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Abstract

The ubiquitous SecY/Sec61–complex translocates nascent secretory proteins across cellular 

membranes and integrates membrane proteins into lipid bilayers. Several structures of mostly 

detergent solubilized Sec–complexes have been reported. Here, we present a single–particle cryo–

electron microscopy structure of the SecYEG complex in a membrane environment at sub–

nanometer resolution, bound to a translating ribosome. Using the SecYEG complex reconstituted 

in a so–called Nanodisc, we could trace the nascent polypeptide chain from the peptidyl 

transferase center into the membrane. The reconstruction allowed for the identification of 

ribosome–lipid interactions. The rRNA helix 59 (H59) directly contacts the lipid surface and 

appears to modulate the membrane in immediate vicinity to the proposed lateral gate of the PCC. 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
#Corresponding author Roland Beckmann: beckmann@lmb.uni-muenchen.de Tel: +49 89 2180 76900 Fax: +49 89 2180 76945. 

Author contributions
J.F. prepared the sample, collected the EM data, performed the 3D reconstruction and built the molecular model, J.C.G. did the MDFF 
and the MD simulations. E.O.v.d.S., S.F. and B.B. contributed to the purification of SecYEG, M.G. contributed to the data processing. 
T.M. and O.B. contributed to the EM data collection. T.B. contributed to model building and interpretation. All authors contributed to 
the study design and to writing the manuscript.

Supplementary Information
Note: Supplementary information is available on the Nature Structural & Molecular Biology website.

Accession codes
Coordinates of the atomic model and the cryo–EM map have been deposited in the PDB (to be announced XXX) and in the 3D–EM 
database (EMD–1858), respectively.

HHS Public Access
Author manuscript
Nat Struct Mol Biol. Author manuscript; available in PMC 2012 August 06.

Published in final edited form as:
Nat Struct Mol Biol. 2011 May ; 18(5): 614–621. doi:10.1038/nsmb.2026.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Based on our map and molecular dynamics simulations we present a model of a signal anchor–

gated PCC in the membrane.

Introduction

The vast majority of proteins designated to be secreted or to be integrated into the membrane 

bilayer has to pass the ubiquitous protein–conducting channel (PCC), termed Sec61 complex 

in eukaryotes or SecYEG in prokaryotes1. In the cotranslational mode, when the 

hydrophobic signal sequence or signal anchor (SA) of a nascent polypeptide chain emerges 

from the ribosome, the ribosome–nascent chain complex (RNC) is targeted to the membrane 

by the signal recognition particle (SRP) and the SRP–receptor (SR)2. After transfer from the 

SRP system to the PCC, the ribosome continues translation while the nascent polypeptide is 

directly guided from the ribosomal exit tunnel into the ribosome–bound SecY/61 complex 

for membrane translocation or integration.

The PCC is conserved amongst all organisms and several crystal structures of detergent–

solubilized PCCs have been reported3–6, sharing a common core of twelve transmembrane 

(TM) helices. This core consists of one large and two small subunits, termed SecY/Sec61α, 

SecE/Sec61γ and the less conserved SecG/Sec61β, respectively. In Escherichia Coli (E. 

coli), SecY is composed of two pseudo–symmetric halves comprising the N–terminal TM1–

TM5 and C–terminal TM6–TM10. SecY is flanked by the clamp–like protein SecE, 

composed of three TM helices and an amphipathic helix, and SecG consisting of two TM–

helices. The PCC may open both, perpendicular to the plane of the membrane for the 

translocation of soluble polypeptides across the membrane, and laterally for the integration 

of TM helices into the membrane. To that end, the two clam shell–like halves of SecY have 

been suggested to open on one side in order to form a lateral gate for accommodation of the 

signal sequence or the SA4–7. Consistent with this idea, three recent crystal structures of 

