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Abstract

The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered
group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence,
analysis of which identifies an unusually large number of enzymes that degrade .10 complex polysaccharides. Not only is
this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel
combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that
facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a
marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-
characterized in the marine environment.
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Introduction

Carbon cycle fluxes are critical to understanding global

warming equations. Many of the terrestrial prokaryotes that fix

CO2 have been studied; and many of the microorganisms that

degrade approximately 119 pentagrams of carbon per year (PgC/

yr) on land have been characterized. Likewise, prokaryotic CO2

fixation (i.e. photosynthesis) has been studied in the oceans, with

cyanobacteria, e.g. Synechococcus and Procholorcococcus, found to be

major contributors [1,2]. What has remained a mystery is whether

prokaryotes mineralize plant/algal cell walls and woody material

in the oceans and, if so, which organisms are responsible. That is,

much less is known about how the approximately 97 PgC in

complex polysaccharides that are produced each year in the

oceans are recycled to CO2 [http://science.hq.nasa.gov/oceans/

system/carbon.html]. These include complex polysaccharides

associated with biofilms, planktonic organisms, algal blooms,

shells of benthic invertebrates, and especially higher plant

material. Recently, several related bacterial genera that carry

out these processes have been discovered [3,4], either by isolation

or metagenomics. A recent wide-ranging metagenomic global

expedition revealed that genes related to these taxa are among the

most abundant in the oceans [5]. These recently recognized

organisms are likely to have a key role in the recycling of marine

biomass carbon, thereby enhancing the turnover rates of

recalcitrant complex polysaccharides and thus contributing to

atmospheric CO2 inputs.

Saccharophagus degradans strain 2-40T (Sde 2-40; formerly Micro-

bulbifer degradans strain 2-40), is the first free-living marine

bacterium demonstrated to be capable of degrading cellulosic

algae and higher plant material. 16S rDNA analysis shows that

Sde 2-40 is a member of the gamma-subclass of the phylum

Proteobacteria, related to Microbulbifer hydrolyticus [3] and to

Teredinibacter sp., [4], cellulolytic nitrogen-fixing bacteria that are

symbionts of shipworms. The classification of Sde 2-40 has

recently been clarified, with its placement in a new genus,

Saccharophagus degradans, [6] that forms a third genus in this newly

emerging Microbulbifer/Teredinibacter/Saccharophagus group of marine
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carbohydrate degraders. Of the 20 isolates in this group, the

genome of Sde 2-40 is the first to be sequenced.

Sde 2-40 was isolated from decaying salt marsh cord grass,

Spartina alterniflora, in the Chesapeake Bay watershed [7]. It is a

pleomorphic, Gram-negative, aerobic, motile gamma-Proteobac-

terium, uniquely degrading at least 10 different complex

polysaccharides, including agar, chitin, alginic acid, cellulose, b-

glucan, laminarin, pectin, pullulan, starch and xylan [8]. These

enzymatic capabilities initially suggested that Sde 2-40 has a

significant role in the marine carbon cycle: functioning as a

‘‘super-degrader’’ and mediating the breakdown of complex

polysaccharides from plants, algae and invertebrates. It represents

an important and understudied system.

The Sde 2-40 genome, sequenced to completion and closed

(http://genome.jgi-psf.org/finished_microbes/micde/micde.home.

html, Accession # CP000282), has 4008 genes in a single

replicon consisting of 5.06 Mb (Table 1). The genome

annotation reveals that Sde 2-40 is unique in its variety of

depolymerases and unusual in its number of open reading

frames coding for complex polysaccharide depolymerases. These

carbohydrases and related proteins, comprising 10% of the

genome, contain extraordinary modularity, interesting architec-

ture and a remarkable proportion of membrane targeting

domains. Although such an arrangement is limited to few taxa,

the bacteria within these taxa appear to be widely distributed in

marine and estuarine waters.

Results/Discussion

Genome Organization
The genome of Sde 2-40 is a single circular chromosome of

5,057,531 bp (the general features of the genome are listed in

Table 1, and a detailed map is shown in Figure 1). Nucleotide 1

was assigned at the predicted origin of replication. Overall, the Sde

2-40 genome is 45.8% G+C. A total of 4,008 protein-encoding

genes were predicted, averaging 1,094 bp in length, with

intergenic regions averaging 166 bp. The open reading frames

(ORFs) account for 4,385,202 nucleotides of coding sequence

(86.7%). An additional 9 ORFs are classified as pseudogenes

(Table 1). Of the 4,008 putative proteins, 3,795 matched a

sequence in the NR database with an e-value of ,1e-5; of these,

2994 were given a functional assignment based on similarity to a

COG group, and 704 were classified as conserved hypothetical

proteins. For 2575 of the genes with an identifiable ortholog, the

closest homolog was found in a gamma proteobacterium with the

largest representation (1057) present in a fluorescent pseudomonad

or the closely related Hahella chejuensis. Nearly all of these genes

appear to function in basic metabolism suggestive of an ancestral

relationship; but little synteny was observed with several

Pseudomonas genomes or Hahella chejuensis (data not shown).

In addition to protein-encoding genes, forty one genes for

tRNAs and two rRNA gene clusters, located on different strands,

were identified (Table 1). Both numbers are atypically low for

Table 1. General features of the S. degradans 2-40 genome.

Category Number % of Total

DNA, total number of bases 5057531 100.00%

DNA coding number of bases 4385202 86.71%

DNA G+C number of bases 2317668 45.83% 1

DNA scaffolds 1 100.00%

Genes total number2 4067 100.00%

Protein coding genes (including pseudogenes) 4017 98.77%

RNA genes 50 1.23%

rRNA genes 6 0.15%

5S rRNA 2 0.05%

16S rRNA 2 0.05%

23S rRNA 2 0.05%

tRNA genes 41 1.01%

Other RNA genes (rnpB, ffs and ssrA) 3 0.08%

Genes with function prediction 2809 69.07%

Genes without function prediction 1208 29.70%

Genes w/o function with similarity 1206 29.65%

Genes w/o function w/o similarity 2 0.05%

Pseudogenes3 9 0.22%

Genes assigned to enzymes 403 9.91%

Genes connected to KEGG pathways 404 9.93%

Genes not connected to KEGG pathways 3663 90.07%

Genes in ortholog clusters 3611 88.79%

Genes in paralog clusters 456 11.21%

Genes in COGs4 2440 60.00%

Genes in Pfam 2748 67.57%

Genes in InterPro 2953 72.61%

Genes with IMG Terms 327 8.04%

Genes in IMG Pathways 172 4.23%

1GC percentage shown as count of G’s and C’s divided by a total number of G’s,
C’s, A’s, and T’s. This is not necessarily synonymous with the total number of
bases.

2Includes genes encoding proteins, RNA genes and pseudogenes.
3Pseudogenes may also be counted as protein coding or RNA genes, so is not
additive under total gene count.

