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Abstract

Dopamine neurotransmission influences approach toward rewards and reward-related cues. The best cited interpretation of
this effect proposes that dopamine mediates the pleasure that commonly accompanies reward. This hypothesis has
received support in some animal models and a few studies in humans. However, direct assessments of the effect of
transiently increasing dopamine neurotransmission have been largely limited to the use of psychostimulant drugs, which
elevate brain levels of multiple neurotransmitters in addition to dopamine. In the present study we tested the effect of more
selectively elevating dopamine neurotransmission, as produced by administration of the immediate dopamine precursor, L-
DOPA (0, 100/25, 200/50 mg, Sinemet), in healthy human volunteers. Neither dose altered positive mood. The results
suggest that dopamine neurotransmission does not directly influence positive mood in humans.
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Introduction

Mesolimbic dopamine (DA) neurotransmission influences the

ability of rewards to elicit focused interest and approach [1–5].

One early and still frequently cited interpretation is that the

transmitter mediates pleasure [6]. This possibility was first

suggested following observations that neuroleptic medications

decreased amphetamine-induced subjective ‘‘high’’ in stimulant

drug abusers [7–9] and produced a sense of ‘‘psychic indifference’’

in patients with schizophrenia [10] while extended treatment with

high doses of L-DOPA led to hypomanic states in patients with

bipolar mood disorders [11]. Subsequently, a series of carefully

controlled and influential animal studies indicated that increases in

DA neurotransmission augmented instrumental responding for

electrical stimulation of the brain (ESB) [12] while decreased DA

neurotransmission disrupted responding for drugs, food, and ESB

[13–18]. The latter effects were not attributable to compromised

motor function since low doses of DA receptor antagonists

increased instrumental responding while higher doses produced

biphasic increases and decreases. These observations led to the

suggestion that DA receptor antagonists reduced the ability to

experience pleasure [6].

Some recent work is at least consistent with the anhedonia

hypothesis. For example, individual differences in the magnitude

of drug-induced striatal DA responses correlate with approach-

related personality traits [19–22] and the substance’s positive

subjective effects [23–31]. In the converse experiments, mood-

lowering effects of antipsychotic medications are predicted by their

extent of DA D2 receptor blockade [32–34].

Other work, though, has seemed inconsistent with a role of DA

in pleasure. First, in both humans [35,36] and in laboratory

animals [3,37] DA release in the ventral striatum can also be

evoked by aversive stimuli. Second, in operant conditioning

paradigms, DA release increases and then peaks just prior to a

lever press for reward and then gradually decreases thereafter

[38,39]. With experience DA comes to be released in response to

cues associated with the reward [38–40] but not when actually

receiving the reward [40,41]. Third, an extensive series of studies

has indicated that neither DA antagonists nor DA lesions alter

responses in the ‘taste reactivity’ paradigm, an animal model of

eating-related pleasure [2,42,43]. Finally, the majority of studies

have failed to replicate an ability of neuroleptic medications or

other DA lowering manipulations to decrease drug-induced

pleasure in humans [44–58].

Given the above controversies, the present study aimed to test

the effect of a more selective DA augmenter, L-DOPA, on mood

states in healthy human volunteers. Since individual differences in

approach-related traits predict differences in DA reactivity, it was

further hypothesized that those who scored higher on these traits

would exhibit greater mood elevation.

Results

There were no significant Group x Time interaction effects for

any of the POMS subscales (all ps.0.05, see Table 1), nor were

there significant main effects of personality (all ps.0.05). A three-

way Group x Personality subgroup x Time interaction raised the

possibility that NS2 predicted differential POMS Agreeable-

Hostile responses to L-DOPA, but this effect was no longer

significant when VAS ‘‘Nauseous’’ scores were entered as

covariates (F6, 114 = 0.804, p.0.05). Effects on nausea were mild

(peak change = 1.4/10), and statistically significant for the 200 mg

L-DOPA dose only (F6, 126 = 2.839, p,0.05) (see Table 1).
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Discussion

In the present study, the immediate DA precursor, L-DOPA,

did not affect positive subjective states in healthy human

volunteers, neither in the groups as a whole nor in subgroups

based on hypothesized DA-related personality traits. These

findings extend the results from previous drug challenge studies.