SecYE show a partial opening of the lateral gate4–6. After the gating event, the polypeptide 

is thought to use the central hourglass–shaped aqueous vestibule of the Sec complex as a 

conduit for translocation8. The central plug helix 2a of SecY would move and the central 

hydrophobic pore ring would provide a flexible seal to avoid ion leakage across the 

membrane1. Although a low resolution cryo–EM structure of a programmed ribosome–

SecYEG complex was interpreted to comprise two copies of the SecYEG complex forming 

a joint pore9, more recent biochemical, structural, and simulation data showed that a single 

copy of the Sec complex is most likely forming the active PCC10–13,14. All 3D–structures of 

the PCC bound to the ribosome, however, were obtained using detergent solubilized Sec–

complexes6,9–11,13,15–19. It has been shown that, in principle, the PCC can be active in 

detergent solution20, however, it is not clear to what extent the absence of the lipid bilayer 

may influence the structure and the activity of the PCC. Thus, the conformation of the 

ribosome–Sec–complex in its natural environment remains to be elucidated. Furthermore, 

questions regarding PCC–mediated membrane protein integration or assembly can only be 

addressed in the presence of a bilayer.

Therefore, a routine approach for the visualization of membrane proteins within a membrane 

environment is highly desirable. Traditional 2D–electron crystallography21 and the more 
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recent single–particle cryo–EM approach called RSC22 are limited by the difficulty to 

generate 2D crystals and the rather low resolution, respectively. Here, we report on a new 

approach to obtain subnanometer–resolution structures of membrane protein complexes in a 

lipid bilayer environment. We integrated the E. coli SecYEG complex into high density 

lipoprotein (HDL) particles, also termed Nanodiscs, a defined and soluble nano–scale 

phospholipid bilayer stabilized by a mutant form of apolipoprotein A123,24 and subjected it 

after reconstitution with RNCs to high–resolution single–particle cryo–EM.

Results and Discussion

Reconstruction of the ribosome–Nd–SecYEG complex

We purified E. coli RNCs25 carrying an elongation arrested nascent chain of 118 amino acid 

residues. The first 102 residues represented the N–terminus of the membrane protein FtsQ, 

preceded by an HA– and a His–tag for affinity purification. This type II membrane protein 

contains an N–terminal signal–anchor transmembrane (TM) helix that was shown to insert 

co–translationally into the membrane and to remain in contact with SecY and lipids after 

insertion26. Nanodiscs were reconstituted with a mutant form of apolipoprotein A1 (Apo–A1 

Δ1–43) as described before23 using E. coli total lipid extract in the absence or presence of 

purified recombinant E. coli SecYEG complex. This resulted in Nanodiscs containing only 

lipids (Nd–E) or SecYEG–containing Nanodiscs (Nd–SecYEG).

Nascent FtsQ–carrying RNCs were then reconstituted with an excess of Nd–SecYEG, and 

used in binding assays to test whether the RNC–Nanodisc interaction was dependent on 

SecYEG. Stable binding of RNCs was observed only in the presence of Nd–SecYEG (Fig. 

1a), indicating that neither the ribosome nor the SA domain of the nascent FtsQ could 

interact with, or insert into the lipid bilayer in a SecYEG–independent manner. We, 

therefore, concluded that the reconstituted complexes indeed represented RNC–Nd–SecYEG 

complexes.

The cryo–EM reconstruction of this complex shows the appearance of a programmed 70S 

ribosome at 7.1 Å resolution with an additional disc–like density beneath the ribosomal exit 

site (Fig. 1b, Supplementary Fig. 1). This density had a diameter of 10–12 nm and a height 

of about 4–5 nm, tethered by several contacts to the ribosome. The appearance of a clear 

tRNA density in the P–site confirmed the presence of the nascent FtsQ chain as peptidyl–

tRNA. It was possible to visualize the density of the nascent chain within the ribosomal exit 

tunnel reaching from the peptidyl–transferase center (PTC) into the Nd–SecYEG density 

(Fig. 1c). The ribosome contacted the Nd–SecYEG density via several connections, yet, 

leaving a gap on one side of about 15–25 Å between the ribosome and the Nd–SecYEG. 

This gap is in agreement with data obtained from detergent solubilized complexes15,16,19, 

indicating the lack of a seal between the ribosome and the membrane–embedded PCC27. 

The gap suffices to provide the space required for folding or egress of cytosolic domains of 

membrane proteins.