4See ,http://www.ncbi.nlm.nih.gov/sutils/coxik.cgi?gi = 19331..
doi:10.1371/journal.pgen.1000087.t001

Author Summary

A segment of the global marine carbon cycle that has been
poorly characterized is the mineralization of complex
polysaccharides to carbon dioxide, a greenhouse gas. It
also remained a mystery whether prokaryotes mineralize
plant/algal cell walls and woody material in the oceans via
carbohydrase systems and, if so, which organisms are
involved. We have analyzed the complete genome
sequence of the marine bacterium Saccharophagus degra-
dans to better ascertain the potential role of prokaryotes in
marine carbon transformation. We discovered that S.
degradans, which is related to a number of other newly
discovered marine strains, has an unprecedented quantity
and diversity of carbohydrases, including the first charac-
terized marine cellulose system. In fact, extensive analysis
of the S. degradans genome sequence and functional
followup experiments identified an extensive collection of
complete enzyme systems that degrade more than 10
complex polysaccharides. These include agar, alginate, and
chitin, altogether representing an extraordinary range of
catabolic capability. Genomic analyses further demonstrat-
ed that the carbohydrases are unusually modular;
sequence comparisons revealed that many of the func-
tional modules were acquired by lateral transfer. These
results suggest that the prokaryotic contribution to marine
carbon fluxes is substantial and cannot be ignored in
predictions of climate change.

Complete Genome Sequence of S. degradans
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gamma proteobacteria as E. coli strains carry 90–100 tRNA genes

whereas Pseudomonas aeruginosa strains have roughly 55–64 tRNA

genes. The mean number of rRNA clusters in gamma proteo-

bacteria is 5.7. The plus strand rRNA locus of Sde2-40 has an

unusual configuration with two divergently directed protein-

encoding genes (Sde_1099 and Sde_1100) located between the

16S and 23S rRNA genes and the locus is flanked by apparent

noncoding regions with uncharacteristically low G+C.
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Figure 1. Schematic circular representation of the S. degradans 2-40 closed genome sequence. The nucleotide sequence of the 5.06 Mb
Sde2-40 genome was determined by the United States Department of Energy Joint Genome Institute. Outer ring, sequence address in nucleotides.
Next pair of rings, location of the identified 4009 gene models on each coding strand of the genome and predicted function of products: replication
and repair (red), energy metabolism (green), carbon and carbohydrate metabolism (blue), lipid metabolism (cyan), transcription (magenta),
translation (yellow), amino acid metabolism (orange), metabolism of cofactors and vitamins (pink), purine and pyrimidine metabolism (light red),
signal transduction (lavender), cellular processes (sky blue), structural RNA’s (pale green) miscellaneous functions (brown), conserved and unique
hypothetic proteins (light or dark grey). Next pair of rings, location of predicted or known carbohydrase genes. cellulase (red), chitinase (green),
hemicellulase (blue, includes xylanases, arabinofuranases, mixed function glucanases), pectinase (orange), carbohydrate binding module protein
(black), alginase (purple), agarase (yellow). Black ring, deviation from the average %( G+C), Inner ring, GC Skew (G2C)/(G+C)
doi:10.1371/journal.pgen.1000087.g001
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Genome Evolution
The Sde 2-40 genome exhibits mosaicism in G+C content

(Figure 1) suggestive of recently acquired segments from organisms

with divergent genomes. It undergoes frequent cell/cell contact

with other cells of the same species and even with eukaryotes. To

identify horizontally acquired genes, protein-coding sequences for

genes identified in the Sde 2-40 genome were evaluated using the

CodonW algorithm for %G+C content, %G+C content of the

third position of synonymous codons (GC3s) and for effective

number of codons (Nc) as an indicator of codon usage. The

%G+C content of protein-encoding genes was 46.3 63.6 with a

disproportionate number of genes having low G+C. As the low

%G+C genes tended to be clustered hypothetical genes of

unassigned function, the reference gene set was defined as the

subset of Sde 2-40 genes whose predicted function is basic

metabolism. These also exhibited strong similarity to a homolog

present in a pseudomonad (1057 comparable genes). This

reference gene set exhibited a mean %G+C of 47.263.1, a

GC3s of 43.865.8 and the Nc was 48.9665.44. When these

values were used to survey the genome, 35% of the genes (1412)

were at least one standard deviation from the mean in at least two

of the scored characters. Surprisingly only 23 out of 182 genes

predicted to encode carbohydrases or CBM proteins exhibited this

characteristic, suggesting that if recently acquired, the source

organism had a genome similar to that of 2-40.

Several large clusters of divergent genes were identified in this

survey that had characteristic features of integrons. The core

integron was located between nt 526536 and 568028 and consisted

of 40 genes expressed from the same strand. The integron was

flanked by integron/phage integrases on each end. This region

had a mean %G+C of 37.962.5 and all but three genes have

unassigned functions. A 140 bp repeat was identified in each of the

intergenic regions separating apparent transcriptional units that

were .95% conserved. The same repeat was similarly located at

five satellite sites in the genome (nt 2304665-2329512, 2953034-

2974232, 3741500-3743893, 3937018-3943585, 4404545-

4411107). These satellite regions also were low %G+C regions

and most were on a flank, or internally in a transposase gene

(exception: 3741500-3743893 region), suggesting that transposi-

tion of a repeat could generate a satellite integration site. Nearly all

of the genes in these satellite clusters were also expressed from the

same strand. There is some duplication of genes within these

clusters but little synteny between them. Only Sde_0462 &

Sde_0463 were syntenous with Sde_1818 & Sde_1819 suggesting

that each of these clusters arose independently. For example,

Sde_0426 is highly similar to Sde_0457 and Sde_1825. Sde_0456

and Sde_0458 are apparent duplicates of Sde_0427. Sde_0462 is

homologous to Sde_1814, Sde_1818 and Sde_1830. Five other

clusters of hypothetic genes were identified that lacked this repeat

sequences (134591- 150065; 341150-354005; 418539-430371;

764673-773707; 3837720-3846061; 4133935-4137958) but were

associated with an apparent transposase (DUF1568 homolog). In

total, five potentially functional integron /phage integrases were

identified in the genome that were associated with degenerate

prophage (incomplete) or these integrons. Two integrase pseudo-

genes and three IS elements were also detected (ISSde_A,

ISSde_B, ISSde_C).

Megaproteins
The Sde 2-40 genome codes for 15 polypeptides longer than

2000 amino acids, ranging from 274 Kd to 1.6 Md. Each contains

multiple domains and motifs that are reported to bind calcium and

mediate protein/protein interactions [9,10]. They are acidic, pI

3.5–4.9 and have a secretion signal. It is possible that proteins with

these properties can function in binding prokaryotes to algae with

associations between gamma proteobacteria and dinoflagellates

reported [11]. These large proteins are unusual and help explain

why the Sde 2-40 genome contains 5.06 Mb but codes for only

4008 genes, well below the general rule for prokaryotes of about

one Kb/gene. The seven largest of these proteins are encoded by

120879 bases or approximately 2.4% of the genome.

Signal Transduction
A common feature of each of the Sde 2-40 carbohydrase

systems is their induced expression in response to their cognate

substrate [8,12,13]. Many organisms with complex carbohydrase

systems, constitutively express low levels of one or a few ‘‘sentinel’’

enzymes. The role of these sentinel enzymes is to release inducer

molecules from the polysaccharide substrate which then activate

one or more signal transduction systems to induce expression of

the entire degradative pathway. This mechanism has been

demonstrated experimentally for the cellulolytic fungus, Trichoder-

ma reesei and the bacterium Clostridium thermocellum [14,15,16].

