real-time or enabling demanding

in vivo multiplex imaging experiments. On top of that, the

authors mention that Y-FAST should in principle behave as a

blinking fluorophore and thus may be also used in various

super-resolution approaches [78].

(c) Bioorthogonal labelling
Site-specific labelling of proteins using click chemistry, incor-

poration of unnatural amino acids (UAA), deprotection

reactions and ligand-directed chemistry is gaining increas-

ing attention due to nearly unlimited possibilities to track

molecules in living cells. To date, a number of these approaches

have been successfully applied in live-cell imaging of eukary-

otic and bacterial cells [79–85]. However, the field still faces

several challenges regarding binding specificity, toxicity, syn-

thesis or availability of compounds and cell permeability of

reagents, which need to be addressed in the future [86].

One of the most promising bioorthogonal labelling systems

is the tetracystein (TC) tag with its substrates FLAsH and

ReAsH. FLAsH and ReAsH are membrane-permeable biarseni-

cal compounds that are non-fluorescent when they are bound to

ethane dithiol (EDT2). The FLAsH-/ReAsH-EDT2 compounds

specifically bind to TC sequences that can be fused to a given

protein of interest. Upon binding, the TC motif displaces bis-

EDT and the tag becomes highly fluorescent, while unbound

compounds stay non-fluorescent thus minimizing the need

for excessive washing [87]. Another advantage of this technique

is that possible stereochemical hindrance in fusion proteins can

be avoided due to the small size of TC tags. TC sequences pre-

ferentially used are six amino acid (CCPGCC) [87] or 12 amino

acid tags (HRWCCPGCCKTF and FLNCCPGCCMEP) [88].

Importantly, it is also possible that the compounds may bind

to other thiol-rich proteins in the cell and thereby generate back-

ground signals, which in turn would require extended washing

procedures. This can be easily evaluated using a non-labelled

control. Moreover, fusion of cysteine-rich sequences to a given

protein of interest might cause incorrect disulfide-bond for-

mation and thus loss of protein integrity [89]. Besides that,

FLAsH and ReAsH tags can be used in pulse chase exper-

iments, chromophore-assisted light inactivation experiments

(CALI), Förster resonance energy transfer (FRET), correlated

light and electron microscopy (CLEM) and PALM [90–94].

TC-FLAsH/ReAsH has, for example, been used to visual-

ize synthetic glycomodule peptides in plants [95], to follow

secretion of Type 3 Secretion System effectors of Shigella flex-
neri into the host cell [96] and also to study lipid raft

association of Ebola virus protein VP40, which is a crucial

component of virus assembly and budding [97]. Moreover,

a number of studies have applied this technique to localize

TC-tagged proteins in live E. coli and Caulobacter crescentus
cells using fluorescence microscopy [98–101].

Very comprehensive reviews highlighting the latest biortho-

gonal labelling strategies can be found in the references

[86,102,103].
3. Fluorescence microscopy as a tool to answer
biological questions

Live-cell fluorescence microscopy of bacteria has allowed

researchers to understand many fundamental biological
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processes. Here, we highlight a few examples to illustrate

the impact of recent progress in live-cell imaging. We also

recommend the following detailed reviews: [104–107].

(a) Cell shape
One of the most studied systems in bacteria is the cell

shape-determining programme that leads to the formation

of rod-shaped cells. Key components of this system are the

actin homologous proteins Mbl/MreB/MreBH, which form

the ‘bacterial cytoskeleton’. Observations based on fluor-

escence microscopy studies enabled researchers to develop

a picture of how bacteria are able to generate and maintain

the three-dimensional rod shape during growth and division.

Early fluorescence microscopy studies found that Mbl formed

dynamic helical filaments, ‘rotating’ inside bacterial cells

[108]. From then on, many studies followed showing filamen-

tous and rotating MreB/Mbl proteins and the first links to

cell wall synthetic machinery were found. In 2011, however,

the picture changed when three studies showed that MreB

formed dynamic patches rather than relatively long fila-

mentous structures, that the movement depended on

peptidoglycan synthesis and that it was rather circumferential

by using TIRF [9,10] and a similar approach [109]. By the end

of 2012, Swulius & Jensen [110] showed that the filamentous

helix observed with the YFP-MreB fusion in E. coli was

indeed an artefact caused by the YFP tag. Using RFP fused to

an internal loop of MreB and a combination of electron and

light microscopy approaches, their data further supported the

model of native MreB forming patches or short filaments

[110]. However, application of cutting-edge super-resolution

microscopy in B. subtilis and cryo-electron microscopy in

C. crescentus in the following years by two groups provided

strong evidence for the existence of filamentous MreB structures

guiding the insertion of new cell wall material [111,112]. Inter-

estingly, Treuner-Lange et al. recently elucidated a new role of

the actin homolog MreB by studying focal adhesion-related

gliding motility in Myxococcus xanthus. Using a fluorescence

microscopy-based approach, the authors found that the cyto-

skeleton protein functions not only as scaffold in PG

synthesis, but also independently acts as a scaffold that recruits

components of the Agl-Glt gliding machinery like MglA, a Ras-

like small G-protein [113]. Therefore, these results raise the

exciting possibility that G-protein–cytoskeleton interactions

are a universally conserved feature [113].