In contrast to non-specific DA augmenters, such as psychostim-

ulant drugs, which reliably and potently elevate mood in healthy

human volunteers [31,53,59–61], accumulating evidence indicates

that more selective DA receptor agonists do not (Table 2).

The inability to detect effects of L-DOPA on positive mood does

not preclude a relationship between DA neurotransmission,

personality traits and goal-directed behavior [11,19–22,62,63];

moreover, enhancements in goal-directed behavior may lead to

elevated mood [11,62–64]. However, the present results suggest

that drug-induced mood-elevating effects are more closely related

to neurotransmitters other than DA [3,37,62–69], perhaps

serotonin, norepinephrine, glutamate, GABA, endocannabinoids

and endogenous opioids [2,70–75].

If DA’s influence on reward seeking behaviors is not accounted

for by enhanced pleasure, this raises the question of why it has

these effects. Perhaps the best-supported alternative interpretation

from the animal literature proposes that DA enhances the

incentive salience of reward related cues, increasing their ability

to elicit focused interest and sustain effortful seeking [2,43,76].

This conclusion is largely based on extensive evidence that

decrements in DA neurotransmission reduce the willingness to

work for rewards [37,76] without changing responses in an index

of feeding related pleasure [2,43]. Accumulating work in humans

supports this interpretation also ([62], Table 2). For example, in a

series of studies conducted here, decreasing DA neurotransmission

disrupted the tendency of subjects to respond preferentially to

reward-related cues [55] and decreased the willingness to work for

abused drugs [53,58] and monetary reward [Cawley et al,

unpublished observations] on progressive ratio breakpoint sched-

ules; each of these effects was produced without reductions in

pleasure. Indeed, the majority of studies in humans have failed to

replicate an ability of various DA lowering manipulations to

diminish drug-induced pleasure [45–58].

The present results should be considered in light of the

following. First, there was no direct measure of the ability of L-

DOPA to increase DA, leaving open the possibility that mood

changes were not detected because L-DOPA failed to increase DA

levels. However, this seems unlikely since similar doses of L-DOPA

given to healthy human volunteers induce behavioural effects [77–

79] and increase striatal DA synthesis [80]. Pre-clinical studies

confirm that L-DOPA increases DA levels in the intact brains of

healthy animals, albeit to a lesser extent than in animal models of

Parkinson’s disease [81]. Although, to our knowledge, there are no

reports of L-DOPA induced DA release in healthy humans, the

administration of 250 mg more than doubles ventricular CSF

levels of the DA metabolite, DOPAC [82]. Moreover, robust L-

DOPA induced DA responses have been seen in patients with

Parkinson’s disease [83]; intriguingly, these effects are largest in

Table 1. Effect of L-DOPA on mood and nausea.

POMS Item Group Baseline T2 T3 T4 Peak Change

(+45 mins.) (+105 mins.) (+165 mins.)