Each of the tested carbohydase systems exhibit classic glucose-

dependent catabolite repression. In silico analysis confirms that the

Sde 2-40 genome contains a strong homolog of adenylate cyclase

(Sde_3600) and catabolite activator protein (Sde_0755) as well as

the components of a phosphotransferase system (e.g. Sde_0348,

Sde_3180, Sde_3182).

The genomic signal transduction profile of Sde 2-40 can be

viewed in the MIST (Microbial Signal Transduction) database at

http://genomics.ornl.gov/mist. Compared to other prokaryotic

genomes, Sde 2-40 has approx. 40% more COG’s devoted to

signal transduction than other bacteria, (including the gamma

proteobacteria; Table S1), although it has an average number of

one- and two-component signal transduction regulatory systems

for its genome size [17]. It also does not contain any unique sensor

or regulator, however, some features of signal transduction do set

the organism aside. These features are directly linked to its unique

abilities to degrade complex polysaccharides. First, the genome is

significantly enriched in regulators that control the level of cyclic

di-guanylate, a second messenger, which determines the timing

and amplitude of complex biological processes predominantly

linked to the cell surface, such as exopolysaccharide biosynthesis

and degradation and biofilm formation [18]. Cyclic di-GMP

cyclases comprise the single largest signal transduction output

domain family in the genome (more than 1% of the total genome

content), although usually the most abundant output type in

bacteria is one of the DNA-binding helix-turn-helix domains

typical of transcription factors [17].

Another significant feature is the large proportion of mem-

brane-bound one-component transcription factors. Less than 3%

of bacterial one-component transcription factors are membrane-

bound [17,19], whereas in Sde 2-40 they comprise 20%. For

example, 16 of the 31 AraC-type transcriptional regulators are

membrane-bound in Sde 2-40, whereas all such regulators in a

closely related species, Shewanella oneidensis, are soluble cytoplasmic

proteins. AraC-type transcription factors frequently function as

transcriptional activators of enzymes involved in catabolic

pathways, although family members also activate or repress

transcription of genes with a wide range of functions. The activity

of AraC-like transcription factors is usually regulated allosterically

by small molecules, such as the substrate for the first enzyme of a

catabolic pathway.

Since bacterial transcriptional factors often directly regulate

adjacent genes [20], we analyzed the genomic context in the

vicinity of membrane-bound transcription factors and found

several of them in the chromosomal proximity to diverse enzymes

Complete Genome Sequence of S. degradans
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involved in cellulose degradation (Table 2). Most of these proteins

are the result of the lineage-specific gene expansion; i.e. 13 of the

16 membrane-bound AraC-type transcriptional regulators are

paralogs. We hypothesize that the unusual enrichment in

membrane-bound transcription factors is an adaptive strategy for

detecting extracellular complex polysaccharides and expressing

genes necessary for its degradation.

The Sde 2-40 genome contains sets of genes for flagellar and

type IV pili-based motility as well as regulatory systems for their

control. There are two dedicated chemotaxis pathways predicted

to control flagellar motility (anchored by chemotaxis histidine

kinases CheA GI:90020168/Sde_0519 and GI:90021806/

Sde_2161) and two chemotaxis-like pathways predicted to control

type IV pili-based motility or other cellular functions (anchored by

chemotaxis histidine kinases CheA GI:90022749/Sde_3107 and

GI:90023269/Sde_3629). This implies that Sde 2-40 is not only

capable of navigating to nutrient sources in water, but can also

direct its motility across solid surfaces such as solid plant material.

The chemotaxis signal transduction network contains 13 trans-

ducers for detecting both extracellular and intracellular signals.

Interestingly, there are 8 predicted CheY response regulators. We

hypothesize that diverse signals detected by chemotaxis transduc-

ers are distributed to control not only two types of motility

apparatus, but also other cellular activities.

Secretion Systems
The expression of the extraordinary array of secreted

carbohydrases encoded by the Sde 2-40 genome requires the

presence of robust protein secretion systems and, typical of

proteobacteria, a complete Sec system was detected in its genome

(Table S2). SignalP analysis revealed 1068 gene model products

(26.6% of the gene models) that carry an apparent amino terminal

signal sequence indicative of Sec-dependent secretion. The

components for the Sec-associated SRP system for translocation

of membrane proteins were also present. The Sde 2-40 SRP

system appears to be unusual in that SRP54 M and G domains are

located on separate polypeptides.

A twin arginine (Tat) secretion system was also identified. At

least 15 gene products were annotated as being Tat secreted; most

of these appear to be translocated to the periplasm. Components

of both type I and type II secretion systems were also detected.

Homologs of HlyB, HlyD and TolC, the essential components of a

type I secretion system [21], were encoded by an apparent operon.

Since type I secretion systems use a cryptic carboxy terminal

secretion signal, proteins secreted by the type I system are not

genomically obvious. However, there are several partial homologs

of RTX toxins that are good candidates.

Three clusters of genes were identified that encoded compo-

nents of the general secretory (Type II) pathway [22]. Cluster I

consists of apparently co-transcribed gspCDEFGHIJKLMN that

are organized similarly to the Klebsiella pul operon. A second

cluster consists of gspD-G whereas the third was composed of

gspEFH. A homolog to GspO, was also present that was

independently transcribed. Although the Sde 2-40 genome carries

two homologs of the Klebsiella PulA, neither is associated with a gsp

cluster as observed in Klebsiella strains.

The Degradative CAZome of S. degradans
The enzymatic breakdown of complex polysaccharides requires

complex, multienzyme systems with diverse activities and substrate

specificities. This complexity is required to overcome the chemical

and structural complexities presented by complex polysaccharides

and complex polysaccharide-containing structures (i.e. the plant

cell wall). Among the fungi and bacteria, the vast majority of

complex polysaccharide-degrading enzymes belong to different

families of Glycosyl Hydrolases (GH). As classified by the

Carbohydrate-Active Enzyme webserver (www.CAZY.org/index.

html), GHs are assigned to 112 sequence-based families. A

distinctive feature of the GHs that attack complex insoluble

polysaccharides is their modular architecture, in which the

catalytic module(s) is linked to one or more non-catalytic modules.

The most common type of non-catalytic components are high-

affinity substrate binding modules (carbohydrate-binding modules;

CBMs) which act to bring the enzymes into intimate and

prolonged association with their complex substrates. They

potentiate catalysis by reducing the access limitation imposed by

the composite structure of the complex polysaccharide. These

CBMs, grouped into approximately 50 sequence based families,

specifically target the enzyme to its proper substrate amongst the

chemical and structural complexities of the plant cell wall.

Furthermore, CBMs allow soluble enzymes to remain in contact

with their insoluble substrates in an aqueous environment [23].

Polysaccharide degrading systems often contain multiple

enzymes with synergistic activities. For example, most character-

ized cellulase systems contain multiple endo-acting enzymes and

one or more exo-acting cellulases, which usually liberate cellobiose

from cellulose chains (cellobiohydrolases). The activity of the

endoglucanases provides more free chain ends to be acted on by

the cellobiohydrolases. Most systems also incorporate ‘‘accessory

enzymes’’ such as cellodextrinases and cellobiases to achieve

complete breakdown to usable monomers [24,25]. Figure 2

illustrates the modular components of a typical GH and presents

a generic cellulose degradation pathway. Specific substrates and

carbohydrases are shown in Figure 3.