(b) Secretion systems
Bacterial secretion systems evolved to deliver proteins from the

bacterial cytosol, where they are synthesized, to the extracellu-

lar space or directly across the target cell membrane. These

secretion systems have a diverse structure and mode of action

[114]. In recent years, live-cell fluorescence microscopy has

been used to understand the localization, assembly and

dynamics of these systems.

(i) Type II
The type II secretion system secretes proteins from periplasm to

the extracellular space through an outer-membrane secretin

by a piston-like mechanism using a periplasmic filamentous

pseudopilus [115]. Fluorescence imaging was used to localize

two components of the inner membrane platform and revealed

that in Vibrio cholerae, EpsC and EpsM form several discrete foci
on the cell periphery [116]. This localization was dependent on

the presence of several critical components of the T2SS and the

number of foci correlated with level of expression and secretion

activity of the T2SS. It was also noted that upon overexpression,

these two components had a tendency to relocalize to the cell

pole.

(ii) Type III
Here, we will note only a few interesting examples of studies

that used fluorescence microscopy techniques to unravel

important aspects of injectisome and flagellar functionality.

Flagella are an example of the most sophisticated cellular

machines in bacteria known to date. Microorganisms are able

to rotate these long filaments in order to propel themselves

through liquid environments. Flagella are formed via sequen-

tial self-assembly of the motor, hook and filament [117]. The

motor complex is associated with a protein secretion apparatus

that is energized by proton motive force and exports hook and

filament components through the cell envelope [118]. Live-cell

imaging was mainly used to understand the assembly and

dynamics of these systems. For example, a combination of

TIRF and FRAP showed that there are 22 copies of MotB

protein in the flagellar motor of E. coli and that these com-

ponents are dynamically exchanged with the pool of MotB in

the membrane [119]. In 2011, Li & Sourjik [120] used a variety

of fluorescence microscopy-based approaches to elucidate the

step by step assembly of the flagellar motor components in

E. coli, which led to a much more comprehensive view of this

intricate machinery.

The flagellar secretion machinery is closely related to the

syringe-like injectisome, a needle complex that is used by

many Gram-negative pathogens to inject their effectors into

eukaryotic host cells [121]. The underlying mechanism of

protein export in both systems is termed type III secretion

(T3S) [121,122]. Distribution around the bacterial cell and func-

tional assembly of the Yersinia type III secretion injectisome

was elucidated in two consecutive studies using fluorescence

microscopy and biochemical approaches [123,124]. Here,

Diepold et al. could demonstrate that two independently

assembled complexes, consisting of (i) membrane rings that

anchor the type III machinery in both bacterial membranes

and the peptidoglycan, as well as (ii) the inner membrane

complex and export apparatus get connected by the lipoprotein

YscJ. This merger ultimately renders a functional injectisome

[124]. Later, a combination of fluorescence microscopy and

in situ cryo-electron tomography showed that under secretion-

inducing conditions, injectisomes cluster within 100 nm and

that the number of injectisomes per cluster increases [125].

Another study by Diepold et al. using PALM and FRAP further

revealed the assembly of the cytosolic C-ring of the injectisome,

showing that the C-ring is dynamic under secreting condi-

tions but stable under non-secreting conditions [126]. Imaging

was also used to estimate the rate of effector secretion by

T3SS [96,127].

(iii) Type IV
The bacterial type IV secretion system (T4SSs) can translocate

both DNA and proteins into bacterial or eukaryotic target cells

[128]. Several components of T4SS were successfully tagged

with FPs and subcellularly localized in live Agrobacterium
tumefaciens cells [129,130]. GFP fusions to inner membrane

structural component VirB8, VirD4 ATPase, as well as substrate
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proteins VirD2, VirE2 and VirF were expressed from native

locus [129].

The combination of live-cell fluorescence microscopy and

immunofluorescence microscopy showed that T4SS localize

to the poles and also form helically arranged foci, colocaliz-

ing with MinD around the perimeter of the bacterial cell.

These data supported a model where multiple T4SSs

around the bacterial cell provide multiple sites for interaction

with the host cell surface [129].