To interpret the cryo–EM map on a molecular level, we docked crystal structures and 

molecular models into the density and applied molecular dynamics flexible fitting 

(MDFF)28, resulting in a complete molecular model for the 70S–RNC–Nd–SecYEG 
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complex (Fig. 1d, Supplementary Material Methods). This model was used as a starting 

point for a 16 ns molecular dynamics (MD) simulation.

Structure of the Nanodisc

The region of the map representing the Nanodisc was expected to consist of a lipid bilayer 

with an upper and lower membrane leaflet stabilized by two belt–like Apo–A1 Δ1–43 

molecules surrounding it. The observed density indeed shows the characteristic dimension 

of a lipid bilayer with a thickness of about 43 Å (Fig. 2a). Strong electron density for the 

phospholipid headgroups was present that could be distinguished from the very weak 

density for the region occupied by the acyl chains of the fatty acids (Fig. 2a). This 

distribution resembles that observed in membrane–containing viruses29,30 and in 

liposomes31. In contrast to the phosphate headgroups, the acyl chains of the lipids yield very 

weak electron density due to their composition of low– contrast carbon and hydrogen atoms. 

The overall dimensions of the electron density representing the Nanodisc are in good 

agreement with a molecular model for nascent discoidal HDL, determined using hydrogen–

deuterium exchange mass spectrometry or x–ray crystallography of the protein alone24,32,33. 

The outer ring of the Nanodisc, suggested to be composed of two parallel copies of Apo–A1 

Δ1–43, also displays a stronger density than the lipid acyl chains (Fig. 2). However, the 

density did not allow for the resolution of the protein belts. Nevertheless, we used a current 

molecular model for Apo–A132 and also lipids to complete our modelling effort for the MD 

simulation. Fragmented density outside the main disc may be a result of heterogeneity of the 

disc diameter or of the presence of non–lipidated N–terminal regions of Apo– A1 Δ1–43, 

respectively. Within the bilayer, we found rod–like structures directly beneath the ribosomal 

tunnel exit, apparently representing the TM helices of the SecYEG complex (Fig. 2, 

Supplementary Fig. 1c). The resolution of the Nanodisc appears to be somewhat lower as 

that of the ribosome. However, the appearance of the rod–like densities representing alpha–

helical regions of SecYE indicates that the resolution for the SecYE complex in the 

Nanodisc is in the sub–nanometer range. Our observation shows that the overall dimensions 

of the membrane–protein–containing Nanodisc resemble those of a small circular lipid 

bilayer which can be subjected to structure analysis at sub–nanometer resolution.

Model of the ribosome–SecYE complex and contacts

Based on the previously observed contacts of the cytosolic loops L8/9 and L6/7 of SecY/

Sec61 to the ribosome10,11,13 (Supplementary Fig. 2), we fitted a homology model of E. coli 

SecYE into our density by MDFF (Fig. 3a). Using the structure of SecYE in the SecYE–

SecA complex4 as a template, the C–terminal half of SecY fitted remarkably well and only 

small adjustments of the N–terminal TM helices of SecY were necessary (Fig. 3a, b; 

Supplementary Fig. 3a, b). The position of the short plug helix 2a remained essentially 

identical to that observed in the SecYE–SecA structure. The N–terminal TM helices of SecE 

were placed into two additional rod– like densities, guided by the 2D crystal structure of the 

SecYEG complex34,35 (Supplementary Fig. 3c, d). Although we observed some density also 

in the region where SecG was expected4 (Fig. 2b, Supplementary Figs 3d, e, 12), we could 

not unambiguously identify its exact position, indicating a higher degree of flexibility. 

Notably, the fitted model left a rod–like density in the proposed lateral gate of SecY 

unaccounted for, that we interpreted as the inserted SA helix of FtsQ (Fig. 2, Supplementary 
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Fig. 3d). The MD simulation revealed a stable behaviour of the fitted model of the PCC 

(Supplementary Fig. 4a) that, together with a cross–correlation analysis of the quality of the 

fit, supports its accuracy (Supplementary Table 1). Furthermore, the connections between 

SecYE and the ribosome were maintained throughout the simulation (Supplementary Fig. 5), 

and the position of the SA TM domain was stable with respect to the PCC (Supplementary 

Fig. 4b).