With genes encoding 128 glycoside hydrolases (GHs), Sde 2-40

is one of the most prolific bacteria sequenced; to date it ranks 3rd of

almost 400 bacterial genomes surveyed by the Carbohydrate-

active enzymes database (www.cazy.org/CAZY). Most carbohy-

drase-coding ORF’s are dispersed throughout the genome,

however, some are clustered, including amylases (Sde_0556-

Sde_0601), arabinoxylosidases (Sde_0777-Sde_0789), pectinases

(Sde_0937-Sde_0953), and alginases (Sde_3272-Sde_3286).

The set of glycosidases encoded by Sde 2-40 is particularly

adapted to the degradation of a multitude of plant and algal cell

wall polysaccharides and is characterized by an extreme

modularity in the structure of the enzymes (see Figure 2; Figures

Table 2. Membrane-bound one-component transcriptional
factors encoded adjacent to genes for complex carbohydrate
degradation.

Transcription factor
(SDE locus1)

Number of TM
regions2

Adjacent genes(SDE
Locus1)

HTH_AraC (0324) 2 Cellulase (0325)

HTH_AraC (3613) 2 b-1,4-xylanase (3612)

HTH_AraC (2491) 6–7 Cellulase (2490)

HTH_AraC (2495) 6–7 1,4- b -glucosidase (2497)

HTH_AraC (2928) 6–7 Cellulase (2929)

HTH_AraC (3858) 6–7 Cellulose-binding protein;
putative (3859)

HTH_LytTR (3422) 4 Cellulase (3420)

1Gene number having the prefix ‘‘Sde’’, for Saccharophagus degradans as
assigned in Jun 15, 2005 genome assembly.

2TM, abbreviation for predicted transmembrane regions.
doi:10.1371/journal.pgen.1000087.t002
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Figure 2. Schematic organization of a typical Glycosyl Hydrolase catalyzing endo-cleavage of a polysaccharide shown within a
generic cellulase system pathway. Carbohydrate-binding modules (CBMs) specifically target enzymes to their substrates, initiating and
maintaining prolonged contact with the insoluble polysaccharide. The catalytic module may be a glycosyl hydrolase (GH) polysachharide lysase (PL),
glycosyl transferase or an esterase. The flexible linker affords the catalytic module a certain freedom of movement, which presumably allows it to
adjust to conformational variations in the substrate while the CBM maintains contact with the substrate. Enzymes, representative of a typical cellulase

Complete Genome Sequence of S. degradans
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Figure 3. Oligimers of six major types of complex polysaccharides (Roman numerals), their component sugars and enzymes
(Capital letters) that act on specific bonds within the molecules. The figure is keyed to Table 5, Enzyme activity induced by sole carbon
complex polysaccharides. Sugars are color coded and keyed in box.
doi:10.1371/journal.pgen.1000087.g003

system, are depicted depolymerizing a single cellulose chain. Exo-acting cellobiohydrolases and endoglucanase synergistically degrade polymeric
cellulose to cellobiose and cellodextrins, respectively. At least part of the synergism is believed to result from the activity of endoglucanases creating
additional ends for exoglucanases to act upon. Cellodextrins (soluble cello-oligomers) may be further processed to glucose and cellobiose by
cellodextrinases. Depending on the organism cellobiose may be cleaved extracellularly by b-glucosidases (cellobiases) and imported as glucose, or
imported directly and cleaved in the cytoplasm. Import generally occurs through phosphotransferase transport systems, resulting in cytoplasmic
Glucose-6-Phosphate (G6P) and phosphorylated cellobiose. Certain organisms, such as Clostridium thermocellum, are also capable of importing
cellodextrins for cytoplasmic cleavage. Systems that degrade other complex polysaccharides (e.g. chitin) share many of the features depicted for
cellulose degradation, i.e. endo- and exo-acting enzymes and polymer-specific CBMs; however, there are substrate-specific variations in enzymatic
composition, to include enzymes dedicated to the removal of side-chains such as xylose and/or arabinose oligomers or substituent groups, which
may include acetate, sulfate and methyl, among others.
doi:10.1371/journal.pgen.1000087.g002
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S1, S2, and S3). Substrates catabolized include cellulose,

substituted xylans, xyloglucans, arabinans and arabinogalactans;

pectin and rhamnogalcturonan; b-1,3(4) glucan, b-1,3-glucans;

starch, glycogen, pullulan; mannans, glucomannans and galacto-

mannans. Interestingly, the xylan, mannan and cellulose degrad-

ing apparatus of Sde 2-40 is very similar to the reported cellulases,

xylanases and mannanases synthesized by a related terrestrial

gram negative bacterium, Cellvibrio japonicus (for review see [26]).

The similarity between the GH and CBM (see below) composition

of these enzyme systems in Sde 2-40 and C. japonicus indicate a

close evolutionary relationship between the plant cell wall

degrading apparatus in the two organisms. The etiology of such

a relationship remains a compelling area for study.

In addition to the cellulose, xylan and mannan degrading

enzymes described above, the Sde 2-40 genome also encodes eight

endo-b-1,3-glucanases (Table 3), each of which has a type II

secretion signal sequence, interesting domain architecture and

modules [viz. thrombospondin type 3 (TSP3) and cadherin-like

(CADG) calcium-binding motifs]. It is also noteworthy that the

Sde 2-40 genome codes for 33 polysaccharide lyases (PLs; Figure

S4), far more than any other bacterium including B. thetaiotamicron

(15), Erwinia carotovora (13) and Pseudomonas syringae pv. phaseolicola (8)

and any fungus. The only organisms that have (marginally) more

PLs than Sde 2-40 are the plants (Arabidopsis has 34 and the poplar

has 39) whose higher number is entirely attributable to large

multigene families. Twenty three of the 33 Sde 2-40 PLs are

modular (a proportion never seen before). Significant domain

structures are shown in Figure S4.

Forty three of the 128 GHs encoded by the genome are

appended to at least one known CBM. More than one-quarter of

the .180 carbohydrate depolymerases have polyserine repeat

regions (PSL) separating functional domains [27], rather than the

proline/threonine sequences that link the modules of GHs in other

prokaryotes. PSL are also evident in the plant cell wall degrading

enzymes of C. japonicus [26,28], again pointing to a close

evolutionary relationship between the plant cell wall degrading

apparatus of the two bacteria.

It is possible that the large number of CBM-containing enzymes

reflects the chemical complexity of the marine plant cell wall as

compared to the corresponding terrestrial structures. However, it

seems more likely that the apparent requirement for secreted

enzymes to contain CBMs in the marine bacterium, may reflect

the aqueous nature of the environment. Thus, in such a dilute

ecosystem, if secreted enzymes are not tethered to the plant cell

wall via CBMs they will rapidly disperse and their benefit to the

host organism will be lost. Indeed, the critical ‘‘tethering’’ role of

the CBMs may select for modules with high affinity for the plant

cell wall. In GHs that contain multiple CBMs very tight affinity for

targeted polysaccharides can be achieved through avidity effects

between the modules [29,30]. Indeed, the evolutionary driver for

the multiple CBMs in the extracellular Sde 2-40 enzymes could be

the requirement for these GHs to be in continued contact with the

plant cells preventing their dissipation into the aqueous marine

environment. It is also possible that the presence of multiple CBMs

is the result of adaptation to the high-ionic strength environment

presented in marine and estuarine environments.