(iv) Type VI
The type six secretion system (T6SS) is one of the bacterial

nanomachines that deliver proteins from the bacterial cytosol

directly to an extracellular space. It resembles a contractile

tail of a bacteriophage that is anchored to the bacterial

envelope. Interestingly, the sheath-tube complex of this nano-

machine was shown by cryo-electron microscopy to stretch

across the whole bacterial cytosol of V. cholerae. This allowed

monitoring sheath assembly and dynamics using live-cell

fluorescence microscopy [131]. Because the whole sheath is

composed of hundreds of copies of the same subunit, the over-

all brightness of labelled T6SS sheath is very high [131,132].

This enabled high-speed imaging of sheath assembly, contrac-

tion and disassembly. It was shown that the assembly as well

as disassembly by the T6SS-specific ATPase, ClpV, takes tens

of seconds [131,133]. The contraction was, however, shown

to be too fast to time resolve as it takes less than 5 ms [131].

Since the initial imaging of sheath assembly and disassem-

bly in V. cholerae, similar FP fusions were used to describe the

dynamics of T6SS in many more organisms such as E. coli,
Serratia marcescens, Pseudomonas aeruginosa and Burkholderia
[134–137]. Imaging of T6SS components was also crucial for

unravelling an intricate regulatory mechanism, which regulates

subcellular localization of T6SS assembly in P. aeruginosa
[136,138,139]. It was shown that P. aeruginosa cells are capable

of responding to attacks from neighbouring cells, likely by

sensing damage to their own membranes [136,138,140].

More recently, several components of the baseplate and

membrane complex were successfully tagged and localized

within bacterial cells [135,141,142]. This showed that only a

limited amount of initiation spots are present in a cell and

described the hierarchy of the assembly process. Live-cell

imaging played a crucial role in establishing the role of the

T6SS component TssA. The TssA protein was shown to

interact with many components of the baseplate, but also

the tube-sheath complex. Based on such data, it would be

possible to conclude that TssA is a member of the baseplate

complex. However, live-cell imaging showed that TssA is

involved in initiation of sheath assembly and, importantly,

that it is located at the end of a growing sheath [143].

(c) Functional compartmentalization in bacteria
Traditionally, eukaryotic cells have been considered as evolu-

tionarily complex cells because of their capacity to organize

cellular processes in organelles like the nucleus or mitochon-

dria, which makes them very efficient and robust. It was

assumed that prokaryotes are much simpler organisms due

to the apparent lack of such cellular compartments. However,

over 60 years ago it was discovered that bacteria contain so-

called micro-compartments (BMC) [144], which were later

found to spatially separate metabolic processes in those cells

[145,146]. In order to study the subcellular organization of
bacterial cells, the application of fluorescence microscopy and

electron microscopy techniques has been an invaluable tool

for researchers. Today, it is known that several bacterial species

are able to use different compartmentalization strategies in

order to gain a selective advantage [147]. For example, it was

shown that magnetosomes, the membranous organelles of

magnetotactic bacteria, are spatially organized via cytoskele-

tal filaments [148]. In addition, one of the most studied

phenomena in bacteria is the process of spore formation

that effectively divides the bacterial cell into two physically

separated compartments. Studying sporulation allowed

researchers to gain detailed insight into basic yet very sophisti-

cated and complex cellular processes such as morphogenesis

and the organization of spatio-temporal gene expression

[149]. In 2006, a study by Wagner et al. [150] indicated that

another type of physical compartment exists in Gram-negative

C. crescentus, separating cell body from stalk. Indeed, it was later

shown that stalked C. crescentus cells are compartmentalized by

formation of diffusion barrier complexes, which physically sep-

arate regions in the stalk to confer physiological advantages to

the growing cell by minimizing the effective volume [151]. A

different mechanism of spatio-temporal organization in bac-

terial cells is the generation of protein concentration gradients.

To date, several gradient systems including the Schizosaccharo-
myces pombe kinase Pom1 and its target Cdr2 regulating cell

size and homeostasis, the C. crescentus division inhibitory

protein MipZ and its target FtsZ, the E. coli ParA and cognate

ParB–parS complex controlling plasmid segregation and the

polar oscillation of Min system ensuring septum formation at

midcell in E. coli have been characterized in more detail and

recently reviewed [152–154]. Remarkably, the oscillating

Min- and FtsZ/FtsA-systems of E. coli were found to form

self-organized patterns on the cellular membrane during cell

division in an energy-dependent manner [154].