A multitude of contacts were identified between the ribosome and SecYE as well as lipids 

(Fig. 3, Supplementary Tables 2–6). The cytoplasmic loops L8/9 and L6/7 of SecY reached 

into the ribosomal exit tunnel and contacted ribosomal RNA (rRNA) helices H50/53/59 and 

H6/24/50, respectively (Fig. 3a, c, e, f). Furthermore, both loops also contacted the 

ribosomal protein L23 in different regions (Supplementary Tables 2–6). Notably, the 

binding mode we observe in the presence of a signal sequence and a lipid bilayer is very 

similar to the mode found in inactive complexes and in detergent solution10,11,13,14. Thus, 

this interaction appears to represent the canonical binding mode of the Sec–complex to the 

universal ribosomal adaptor site for both prokaryotic and eukaryotic complexes. An 

additional contact was likely to represent the C–terminus of SecY, contacting ribosomal 

protein L24 and rRNA helices H24/50 (Fig. 3a, e, f). A contribution of the SecY C–terminus 

to ribosome binding is in agreement with recent findings for both the bacterial14 and the 

eukaryotic system13, as well as mutational studies revealing translocation defects of C–

terminally truncated SecY36. In addition to SecY, SecE contributes to the interaction of the 

PCC with the ribosome (Fig. 3c, e, f), consistent with previous data10,11,13,14. We observed 

several contacts between the N–terminus as well as the amphipathic helix of SecE and the 

ribosomal adaptor site proteins L23 and L29, respectively. A stretch of conserved residues in 

the amphipathic helix of SecE37 appeared to be involved in contacting both SecY and L23/

L29. While in agreement with several previous studies10–13,14, these findings are difficult to 

reconcile with the interpretation by Mitra et al.9

Interestingly, the Nd–SecYEG–bound ribosome did not only interact with the PCC but also 

with lipids. A strong density between rRNA helix H59 and the disc is apparently mediated 

by a direct contact to lipid headgroups (Fig. 1b–d, Fig. 3d, Supplementary Movie M1), 

which is in agreement with previous observations11,14. In addition, L24 showed a strong 

contact with the Nd–SecYEG density that may also involve lipids. After the initial fitting of 

molecular models, a molecular dynamics simulation of the ribosome–Nd–SecYE–lipid 

model was performed, containing a lipid bilayer of 75% phosphatidylethanolamine and 25% 

phosphatidylglycerol, mimicking the composition of the bacterial plasma membrane.

Initially, we fitted a flat lipid bilayer into the Nanodisc density; however, shortly after the 

start, the simulation showed a stable attraction between lipids and rRNA helix H59 

(Supplementary Movie M1). The resulting lipid distribution resembled the electron density 

remarkably well, indicating that H59 is indeed capable of establishing another interaction 

site between ribosome and membrane–PCC–complex (Fig. 3d). In contrast, the additional 

interactions between L24 and lipids, which were also in good agreement with our electron 

density, were intermittent, as L24 was seen to preferentially interact with SecY/nascent 

chain later in the simulation. The direct interaction of the ribosome with the lipid bilayer, in 

addition to the SecYE contacts, may explain the rigid positioning of the entire disc with 
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respect to the ribosome and the asymmetrical position of the SecY complex in the disc. 

Taken together, a multitude of contacts between ribosome and the C–terminal half of the 

PCC as well as lipids results in a robust coordination of the ribosome with respect to the 

membrane surface (Fig. 3e, f). The observed conformation orients the ribosomal surface 

around the tunnel exit almost parallel to the surface of the membrane while leaving a 

distance of about 20 Å on one side (Supplementary Fig. 6). The position of the lateral gate 

of SecYEG with respect to the ribosomal–PCC contacts would easily facilitate egress of 

cytoplasmic domains of nascent peptides alongside the H59 contact away from the main 

interaction sites.