The genome of Sde 2-40 encodes the largest set of identifiable

CBMs (127) reported in any organism sequenced so far. It has

more than Arabidopsis thaliana (92) the fungus Magnaporthe grisea (66),

Homo sapiens (35) and the huge poplar genome (116); and far more

than any other bacterial species.

A distinctive feature of the Sde 2-40 GHs is the prevalence of

enzymes that contain both a CBM2 and CBM10, modules that

bind to crystalline cellulose. Indeed, as cellulose is the most

abundant polysaccharide in plant cell walls, this may explain why

the cognate degradative enzymes exploit this polymer as a

universal receptor. It is interesting to note that a large number

of the C. japonicus plant cell wall-degrading GHs, reported to date,

also contain CBM2 and/or CBM10 modules, again suggesting a

close evolutionary relationship between the marine and terrestrial

bacterium that was not anticipated.

In addition to CBM2s and CBM10s, there is a dramatic

expansion of modules in CBM families 6 and 32 in Sde 2-40,

which contains 39 and 25 members, respectively. It is likely that

the marine environment has imposed selective pressure that has

led to the expansion of these two CBM families as several lyases

that attack the marine polysaccharide alginate contain CBM32s,

while two GH16 agarases contains several CBM6s. Indeed, both

CBM families 6 and 32 have been shown to display flexible ligand

specificity with the former family recognizing polymers containing

D-glucose, D-xylose, D-galactose and 3,6 dehydro-L-galactose

[31,32,33], while members of the latter family interact with

Table 3. Genomically predicted laminarinases.

Name Locus Tag1 Predicted function2 Modules2,3 amino acids4 MW4

Lam16A 1393 b-1,3-glucanase GH16/CBM6/CBM6/TSP3/TSP3/TSP3/TSP3/COG3488 1,707 163.3

Lam16B 2927 b-1,3-glucanase GH16/CBM6/CBM6/EPR(56)/CBM32/CBM32 1,441 158.6

Lam16C 1444 b-1,3-glucanase GH16/CBM4/CBM32/CBM32 1,184 129.1

Lam16D 3021 b-1,3-glucanase GH16/CBM32/PSL(48)/TMR 722 77.7

Lam16E 0652 b-1,3-glucanase CBM6/CBM6/GH16 569 61.4

Lam16F 3121 b-1,3-glucanase LPB/GH16 742 80.2

Lam16G 2832 catalytic residues missing LPB/GH16/CBM6/CBM6 877 94.2

Lam81A 2834 b-1,3-glucanase LPB/CAD/GH81/FN3/FN3 1,238 133.1

1Gene number having the prefix ‘‘Sde’’, for Saccharophagus degradans as assigned in Jun 15, 2005 genome assembly. (http://genome.ornl.gov/microbial/mdeg/
15jun05/mdeg.html).

2Predictions of function and module determination by CAZy ModO at AFMB-CNRS.
3Module abbreviations: CAD, cadherin-like domain; CBM, carbohydrate binding module; COG3488, thiol-oxidoreductase like domain; EPR, glutamic acid-proline rich
region; FN3, fibronectin type 3 module; GH, glycoside hydrolase; LPB, lipobox signature sequence; PSL, polyserine linker; TMR, transmembrane region; TSP3,
thrombospondin type 3 repeat.

4MW and amino acid count calculated using the protParam tool at http://us.expasy.org/tools/ based on DOE/JGI gene model amino acid sequence translations
including any predicted signal peptide.

doi:10.1371/journal.pgen.1000087.t003
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galactose-containing carbohydrates that are modified at C2 (N-

acetylgalactosamine) or C6 (galacturonic acid) [34]. As marine

polysaccharides contain a wider range of sugars (for example

alginate contains D-mannonic acid and L-guluronic acid and

agarose contains 3,6 dehydro-L-galactose) than terrestrial plant

cell walls, the expansion of family 6 and family 32 CBMs is

consistent with the diversity of sugar polymers encountered by Sde

2-40. As C. japonicus does not occupy an environmental niche that

contains marine polysaccharides it is unlikely to contain similarly

large numbers of family 6 and family CBMs.

Additionally the Sde 2-40 genome codes for many novel

combinations of CBMs and catalytic domains, observed for the first

time (see Figures S1, S2, S3, and S4). Many other proteins have

modules of unknown function appended to the catalytic domain.

Several proteins have two catalytic domains: Sde_3061; Sde_3870;

Sde_3003; Sde_3612; Sde_0943; Sde_2873. In Figures S1, S2, S3

and S4 the boxed proteins have CBMs attached to domains of

completely unknown function illustrating (i) the benefit of whole

genome sequencing (without which it would have been difficult to

identify these proteins) and (ii) that our knowledge of the plant cell

wall degradome is far from complete. These proteins will therefore

constitute targets of choice for subsequent functional studies.

Functional Genomics with a Focus on Carbohydrase
Regulation

Functional characterizations of the agarase [12], chitinase

[35,36], cellulase [13] and alginase (11 enzymes; [37]) systems of

Sde 2-40 showed that each degraded the respective complex

polysaccharides to monomers. It was discovered that five agarases

were distributed among three GH families (GH16, GH50, GH86;

[12]) and that two of the agar depolymerases contained novel

CBM6 modules with interesting affinities [33].

In order to evaluate the expression of each major carbohydrase

system during growth on specific carbon sources, transcript levels

for genes encoding a selected carbohydrase from each system were

estimated by qRT-PCR (Table 4). Each monitored gene exhibited

low basal expression during growth on glucose supporting the

notion of an operational global catabolite repression mechanism.

Transition to another carbon source resulted in a slight increase in

expression consistent with release of glucose-dependent catabolite

repression. The highest expression, however, was observed on the

substrate associated with each carbohydrase. For example,

transcript levels for the agarase Aga16B increased 280-fold after

4 hr growth on 0.1% agar. This infers that the expression of each

these systems is regulated by signal molecules released from the

corresponding substate. Some apparent cross talk between

regulatory systems was observed, particularly with those complex

polysaccharides that are interlaced with other complex polysac-

charides in nature. Thus, growth on microcrystalline cellulose

(Avicel) also induced expression of the monitored xylanase,

xyn11A. Similarly growth on xylan induced cel5H expression.

We also examined enzyme activity in response to sole carbon

complex polysaccharide inducers. As in the case of the qRT-PCR

studies, we predicted that substrates that signal the presence of

complex material, such as the plant cell wall, would trigger a

general, extensive enzyme response. In cases where the complex

polysaccharide does not occur as a part of a multi- complex

polysaccharide complex, it was predicted that enzyme induction

would be more specific. As anticipated, growth on Spartina

alterniflora leaves induced enzyme activities against all tested

substrates (Table 5; Figure 3): crystalline cellulose (Avicel),

amorphous cellulose (PASC and CMC), xylan, b-1,3,4-glucan

(barley b-glucan) and b-1,3-glucan (laminarin). Interestingly,

growth on Avicel and xylan also broadly induced enzymes. These

results indicate that cellulose and xylan could function as plant cell

wall specific signature molecules, inducing a full suite of

degradative enzymes required for deconstruction of plant material.