The placement of the cell division machinery at midcell in

combination with regulatory mechanisms such as nucleoid

occlusion enables bacteria to efficiently coordinate replication

and segregation of their chromosomes in a spatio-temporal

manner [155]. Interestingly, Montero Llopis and colleagues

were able to demonstrate that mRNA translation can also

be spatially organized in bacteria that use the chromosome

matrix as a template [156]. Fluorescence microscopy-based

approaches have contributed significantly to gaining detailed

insight into chromosome dynamics in recent years. Overall,

the most commonly used model organisms to study these

systems are B. subtilis, C. crescentus and E. coli. Some of the

most recent advances contributing to a more detailed charac-

terization of chromosome dynamics include two studies

describing the importance of the spatio-temporal organiz-

ation of the Min and nucleoid occlusion system in B. subtilis
[157,158] and a study by Fisher et al. describing the 3D organ-

ization of the E. coli chromosome with high temporal

resolution by using four-dimensional imaging [159]. Remark-

ably, knowledge about the bacterial nucleoid and division

proteins was recently applied to assess the efficiency of new

FP-fusion proteins with the focus to provide new guidelines

for multicolour imaging in bacterial cells [160]. Furthermore,

Ptacin et al. have shown that the scaffold protein PopZ of

C. crescentus generates a 3D subcellular microdomain,

which can influence the segregation of centromeres by mod-

ulating ParA ATPase activity [161]. More recently, another

study in C. crescentus has elucidated a mechanism of how

DNA double-strand breaks (DSBs) could be repaired during
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chromosome resegregation [162]. Here, the authors used an

inducible restriction enzyme to introduce DSBs and then

monitored key players of the segregation mechanism using

time lapse microscopy. This enabled them to observe that

DSB repair occurred independent of the proximity to the

origin of replication and also during ongoing DNA replica-

tion, thereby showing that chromosomes exhibit very

dynamic movements to promote repair and maintain integ-

rity in bacteria [162]. Intriguingly, it was shown that after

sudden chromosome loss, bacteria are still able to grow,

divide and synthesize proteins for a considerable amount of

time [163]. The authors of this study also mention the possibility

that these so-called ‘DNA-less bacteria’ could function as a

novel vaccination strategy [163]. Altogether, using fluorescence

microscopy in many studies has established a very

good understanding of these systems. To further refine the

understanding of chromosome dynamics, however, researchers

ultimately will have to turn to advanced super-resolution

techniques [164].

Eukaryotic cells contain a variety of subcellular compart-

ments to spatially separate diverse cellular processes. This

also includes the cellular membrane, which contains so-

called lipid rafts [165,166]. These microdomain platforms

are constituted by certain lipids such as cholesterol and

sphingolipids and contain a specific set of proteins, mainly

related to signal transduction and protein trafficking. The

integrity of lipid rafts is very important for the functionality

of associated signalling networks and disruption of raft integ-

rity can lead to severe physiological defects with various

implications in health and disease [167–169]. Today, it is

known that bacteria also harbour different types of lipid

domains in their membrane to generate microenvironments

for localization and activity of specific proteins [170]. This

includes functional membrane microdomains (FMMs)

described initially in B. subtilis, which are constituted by

hydrophobic lipids, contain flotillin-like proteins and thus

are postulated to be the bacterial equivalent to eukaryotic

lipid rafts [171]. Recently, fluorescence and super-resolution

microscopy-based approaches were used to demonstrate

that bacteria organize a heterogeneous population of FMMs

in the membrane via differential flotillin scaffold localization

and thus are able to spatially and temporally separate the
organization of different signal transduction networks [172].

Intriguingly, it has been demonstrated that in addition to

genetic regulation, oxidative phosphorylation (OXPHOS)

complexes of E. coli are spatially organized in the cellular

membrane via different mechanisms: (i) by the formation of

supercomplexes [173], (ii) polar segregation [174], and

(iii) localization in membrane microdomains [175]. As flotil-

lins, the marker proteins of FMMs, have been shown to act

as molecular protein scaffolds [172,176] and also co-occur

and directly interact with OXPHOS complexes [172,177], it

seems likely that these complexes might be organized in

FMMs via flotillin activity [178].

(d) Outlook
Altogether, the few examples mentioned in this review illus-

trate why fluorescence microscopy is one of the most

important tools to explore biological processes in living

cells. In addition, a number of super-resolution imaging

systems are now commercially available, facilitating access

to the super-resolution field especially for researchers

without previous expert knowledge. Application of point-

based super-resolution techniques is now reaching up to

20 nm resolution in live-cell imaging, while SIM offers an

advantage in acquisition speed. Further development of

these techniques, as well as combination with other cutting-

edge approaches, such as cryo-electron tomography, will

have a great impact on studying the intricate biology of bac-

terial cells. Super-resolution systems and corresponding

software have been subject to tremendous improvements

during the last few years. However, the main limitation

now lies in the availability of tags that are suitable for

demanding super-resolution approaches and allow the

study of proteins of interest in live bacterial cells. Increased

efforts in the development of smaller, more stable fluoro-

phores, fluorescence-activating tags or direct chemical

labelling of amino acids will surely be key to tackling these

problems in the near future.
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