Composed-Anxious Placebo 60.161.9 61.661.7 60.361.6 60.161.8 2 1.062.4

100 mg L-DOPA 57.462.6 58.962.3 57.762.4 58.162.2 0.1962.8

200 mg L-DOPA 56.762.0 58.662.0 55.862.1 57.362.2 0.6362.0

Elated-Depressed Placebo 54.761.4 54.261.4 58.161.7 55.161.6 2.161.7

100 mg L-DOPA 54.061.8 53.861.4 54.162.0 52.061.9 2 0.7561.2

200 mg L-DOPA 55.861.9 53.761.5 56.661.6 53.861.7 2 2.061.6

Energetic-Tired Placebo 51.661.4 49.461.6 56.161.8 53.361.4 0.6362.6

100 mg L-DOPA 55.162.0 51.062.1 53.662.4 52.062.5 2 5.062.2

200 mg L-DOPA 54.261.7 47.861.9 51.662.0 49.961.9 2 6.761.8

Agreeable-Hostile Placebo 55.661.8 54.761.9 56.361.9 53.861.4 2 2.361.8

100 mg L-DOPA 53.362.4 53.262.2 54.262.6 53.762.4 0.061.4

200 mg L-DOPA 52.161.5 50.661.7 51.461.6 50.161.9 2 2.561.6

Confident-Unsure Placebo 55.261.3 54.261.6 56.761.5 54.861.5 2 0.6961.2

100 mg L-DOPA 55.861.5 54.461.6 54.861.8 54.661.7 2 1.961.5

200 mg L-DOPA 53.661.7 52.261.8 53.062.1 52.961.7 2 0.7561.4

Clearheaded-Confused Placebo 57.061.7 55.461.6 58.461.6 56.461.6 2 1.362.4

100 mg L-DOPA 56.661.7 54.861.7 55.661.8 55.162.0 2 0.8162.3

200 mg L-DOPA 55.061.7 52.462.5 53.462.2 52.762.3 2 3.361.3

VAS Item

Nauseous Placebo 1.860.23 2.260.37 1.460.16 1.460.15 0.2560.47

100 mg L-DOPA 1.660.22 1.460.22 1.360.17 1.460.31 2 0.1360.36

200 mg L-DOPA 1.560.18 2.060.27 1.960.39 2.660.54 A, B, C 1.460.52

(Means6SEM).
A = significantly different from placebo, B = significantly different from baseline, p,0.05, C = significantly different from 100 mg L-DOPA group at T4.
doi:10.1371/journal.pone.0028370.t001
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those who have developed pathological gambling and the ‘‘DA

dysregulation syndrome’’ [84,85]. Moreover, in these patients,

larger L-DOPA-induced DA responses are associated with higher

novelty- and fun-seeking personality traits, greater L-DOPA-

induced psychomotor activation, and greater drug ‘‘wanting’’ but

not drug ‘‘liking’’ [84]. Testing the effect of larger increases in DA

neurotransmission in healthy human volunteers will be difficult,

though, since higher doses of all currently available drugs that

selectively augment DA neurotransmission are limited by side

effects such as nausea, vomiting, dizziness and drowsiness. Indeed,

this limitation guided our selection of L-DOPA doses in the

present study. Second, we used a median split to determine the

high and low sub-groups for each of the approach-related

personality traits. It might be necessary to recruit participants

from the more extreme ends of the normative population

distribution for each of these traits in order to detect a differential

effect of a DAergic drug, since individual differences in DA

neurotransmission might be more pronounced in these more

extreme ends of the distribution. This noted, a post hoc examination

of our more extreme upper and lower quartiles also failed to

identify an effect on mood (all p-values$0.15). Finally, it is possible

that an effect on mood would have been seen with a larger sample

size. However, this is considered unlikely. The single largest effect

size was peak change to ‘Energetic-Tired’ scores (d = 0.339), and

Table 2. The effect of dopamine-enhancing agents on positive mood states in healthy humans.

Drug Mechanism of Dose Study n Mood Effect on Details

Action Measures Positive Mood

Apomorphine Mixed D1/D2 10 mg/kg, s.c. [95] 9 VAS 0

agonist

Bromocriptine D2 agonist 1.25 mg, p.o. [96] 32 VAS NR VAS items corresponding to motivation and energy