This stands in contrast to the more specific patterns of induction

when Sde 2-40 was grown on barley glucan or laminarin. Neither

substrate induced activity against xylan or Avicel. The presence of

low, but detectable, levels of activity against CMC and laminarin

in glucose-grown cultures suggests that the cellulase system of Sde

2-40 utilizes sentinel enzymes, and that these enzymes have

activity against b-1,4- and b-1,3-glucans.

We analyzed spent growth media by mass spectrometry (MS)

analysis to identify carbohydrases expressed and exported by Sde

2-40 cultivated in avicel or xylan as sole carbon sources. The MS

analysis supported the enzyme induction studies. For example,

many cellulases and xylanases were induced by their homologous

substrate; others, e.g. cellodextrinase Ced3A were induced by

several different substrates (Table 6) [38]. From the genomic,

qRT-PCR, enzyme activity and MS studies, we conclude that: 1-

the Sde 2-40 carbohydrases are regulated by multiple mechanisms;

2- the more complicated the polysaccharide complex, the more

enzyme systems are induced; 3- glucose repression is a key

regulation mechanism.

The carbohydrases were shown to be functional in microcosms

as Sde 2-40 grew on plants as sole carbon sources while fully

degrading them, being the first marine prokaryote shown to do so

[38]. One line of evidence came from growth studies showing that

Sde 2-40 did not grow in minimal medium (MM) lacking a carbon

source whereas it underwent numerous generations (g) in

MM+0.2% glucose (51 min gt), MM+washed, dried, sterile,

Spartina alterniflora leaves (280 min gt), Avicel, xylan or filter paper.

Growth was concurrent with pronounced degradation of the

plant/CP.

Notably, Sde 2-40 degraded a variety of cellulositic plants in

monoculture rather than as part of a consortium, having ORFs

that annotate as putative ligninases including a polyphenol oxidase

Sde0315, a tyrosinase Sde0316, and three peroxidases Sde0090,

Sde2430, and Sde2810. There was also physiological evidence of

Sde 2-40 ligninase activity; for example, it degraded Remazol

Brilliant Blue R (RBBR) and poly B 411, two indicator dyes for

fungal ligninase activity.

Table 4. Substrate-specific induction of selected
carbohydrase genes.

Gene1 Relative Transcript Levels after Growth on2:

Agar Alginate Avicel Chitin Xylan Glucose

aga16B 284646 461 260.5 2263 88622 0.560.1

algF 160.5 3161 0.560.1 260.5 1060.5 160.1

cel5H 662 360.5 7786200 201657 158650 0.560.1

chi18A 160.5 461 360.5 17496146 102620 260.5

xyn11A 962 361 292650 1057610 13496191 0.560.1

1aga16B, Sde_1175; algF, Sde_2873; cel5H, Sde_3237; chi18A, Sde_1704; xyn11A,
Sde_0701

2S. degradans 2-40 was grown in minimal medium supplemented by 0.2%
glucose to an OD600 of 0.33–0.35. The cells were harvested and transferred into
fresh medium containing 0.2% xylan, chitin, alginic acid, Avicel, or glucose or
0.1% agar as indicated. After 4 hr, total RNA was extracted, converted to a
cDNA copy and transcript levels relative to initial levels estimated by qRT-PCR
using gene-specific primer pairs as described in the Materials and Methods.
Transcript levels were normalized to guanylate kinase (Sde_3695) transcript
levels.

doi:10.1371/journal.pgen.1000087.t004
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Cell Biology
It is becoming increasingly clear that spatial placement

significantly impacts enzyme function. Gram-positive clostridia

make cellulosomes, multi-enzyme complexes, mediated by inter-

modular dockerin/cohesin interactions, which bring to bear an

organized array of cellulases to exocellularly depolymerize

substrates, conserving both enzyme and substrate [39,40]. Sde 2-

40 utilizes at least one Gram-negative solution to the same

problem, i.e. post-translationally modified lipobox domains that

anchor proteins to the outer membrane. The database of bacterial

lipoproteins (DOLOP) analysis revealed that 34 genes contain

lipobox sequences, 31 of which are predicted carbohydrases.

Table 5. Enzyme activity induced by sole carbon complex polysaccharides (CP).

Growth medium sole Carbon Source substrate (inducer)

Activity vs. Spartina1 leaves Avicel2 Xylan3 b-glucan4 Laminarin5 Glucose

CP (see Figure 3) I-VI I II III III N/A

Avicel2 4.8 10.5 93 0 0 0

CMC6 58.2 218 117.9 95.5 59.6 7.2

PASC7 51.1 254.2 118.3 0 37.5 0

Xylan3 29.8 111.1 267.2 0 0 0

b-glucan4 33.7 157.6 169 203.2 159.3 0

Laminarin5 28.8 72.5 101.4 164.3 295.1 50.2

Carbohydrases required to
degrade substrate
(keyed to Figure 3)

cellulases (I:ABC) xylanases (II:ABCDE) b-
glucanases (III:AB) mannanases (IV: AB)
pectinases (V:ABC VI:ABCDE)

Cellulases (I:ABC) xylanases
(II:ABCDE)

b-1,3 and b-1,4-
glucosidases (III:AB)

b-1,3-glucosidases
(IIIA)

Glycolysis,
TCA cycle

1Spartina alterniflora (saltmarsh cord grass), found in intertidal wetlands, has a cell wall with approx. 10% lignin, with the remainder being hemicellulose, cellulose, and
pectin

2Purified cellulose, ,70% crystallinity
3Birchwood xylan, glucuronoarabinoxylan
4Barley b-glucan, mixed b-1,3- and b-1,4-glucan
5Laminaria digitata laminarin, b-1,3-glucan
6Carboxymethyl cellulose, 100% amorphous
7Phosphoric acid swollen cellulose, intermediate crystallinity between Avicel and CMC
doi:10.1371/journal.pgen.1000087.t005

Table 6. Examples of carbohydrases and CBM proteins detected in S. degradans supernatants by mass spectrometry.

Growth Substrate1 Name Predicted function2 Modules3 Locus Tag4 amino acids5 MW5

Avicel Cel5H endocellulase GH5/PSL(32)/CBM6/EPR(16) 3237 630 66.9

Cel5I endocellulase CBM2/PSL(33)/CBM10/PSL(58)/GH5 3420 725 77.2

Cel9B endocellulase GH9/PSL(54)/CBM10/PSL(50)/CBM2 0649 867 89.5

Ced3A cellodextrinase LPB/GH3 2497 1,072 116.0

Xyl3A b-xylosidase LPB/GH3 1487 893 97.6

Cbm2B cbm only CBM2/UNK(914) 1183 1,042 112.1

Xylan Xyn10E b-xylanase LPB/EPR(47)/GH10 0323 670 75.2

Xyl3A b-xylosidase LPB/GH3 1487 893 97.6

Xyl31A a-xylosidase LPB/GH31 2500 973 110.2

Ced3A cellodextrinase LPB/GH3 2497 1,072 116.0

Ced3B cellodextrinase LPB/GH3 0245 862 92.9

Cep94B cellodextrin phosphorylase GH94 0906 788 88.7

Gly3D b-glycosidase CBM32/CBM32/CBM32/GH3/CBM32 0475 1,581 173.0

Cbm2C cbm only CBM2/PSL(58)/Y94/PSL(25)/UNK(577) 0182 933 97.5

Cbm32A cbm only CBM32/CBM32/UNK(251) 0478 1,028 111.9

1Protein was detected in supernatants of cultures grown in the following growth substrates: Avicel (,70% crystalline cellulose), xylan (Birchwood
glucuronoarabinoxylan).