Model and path of the translocating polypeptide chain

The resolution of the electron density allowed for the tracing of the nascent polypeptide 

chain from the PTC through the ribosomal exit tunnel (Fig. 1c). Furthermore, in the 

membrane, one rod–like density at the lateral gate of the PCC is best explained by the 

presence of the inserted SA of FtsQ (Fig. 4d, e, Supplementary Fig. 3b). After passing the 

central constriction of the ribosomal tunnel with an unaltered loop region of L22 

(Supplementary Fig. 7a), the nascent chain engages in a number of contacts in the lower half 

of the tunnel involving the ribosomal proteins L23, L24 and SecY (Fig. 4a, Supplementary 

Tables 2–6). Noteworthy, protein loops participate in all of these contacts and undergo 

conformational changes when compared to structures of inactive complexes. The conserved 

loop of L23 that reaches up the tunnel wall has been suggested to constitute a potential 

interaction site for nascent proteins38, possibly leading to an inside–outside signalling of the 

nascent chain39. In our complex, the tip of L23 (Fig. 4b) indeed shifts down when compared 

to empty ribosomes analyzed by cryo–EM or x–ray crystallography (Supplementary Fig. 

7b). In the immediate vicinity, the nascent chain subsequently contacts the tip of L6/7 of 

SecY that embraces the nascent chain. This may indicate a putative role of L6/7 as a sensor 

for the presence and/or the nature of the nascent chain inside the ribosomal tunnel. 

Interestingly, when interacting with an empty ribosome, a different conformation of L6/7 of 

SecY was observed to occlude the tunnel10 (Supplementary Fig. 8). This might be of 

functional relevance after termination and re–initiation of translation when a newly arriving 

nascent chain could regulate dissociation of the PCC from the ribosome by interfering with 

the L6/7. When finally exiting the ribosomal tunnel, the nascent chain contacts the exposed 

beta–hairpin of L24 (Fig. 4c). This hairpin loop is also bent downwards to probably contact 

the lipid surface and the C–terminus of SecY. Taken together, the nascent chain is carefully 

guided by protein loops through the ribosomal tunnel to its site of insertion into the PCC.

At the present resolution we could not trace the path of the complete NC within the PCC. 

Yet, we aimed at building a full model and therefore generated a hypothetical path of the NC 

within the SecY core, based on biochemical data published before8 and in agreement with 

our SecY model. Therefore, after fitting the TM helices of SecY, we simply extended the 

NC model from the cytoplasmic to the periplasmic side through the central pore8, as 

indicated by a dashed line (Fig. 4a). In our SecYE model, the central opening leaves enough 

space for an extended polypeptide chain to pass while, at the same time, a substantial flow 

of ions would be prevented in the presence of a translocating peptide.
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To obtain a complete model for MD simulations we then connected the NC model (dashed 

line) with the SA within the proposed lateral gate of the PCC, resulting in the loop–like 

arrangement expected for a type II membrane protein. Adjusting the SecYE complex from 

the SecA–activated, pre–open conformation4 of the template to our map resulted in a 

laterally open conformation (Supplementary Fig. 9). Interestingly, mainly the gate helices 

and the N–terminal half of SecY undergo movements, while the TMs of the C–terminal half 

superimpose well with the structure of the pre–open state (Supplementary Fig. 9a). This 

conformation permitted the fitting of the additional SA helix into the rod–like density within 

the lateral gate (Fig. 4, Supplementary Fig. 1c, 3b, 9, 10).

The resulting model provides a plausible scenario with an overall arrangement that is in 

agreement with previous biochemical and structural data. In this model the SA is exposed 

towards the lipid bilayer, yet it remains tightly enframed by TM2b, TM7 and TM8 of SecY 

that may indeed act as the lateral gate for TM domains for insertion into the membrane3,4,40. 

This SA position explains chemical cross–link data that indicate, at a similar chain length, 

close proximity of the SA of FtsQ to both SecY and lipids26. Upon further chain elongation, 

complete release of the SA from SecY is likely to be triggered by additional factors such as 

YidC41,42. The position of the SA in the lateral gate is also consistent with contacts to 

conserved hydrophobic residues of SecY TMs 2, 7 and 85,8 (Fig. 4 d, e) as well as with 

contacts to residues that can be cross–linked to the signal sequence of proOmpA8. During 

the MD simulation, the SA remained stable with respect to SecYE (Supplementary Fig. 4). 