2.5 mg, p.o. [97] 12 VAS 0

2.5 mg, p.o. [98] 21 VAS 0

1.25 mg, p.o. [99] 22 VAS 0

2.5 mg, p.o. [100] 40 AMS 0

1.25 mg, p.o. [101] 20 VAS Q Bromocriptine Q VAS Contented and q VAS Sad and

Antagonistic scores

1.25 mg, p.o. [102] 12 VAS 0

2.5 mg, p.o. [103] 16 AMS 0 Not clear what these scales measure

STAI

L-DOPA Selective DA 100 mg, p.o. [97] 12 VAS 0

augmenter 150 mg, p.o. [88] 14 VAS 0

200 mg, p.o. [104] 22 VAS NR Only measured VAS ‘‘Drowsiness’’

Lisuride D2 agonist 0.2 mg, p.o. [105] 12 VAS Q Adverse effects, such as nausea, vomiting and headache

No sedative effect

Pergolide Mixed D1/D2 0.1 mg, p.o. [106] 40 PANAS 0 Drugs administered daily for 5 days

agonist No acute drug effect (assessed on day 1)

0.1 mg, p.o. [100] 40 AMS 0

0.05 mg, p.o. [107] 15 VAS 0

0.1 mg, p.o. [103] 16 AMS Q Not clear what these scales measure

STAI

Pramipexole D2 agonist 0.5 mg, p.o. [97] 12 VAS 0

0.25 mg, p.o. [108] 10 POMS Q 0.5 mg Q euphoria and energy as measured by ARCI, Q
POMS

0.5 mg, p.o. ARCI vigor and positive mood and Q item ‘‘like drug’’ on DEQ

DEQ

0.5 mg, p.o. [109] 32 VAS 0

Tolcapone COMT 200 mg, p.o. [110] 25 POMS 0

inhibitor 200 mg, p.o. [111] 23 POMS 0

100 mg p.o. day 1 [112] 47 POMS 0

followed by 200

mg p.o. x 6 days

For the purpose of this table, measures of positive mood include the ARCI MBG subscale, POMS ‘‘Elated’’ subscale, and the VAS items ‘‘High,’’ ‘‘Rush,’’ ‘‘Euphoria,’’
‘‘Contentedness,’’ ‘‘Like Drug,’’ and ‘‘Good Effects.’’ Abbreviations: AMS, Adjective Mood Scale. ARCI, Addiction Research Center Inventory. NR, not reported. 0, No
change. PANAS, Positive and Negative Affect Scales. POMS, Profile of Mood States. VAS, visual analog scales. STAI, State Trait Anxiety Inventory.
doi:10.1371/journal.pone.0028370.t002
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this would have required a sample of 138. All other effects would

require samples larger than 200. Following corrections for multiple

comparisons, these numbers increase further again.

In conclusion, L-DOPA failed to produce changes in positive

mood states in a group of healthy human volunteers. These

findings add to an accumulating literature suggesting that

increases in DA neurotransmission are not sufficient to directly

generate positive emotions.

Methods

Ethics Statement
The study was carried out in accordance with the Declaration of

Helsinki and was approved by the Research Ethics Board of the

McGill University Hospital Centre. All subjects gave informed

written consent.

Subjects
Fifty participants were recruited from the McGill University

campus through online classified advertisements. Forty-eight men

and women (29 females and 19 males; mean age 21.963.7 years)

completed the study. One participant was excluded due to

vomiting at the beginning of the test session and another was

excluded because of failure to comprehend the task instructions.

All were healthy, as determined by a physical exam, standard

laboratory tests, and an interview with the Structured Clinical

Interview for DSM-IV, axis I [86]. None had a personal history of

axis I psychiatric disorders. On the test day, all subjects tested

negative on a urine drug screen sensitive to cocaine, opiates,

phencyclidine, barbiturates, D9-tetrahydrocannabinol, and am-

phetamines (Triage Panel for Drugs of Abuse, Biosite Diagnos-

tics�, San Diego, CA).