2Predictions of function and module determination utilizing the routines used for the updates of the CAZy database (www.cazy.org/CAZY/).
3Module abbreviations: CBM, carbohydrate binding module; UNK, unknown function; PSL, polyserine linker; LPB, lipobox signature sequence; GH, glycosyl hydrolase;
EPR, glutamate-proline rich region.

4Gene number having the prefix ‘‘Sde’’, for Saccharophagus degradans as assigned in Jun 15, 2005 genome assembly
5MW and amino acid count calculated using the protParam tool at http://us.expasy.org/tools/ based on DOE/JGI gene model amino acid sequence translations
including any predicted signal peptide.

doi:10.1371/journal.pgen.1000087.t006

Complete Genome Sequence of S. degradans

PLoS Genetics | www.plosgenetics.org 10 May 2008 | Volume 4 | Issue 5 | e1000087



While lipoprotein-anchors of have been well studied [41,42,43]

and reported to be a strategy for surface attachment of degradative

enzymes [39], the mechanism had only been reported to pertain to

only a few proteins per cell. This report is the initial finding of

extensive involvement of the motif, encompassing at least one

degradase per carbohydrase system including, cellulases (5) [13],

pectinases (5), xylanases (5), chitinase(1) [36], agarase (1) [12],

laminarinase (1), and mannanase (1). The 34 predicted carbohy-

drases or CBM proteins which carry lipobox sequences amount to

15% of the total ORFs predicted to degrade or bind carbohydrates

in Sde 2-40.

Furthermore, carbohydrases are believed to be anchored to the

outer membrane by more than one mechanism. The cell surface of

Sde 2-40 is smooth in its logarithmic phase of growth when

growing on glucose [3] and becomes nodulated when growing in

CP or are starving (Figure S5). These protuberances could be

indicative of protein/protein interactions that anchor certain

enzymes at the cell surface. It is interesting to note that two Sde 2-

40 ORFs appear to contain dockerin-like motifs and six others

contain one or two putative, but distantly related, cohesin-like

module(s). In future studies, it will be of interest to explore whether

recombinant forms of the dockerins bind to any of the candidate

cohesin-like modules, considering Sde 2-40 does not contain a

classical cellulosome system.

Conclusions
Consortia of microorganisms are usually required to degrade

complex carbohydrates, e.g. cellulose, and such microorganisms are

usually specialists in the degradation of one or a few different

carbohydrates. Sde 2-40 is unique in its array of different

carbohydrases, and unusual in its ability to completely mineralize a

plant, in pure culture, in marine waters. Given the additional abilities

of Sde 2-40 to degrade algal structural polymers (agar and alginate)

as well as the invertebrate polysaccharide, chitin, the bacterium may

well have an important role in the marine carbon cycle.

Materials and Methods

Sequencing Strategy
Whole genome shotgun sequencing and finishing were carried

out by the US Department of Energy Joint Genome Institute

(JGI). All complete library construction and sequencing protocols

can be found at: http://www.jgi.doe.gov/sequencing/protocols/

index.html. Briefly, genomic DNA was randomly sheared with a

hydroshear device (Genemachines, San Carlos, CA) and fragments

were blunt-end repaired using T4 polymerase and Klenow

fragment. Fragments were size selected by agarose gel electro-

phoresis and ligated into pUC18 (,3 kb inserts), pMCL200

(,7 kb inserts) or ,35 kb inserts in pCC1Fos (Epicentre,

Madison, WI). Ligations were transformed into E.coli DH10B

cells and colonies were picked into 384-well plates containing LB

and glycerol. DNA for sequencing was produced by rolling circle

amplification (Templiphi, GE Healthcare, Piscataway, NJ) or

Sprintprep (Agencourt, Beverly MA) magnetic bead DNA

purification. Subclone inserts were sequenced from both ends

using universal primers and ET (GE Healthsciences, Piscataway,

NJ) or Big Dye (ABI, Foster City, CA) terminator chemistry.

Approximately 144,000 sequence reads were assembled with the

Phred/Phrad/Consed software package [44] resulting in approx-

imately 16X coverage of the assembled genome. Finishing was

performed by resolving repeats and gap closure using PCR,

custom primer reactions, and manual editing. The resulting

finished sequence is calculated to contain less than 1 in 50,000

errors with no gaps in the sequence.

Genome Annotation
Automated gene prediction was performed using the output of

Critica [45] complemented with the output of Generation and

Glimmer [46], and is available at http://genome.ornl.gov/

microbial/mdeg/. The tRNAScanSE tool [47] was used to find

tRNA genes, while ribosomal RNAs were found using BLASTn

vs. the 16S and 23S ribosomal RNA databases. Other ‘‘standard’’

structural RNAs (e.g., 5S rRNA, rnpB, tmRNA, SRP RNA) were

found using covariance models with the Infernal search tool [48].

The automatic assignment of product descriptions was made using

search results of the following curated databases in this order:

TIGRFam; PRIAM (e230 cutoff); Pfam; Smart; COGs (e210

cutoff); Swissprot/TrEMBL (SPTR); KEGG. If there was no

significant similarity to any protein in another organism, it was

described as ‘‘Hypothetical protein’’. ‘‘Conserved hypothetical

protein’’ designated at least one match to a hypothetical protein in

another organism. EC numbering was based on searches in

PRIAM at an e210 cutoff; COG and KEGG functional classifi-

cations were based on homology searches in the respective

databases. Some enzymes were manually curated. In particular, all

carbohydrate-degrading enzymes were detected and annotated by

comparison to the Carbohydrate-active enzymes database (http://

www.cazy.org/CAZY).

Data Analysis
Phylogenetic and molecular evolutionary analyses were con-

ducted using MEGA version 3.1 [49]. The percent G+C content

(%G+C) of gene models, %G+C at the third position of

synonymous codons (GC3s), and the effective number of codons

(Nc) for all 4008 candidate protein-encoding gene models were

determined using CodonW 1.4.2 (http://codonw.sourceforge.net/).

CodonW output, along with information from the ORNL

annotation files, were compiled and imported into Microsoft

Excel 2000. Truth tables were constructed. For each sequence

characteristic, the candidate protein-encoding gene’s distance

values from the mean were converted to Boolean values based on

the presence of the distance value within a predefined range (e.g.

greater than or equal to two standard deviations higher than the

mean). The candidate protein-encoding gene models’ best hits

against the GenBank NR protein database were converted to

Boolean variables based on whether or not the closest match was

Hahella chejuensis KCTC 2396, and another variable was similarly

assigned to reflect if the closest match was to a sequence in the

Pseudomonas genus. These variables were used to count and sort

candidate protein-encoding gene’s based on NR database

sequence similarity and/or distance from the mean for a particular

sequence characteristic.