Notably, virtually no hydrogen bonds, but mainly hydrophobic interactions were observed 

between the SA and SecY (Supplementary Fig. 10 and tables). Whereas a substantial 

number of hydrogen bonds would reduce the TM domain's ability to exit into the bilayer, 

hydrophobic interactions would be in agreement with partitioning according to the TM 

domain's hydrophobicity. Although we cannot exclude limited flexibility of the SA, the 

robust density argues in favour of high occupancy in the observed position. Taken together, 

this indicates that the SA is in a reasonable and meaningful position in the structure. The 

positively charged N–terminus of the FtsQ SA could remain on the cytosolic side, stabilized 

by additional interactions with either the phospholipid headgroups or the negatively charged 

phosphate backbone of the nearby rRNA helix H59. At the same time, the position of the SA 

would prevent phospholipids from entering the center of the PCC. In conclusion, the 

suggested TM helix at the interface between the lateral gate of SecY and the lipid bilayer as 

positioned in our model may represent an intermediate step of TM integration into the 

membrane.

Insertion of a TM domain into the membrane

Both our map and the MD simulation revealed a stable attraction between lipids and rRNA 

helix H59 (Fig. 3d, Fig. 5a, Supplementary Fig. 11, Supplementary Table 7). Notably, this 

lipid–H59 interaction resulted in a redistribution of the lipids which affects the immediate 

vicinity of the suggested TM domain insertion region (Fig. 5a–c). The lateral diffusion of 

lipids is decreased around H59 and the cytoplasmic leaflet of the membrane is less ordered. 

Similar findings have been reported in a number of recent studies, highlighting that RNA–

lipid interactions are based on electrostatic attractions43–46. Interestingly, RNA binding to 

lipid bilayers may influence and change the bilayer state45. Most notably, RNAs can even 
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insert into bilayers and perturb membrane permeability44. In addition, it has been shown that 

RNA–lipid binding may lead to lateral segregation and formation of domains with different 

compositions in the lipid bilayer43. This is in good agreement with our cryo–EM–

density/MD–simulation finding that ribosomal rRNA H59 indeed attracts the charged 

headgroups (Supplementary Table 7), leading to a disorder in the lipid bilayer in proximity 

to the lateral gate of SecY. We speculate that this induced disorder may favour membrane 

insertion of TM domains by decreasing the energy barrier for the TM to access the 

hydrophobic core of the lipid bilayer through the layer of charged head groups. This is 

supported by the idea that insertion efficiency is determined by the energetic cost of 

distorting the bilayer in the vicinity of the TM helix, as predicted by MD simulations47. By 

interacting with positively charged N–terminal residues of TM domains, there might even be 

a contribution of H59 to the correct orientation of TM domains according to the positive–

inside rule48.

When comparing our model to the bacterial RNC–SRP complex25, the positions of the SA 

domain are in close proximity to each other (Fig. 5d, Supplementary Fig. 12). Notably, apart 

from the previously observed removal of the NG–domain from its L23 binding–site25, only 

minor conformational adjustments would be required for a concomitant binding of SRP and 

the SecYEG complex to the ribosome. For transfer from the targeting system to the PCC, the 

SA could slide from the SRP54 M–domain directly into the lateral gate/lipid region of the 

SecYEG complex (Fig. 5e, Supplementary Fig. 12). A virtually continuous hydrophobic 

environment for the insertion of the TM domain into the lipid phase would be provided. The 

hydrophilic residues that follow the SA would then be oriented in the hydrophilic central 

conduit of the channel, resulting in the loop–like insertion of the nascent polypeptide (Fig. 

5d–f).