Procedure
Participants completed the personality questionnaires on the

same day as the psychiatric interview, while the test session took

place on a separate day. Participants also completed a battery of

cognitive tasks during the test session, but these results will be

reported elsewhere. Participants were assigned to one of three

drug groups (n = 16 per group): placebo, L-DOPA/carbidopa

(Sinemet, 100mg/25 mg) or L-DOPA/carbidopa (Sinemet,

200 mg/50 mg), in a randomized, double blind, between-groups

design. A combination drug, including the peripheral decarbox-

ylase inhibitor carbidopa, was used to prevent the conversion of L-

DOPA to DA before it entered the brain. Low doses of L-DOPA

were administered in an effort to avoid the potential confound of

side effects such as nausea, vomiting and dizziness. On the test

day, participants arrived in the laboratory at 11:30 AM and

completed baseline subjective state questionnaires and drug

screening. At 12:30 PM, participants ingested two green capsules

containing either placebo or one of the two doses of L-DOPA.

Participants completed the mood questionnaires at three addi-

tional times: 45 minutes, 105 minutes and 165 minutes post-

capsule ingestion. Cognitive testing commenced 45 minutes

following ingestion of the capsules, coinciding with the time to

peak blood concentration of L-DOPA and lasted until 3:30 PM.

Female participants who were not taking oral contraceptives were

tested within 10 days of the start of menstruation because previous

studies have shown that females are more sensitive to reward in the

follicular compared to the luteal phase of the menstrual cycle [87–

89].

Personality Measures
All subjects completed the Tridimensional Personality Ques-

tionnaire (TPQ) [90], Substance Use Risk Profile (SURPS) [91]

and the Neuroticism-Extroversion-Openness Five Factor Invento-

ry (NEO-FFI) [92]. Of specific interest in the present study were

the TPQ Novelty Seeking factor and two of its subscales (NS1,

Exploratory-Excitability and NS2, Impulsiveness), the SURPS

factors Impulsivity and Sensation Seeking, and the NEO-FFI

factor Extraversion. Each drug group was further sub-divided into

high and low groups based on a median split of these personality

factor scores for each subject.

Mood and Subjective Effects Measures
Subjective effects were measured with the bipolar Profile of

Mood States (POMS), a sensitive measure of small rapid changes

in mood [93,94], and a visual analog scale (VAS) labeled

‘‘Nauseous’’. The POMS is comprised of 72 adjectives that

describe various mood states. Participants indicate the extent to

which they feel these states at each time point on a scale ranging

from 0 (‘‘not at all’’) to 4 (‘‘extremely’’). The POMS items are

then converted into 6 empirically derived sub-scales: Elated-

Depressed, Composed-Anxious, Agreeable-Hostile, Confident-

Unsure, Energetic-Tired and Clearheaded-Confused. Both

questionnaires were administered at four times on the test day:

at baseline, and at 45, 105 and 165 minutes post-capsule

ingestion.

Data Analyses
Data analyses were conducted using SPSS Statistics (version

18.0; IBM, Chicago, Illinois). Each drug group was further

subdivided based on a median split of scores for the approach-

related personality traits of Impulsivity, Extraversion, Sensation

Seeking and Novelty Seeking, yielding high and low groups for

each factor. Three separate analyses were conducted for TPQ

Novelty Seeking: the total score as well as scores for the

Exploratory-Excitability (NS1) and Impulsiveness (NS2) subscales.

Three-way mixed design ANOVAs were used to assess the effects

of drug group (independent factor, 3 levels: placebo, 100 mg L-

DOPA, 200 mg L-DOPA) and personality trait sub-group

(independent factor, 2 levels: high and low) across time (repeated

factor, 4 levels: baseline, +45 minutes, +105 minutes and

+165 minutes) for all of the mood and subjective effects measures.

Two-way independent groups ANOVAs were used to assess the

effects of drug group and personality trait subgroup on POMS

absolute peak change scores, calculated as the largest difference

between any of the three time points and baseline. Post-hoc Least

Significant Differences (LSD) tests were used whenever an

ANOVA yielded a significant result. The significance for all

statistical tests was p,0.05.
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