Integron repeat locations were assessed with Artemis Comparison

Tool [50] comparing the 2-40 genome against itself with the percent

identity cutoff reduced to 99% to eliminate self matches. Areas

containing repeats were extracted and imported into ClustalX 1.83

[51] for alignment. Alignments were manually inspected and

trimmed to include only sequence conserved across all aligned

sequences. A hidden Markov model [52] was constructed using

HMMbuild and a consensus sequence was determined through

HMMemit (both programs from the HMMER package available

from http://hmmer.wustl.edu/). The sequences were compared to

the consensus sequence, and a representative sequence was chosen

based on similarity to the consensus sequence. The Stand-alone

BLAST package (binaries available from ftp://ftp.ncbi.nih.gov/

blast/executables/) was used to identify repeat locations and

integron cassette homologs. The formatdb program from this

package was used to build a searchable database from the Sde 2-40

genomic sequence, while the blastall program was used to search this
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database using the query. Homologous cassettes were found to be

end-to-end matches (including flanking repeats) with approximately

90% identity or greater.

Bacterial Growth Media and Conditions
E. coli strains were grown under standard protocols. Sde 2-40

strain 2-40 (ATCC43961T) was grown at 27u C on half strength

Marine Agar (MA): 18.7 g/L Difco Marine Broth 2216 amended

with 1.5% agar or in minimal broth medium (MM) consisting of

(per L): 23 g Instant Ocean Sea salts (Aquarium systems, Mentor,

OH ), 1 g Yeast extract, 50 mM Tris buffer pH 7.4 and 0.05%

(w/v) NH4Cl. MM was supplemented with 0.2% (w/v) Avicel,

barley glucan, laminarin, or xylan.

qRT-PCR
RNAprotect Bacteria Reagent was mixed with an aliquot of the

cell culture at a 2:1 ratio. After incubation at room temperature for

5 min, the cell suspension was harvested and RNA purified by

using the Rneasy Mini kit (Qiagen). A cDNA copy was generated

using the QiantiTect Reverse Transcription Kit according to the

manufacturer’s instruction. Primer pairs were designed to amplify

120 and 180 bp regions internal to the open reading frame of the

gene being investigated. The housekeeping gene guanylate kinase

(GK) was selected as control. The 20 ml qualitative RT-PCR

reaction system contains 10 ml of 26 LightCycler 480 SYBR

Green Master, 1 ml of cDNA, 1 ml of each 5 mM forward and

reverse primers and 7 ml of dH2O. Real-time PCR was performed

on a Light Cycler 480 (Roche), according to the manufacturer’s

instruction. Cycling conditions were as follows: initial denaturation

at 95uC for 4 min and 45 cycles of 95uC for 15 s, 56uC for 15 s

and 72uC for 20 s.

Enzyme Induction and Activity Studies
Sde 2-40 was grown in 1 L shake flasks containing MM amended

to 0.2% (wt/vol) dried Spartina alterniflora leaves, Avicel, birchwood

xylan, barley beta-glucan, laminarin, or glucose. Spartina alterniflora

(saltmarsh cord grass), found in intertidal wetlands, has a cell wall

with approx. 10% lignin, with the remainder being hemicellulose,

cellulose, and pectin. Cultures were grown to stationary phase and

harvested by centrifugation. Estimates of cellular and supernatant

protein were performed using the Pierce BCA assay. Cell and

supernatant fractions were analyzed by the microplate adaptation of

the Nelson-Somogyi reducing-sugar assay [53]. Samples were

assayed for activity against Avicel, PASC, CMC, xylan, beta-glucan

and laminarin. Activities were calculated as U/mg protein, where 1

U = 1 mmol reducing sugar equivalent released/minute. Activities

reported in this study represent the sum of cell pellet and supernatant

activities in U/ml.

Mass Spectrometry and Proteomic Analyses
Supernatants of Avicel, CMC, and xylan- grown cultures were

concentrated to ,25X in Centricon or Microcon devices (Millipore).

Protein concentrations were determined by the BCA protein assay

(Pierce). Samples were denatured and reduced, alkylated in 50 mM

iodoacetate and digested overnight at 37uC with proteomics grade

trypsin (Promega). Digestions were analyzed by RPHPLC-MS/MS

at the UMCP College of Life Sciences CORE Mass Spectrometry

facility as previously described [13]. All peptide fragment masses

were analyzed by the peptide analysis packages SEQUEST and

MASCOT [54,55] and compared to amino acid sequence

translations of all gene models in the Sde 2-40 draft genome and

to the non-redundant Mass Spectrometry Database (ftp://ftp.ncbi.

nih.gov/repository/MSDB/msdb.nam).

Supporting Information
All supporting information (Table S1 and S2; Figures S1, S2, S3,

S4, and S5) is available on the PLoS web site, www.plosgenetics.org.

The automated annotation and supporting information are available

on http://genome.jgi-psf.org/mic_home.html.

Supporting Information

Figure S1 S. degradans proteins carrying CBM2 domains.

Asterisks identify novel combinations of CBMs and catalytic

domains. The boxed proteins have CBMs attached to domains of,

as yet, completely unknown function.

Found at: doi:10.1371/journal.pgen.1000087.s001 (0.07 MB PPT)

Figure S2 S. degradans proteins carrying CBM6 domains.

Asterisks identify novel combinations of CBMs and catalytic

domains. The boxed proteins have CBMs attached to domains of,

as yet, completely unknown function.

Found at: doi:10.1371/journal.pgen.1000087.s002 (0.07 MB PPT)

Figure S3 S. degradans proteins carrying CBM13 domains.

Asterisks identify novel combinations of CBMs and catalytic

domains.

Found at: doi:10.1371/journal.pgen.1000087.s003 (0.06 MB PPT)

Figure S4 S. degradans modular polysaccharide lyases. 23 of the

33 Sde 2-40 PLs are modular, a higher proportion than observed

in any organism thus far. Asterisks identify novel combinations of

CBMs and catalytic domains.

Found at: doi:10.1371/journal.pgen.1000087.s004 (0.06 MB PPT)

Figure S5 Scanning electron micrographs of S. degradans grown

in minimal agarose medium. Cells were harvested at the indicated

growth stage, washed twice and resuspended in 20 mM PIPES

buffer, pH 6.8, amended to 1% final concentration glutaraldehyde

and immobilized onto. 0.2 mm pore size Nucleopore 13 mm

polycarbonate filters (Whatman, Middlesex, UK) followed by post-

fixing in 2% (v/v) osmium tetraoxide (OsO4) and dehydration in a

standard ethanol series. After critical point drying in CO2, the

specimens were mounted and coated with ,10 nm gold/

palladium. Specimens were viewed on a Hitachi S-4700 ultra

high resolution scanning electron microscope (UHR-SEM). A)

Cell of S. degradans grown to mid-log phase exhibiting typical

morphology and surface topology consisting of knobs at the polar

termini and large, irregular surface protuberances. B) Late-

stationary phase cell having typical shortened morphology and

abundant smaller protuberances and apparent fibrilar appendages.

Found at: doi:10.1371/journal.pgen.1000087.s005 (1.02 MB PPT)

Table S1 Frequency of COG’s in S. degradans 2-40.

Found at: doi:10.1371/journal.pgen.1000087.s006 (0.05 MB

DOC)

Table S2 Homologs of protein secretion system components.

Found at: doi:10.1371/journal.pgen.1000087.s007 (0.07 MB

DOC)
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