Conclusions

Our sub–nanometer resolution cryo–EM structure of the bacterial ribosome–SecYEG 

complex in a Nanodisc allows for the molecular interpretation of a membrane protein, the 

SecYEG complex, in its natural lipid bilayer environment. We suggest an insertion 

intermediate of a type II membrane protein using the proposed lateral gate of the SecYEG 

complex for partitioning into the lipid phase. Molecular dynamics simulations based on our 

structure reveal stable interactions between ribosomal RNA and the membrane that may 

contribute to the insertase activity of the PCC. Using nascent polytopic membrane proteins, 

future studies will address the mechanism of more complex membrane insertion events. This 

method may provide a general approach to visualize functional membrane proteins in the 

lipid environment by high–resolution single particle cryo–EM.

Methods

RNCs, the E. coli SecYEG complex and Nanodiscs (Nd–E, Nd–SecYEG) were prepared 

essentially as described before23,25,49. RNC–Nd–SecYEG complexes were reconstituted by 

incubating purified RNCs with an excess of Nd–SecYEG for 15 min at 37°C followed by 15 

min on ice. Binding assays were done by centrifugation followed by SDS–PAGE analysis of 

supernatant and pellet fractions. Prior to application to carbon–coated EM grids, 
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reconstituted RNC–Nd–SecYEG complexes were pelleted and then vitrified. Cryo–EM data 

collection on plates was done on a 300 kV Polara FEG cryo–microscope, FEI; data were 

digitized and then processed using the Software Spider25,50. Sorting of the dataset according 

to the presence of the Nanodisc resulted in a final population of 85,664 particles that were 

used for a 3D reconstruction with a resolution of 7.1 Å according to the FSC 0.5 criterion. 

For the molecular model, we used available crystal structures either directly (E. coli 70S 

ribosome) or as templates for homology modelling (SecYEG complex), followed by fitting 

into the density by molecular dynamics flexible fitting (MDFF)28. The molecular dynamics 

(MD) simulations were done using the GPU–accelerated version of NAMD on the Lincoln 

cluster at NCSA51. The analysis of the simulation was done with VMD52. Figures were 

prepared using Chimera53 and Adobe CS3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Reconstitution and cryo–EM reconstruction of a 70S RNC–Nd–SecYEG complex
(a) Binding assay using purified RNCs (RNC) with an excess of reconstituted Nd–E and 

Nd–SecYEG. Supernatant (S) and pellet (P) fractions were analyzed by SDS– 

polyacrylamide gel electrophoresis and SYPRO orange staining. Nd–SecYEG bind stably to 

RNCs, whereas Nd–E do not.

(b) Cryo–EM reconstruction of the active 70S–RNC–Nd–SecYEG complex at 7.1 Å 

resolution. The ribosomal 30S subunit is shown in yellow, the 50S subunit blue, SecY 

orange, SecE purple, Nanodisc white.
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(c) Density as in (b), but cut perpendicularly to the plane of the membrane along the 

polypeptide exit tunnel, colours as in b with P–site tRNA and nascent polypeptide chain 

green.

(d) All–atom model of the active 70S–RNC–Nd–SecYEG complex. View and colours as in 

(b), proteins and RNA in ribbon representation and phospholipids in ball and stick 

representation with phospholipid headgroups in red/orange and acyl chains white, Apo–A1 

in light purple.

Frauenfeld et al. Page 13

Nat Struct Mol Biol. Author manuscript; available in PMC 2012 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Structure of the Nanodisc
(a) Left: side view cut perpendicular to the plane of the membrane of the isolated electron 

density of the Nanodisc–SecYEG complex (Nd–SecYEG), showing the lateral gate of SecY. 

The electron density is represented as a transparent grey mesh with the ribbon representation 

of the fitted model of a SecY (orange), SecE (purple) and the signal anchor sequence 

(green). Two layers of density are visible (upper membrane interface, UMI, and lower 

membrane interface, LMI), separated by a region of lower density (hydrophobic core, HC), 

containing transmembrane (TM) helices. Dimensions are indicated. Right: Same view, with 

the fitted Nanodisc–model containing lipids in ball and stick representation. Phospholipid 

headgroups are red (oxygen) and orange (phosphate), acyl chains white (AC, carbon–

hydrogen groups).

(b) Left: horizontal section, sliced within the plane of the membrane within the hydrophobic 

core of the lipid bilayer. Rod–like features are visible in the interior of the Nanodisc and 

account for density of a monomeric SecYEG complex. Right: horizontal section with fitted 

lipids.
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Figure 3. Structure and connections of the membrane–embedded open SecYEG–RNC complex
(a) Cryo–EM reconstruction of the 70S–RNC–Nd–SecYEG complex, colours as in Fig. 1. 

Insert: molecular model of the 50S subunit with electron density (left) and molecular model 

for SecYE (right).

(b) Model of the open SecYE complex with a signal anchor (SA, green) residing within the 

lateral gate, view cut perpendicular to the plane of the membrane.

(c) Close–up of the interaction area of universal ribosomal adaptor site and SecYE.

Frauenfeld et al. Page 15

Nat Struct Mol Biol. Author manuscript; available in PMC 2012 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(d) Molecular model of the ribosome–SecYE–membrane interface with transparent density 

filtered at 9–10 Å. Lipid headgroups (LH) are indicated.

(e) Cytoplasmic view of the molecular model of the Nd–SecYE complex with contacts to 

the 50S subunit indicated by circles.

(f) View of the ribosomal tunnel exit site, contact sites as in (e).
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Figure 4. Path of the nascent chain and signal anchor
(a) Section through molecular models of the ribosomal exit tunnel and Nd–SecYE. The 

nascent chain (NC) with the signal anchor (SA) is shown in green. The dotted line indicates 

the cytoplasm–membrane interface.

(b) Conformational changes of L23. Comparison of the model of L23 (grey) of an inactive 

ribosome (PDB: 2i2v) and of L23 (pink) in the presence of a nascent chain (green), SecY 

(orange), SecE (purple) and lipid headgroups. The intra–tunnel loop of L23 bends towards 

the nascent chain, close to L6/7 of SecY.

(c) Conformational change of the β–hairpin loop of L24. Comparison of the model of L24 

(grey) of an inactive ribosome (PDB: 2i2v) and of L24 (green) in the presence of a nascent 

chain (green), SecY (orange), SecY C–terminus (SecY C–term), SecE (purple) and lipid 

headgroups (LH).

(d) View of the lateral gate of SecYE shown as a surface representation. SecY is shown in 

orange, SecE in purple, the nascent chain in green. Conserved residues of SecY that 

contribute to the central hydrophobic pore ring are indicated in red and hydrophobic residues 

of the hydrophobic crevasse that have been found by mutational analysis to be critical for 

SecY function5 are indicated in pale yellow.

(e) View of the position of the SA from the cytoplasmic side, sliced within the plane of the 

membrane. Hydrophobic pore ring residues are indicated in red.
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Figure 5. Molecular dynamics simulation and membrane insertion
(a) Plot of surface area formed between lipids and ribosomal helix H59 during the MD 

simulation.

(b) Surface representation of the Nd–SecYE complex seen from the ribosome after 16 ns 

MD simulation. Apo–A1 is shown in light purple, SecY in orange, SecE in purple, nascent 

chain in green and the atoms of the lipid head–groups are coloured in orange (phosphate), 

red (oxygen) and blue (nitrogen), respectively. Note the accumulation of positive charges in 

the region close to H59 and the disorder of the lipids forming a groove juxtaposed to the 

signal anchor.

(c) Schematic depiction of the view in (b) using the same colour code and indicating the 

probable path of the nascent TM domain for integration into the bilayer.

(d) Schematic depiction of the bacterial 50S ribosomal subunit (blue) bound to SRP (red, 4.5 

S RNA and the N–terminal 54–NG domain) in the presence of a signal anchor sequence as 

observed before25. The nascent chain with the signal anchor is shown in green and

(e) Schematic depiction of a hypothetical TM domain insertion intermediate showing the 

bacterial 50S ribosomal subunit (blue) bound to the SecYEG complex (orange) in the 

presence of a signal anchor, accessing the hydrophobic lipid phase through a partially open 

lateral gate.

(f) Schematic depiction of the observed insertion intermediate with the signal anchor TM 

domain fully inserted into the lateral gate and exposed to the hydrophobic core of the 
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bilayer. Note the proximity of the SA position as observed in the targeting complex (d) and 

in the insertion intermediate (e, f).
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