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Air quality prediction is a typical Spatiotemporal modeling problem, which always uses different 
components to handle spatial and temporal dependencies in complex systems separately. Previous 
models based on time series analysis and recurrent neural network (RNN) methods have only 
modeled time series while ignoring spatial information. Previous graph convolution neural 
networks (GCNs) based methods usually require providing spatial correlation graph structure 
of observation sites in advance. The correlations among these sites and their strengths are 
usually calculated using prior information. However, due to the limitations of human cognition, 
limited prior information cannot reflect the real station-related structure or bring more effective 
information for accurate prediction. To this end, we propose a novel Dynamic Graph Neural 
Network with Adaptive Edge Attributes (DGN-AEA) on the message passing network, which 
generates the adaptive bidirected dynamic graph by learning the edge attributes as model 
parameters. Unlike prior information to establish edges, our method can obtain adaptive edge 
information through end-to-end training without any prior information. Thus reducing the 
complexity of the problem. Besides, the hidden structural information between the stations 
can be obtained as model by-products, which can help make some subsequent decision-making 
analyses. Experimental results show that our model received state-of-the-art performance than 
other baselines.

1. Introduction

Air quality has a significant impact on our daily lives. People who breathe clean air sleep better and are less likely to die 
prematurely from diseases such as cardiovascular and respiratory disorders, as well as lung cancer [1,2]. One of the key factors 
that decreases air quality is PM2.5 (atmospheric particulate matter (PM) having a diameter of 2.5 μm or less), which can easily be 
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inhaled and cause damage to the human body. Thus, monitoring and forecasting the PM2.5 concentrations are critical for improving 
air quality. With the rapid development of industry, a significant amount of energy is consumed, resulting in massive PM2.5 emissions 
[3]. According to [4], in 2016, 38 days were heavily polluted due to PM2.5 emissions in Beijing. High PM2.5 concentrations may cause 
serious adverse health impacts and diseases [5], such as cardiac and pulmonary disease [6], detrimental effects on birth outcomes 
[7], and infant mortality [8]. Fortunately, to monitor and record air quality data, a large number of low-cost air quality sensors 
have been deployed, which makes it possible for researchers to perform accurate air quality prediction tasks. Accurate air quality 
predictions are useful, for example, individual activity arrangements and government pollution restrictions can benefit from that [9]. 
When the predicted PM2.5 concentrations are too high, people can avoid going out and politicians can modify policies accordingly.

Conventional air quality prediction approaches can be generally divided into two categories: the knowledge-driven approach and 
the data-driven approach. In the past two decades, the knowledge-driven approach has been widely adopted for air quality predic-

tion. The representations of this approach include the community multiscale air quality (CMAQ) [10], comprehensive air quality 
model with extensions (CAMx) [11], weather research, and forecasting/chemistry (WRF-Chem) [12] modeling systems. These kinds 
of knowledge-driven approaches strongly rely on the prior assumptions about the underlying physical and chemical processes in-

volved in air pollution formation and transport. While these assumptions can provide a useful framework for understanding pollution 
dynamics, they are not always comprehensive and may not fully capture all relevant factors that contribute to air quality [13]. Ad-

ditionally, determining the model parameters that govern these processes can be computationally intensive, particularly for complex 
models like CMAQ. This is because the model requires solving a set of differential equations that describe the behavior of various 
chemical species in the atmosphere over time. These equations involve many parameters that need to be estimated from observa-

tional data or laboratory experiments. In many cases, supercomputers are necessary to perform the large number of calculations 
required to estimate these parameters accurately. Even with the aid of supercomputers, the process can be time-consuming and 
computationally intensive. Due to these limitations, data-driven approaches such as machine learning techniques can help identify 
complex relationships and patterns in data with few prior assumptions about the underlying processes.

Recently, data-driven approaches have shown great performance in air quality prediction. As a conventional data-driven ap-

proach, statistical methods have been widely adopted for their simple structure. Yi et al. [9] applied the autoregressive integrated 
moving average (ARIMA) model to capture the trend of air quality time series in New Delhi. Naveen et al. [14] then adopted the 
seasonal autoregressive integrated moving average (SARIMA), which can capture the seasonal feature of time series, to predict the 
air quality in Kerala. However, due to the complexity and uncertainty of air quality prediction tasks, it is difficult for statistical 
methods to perform well for long-term predictions. Different from statistical methods, machine learning methods are non-parametric 
methods that can automatically learn new patterns and thus can handle the complex non-linearity of temporal data. In recent years, 
machine learning methods have been widely employed for air quality prediction, including the support vector regression (SVR) [15], 
the extreme gradient boosting (XGBoost) [16] algorithm and the random forest approach [17], etc. However, these methods do not 
take into account the spatiotemporal correlations and thus limiting their prediction performance.

To extract the spatiotemporal correlations, deep learning methods have been applied for air quality forecasting. Wen et al. 
[18] proposed a spatiotemporal convolutional long short-term memory (LSTM) neural network to capture the temporal and spatial 
dependencies. The temporal patterns were captured through the LSTM networks and the spatial dependencies were extracted by the 
convolutional neural networks (CNNs). Zhang et al. [19] then modeled the spatiotemporal correlations with the CNN model and 
the gated recurrent units (GRUs). The above methods can provide satisfactory prediction results, nevertheless, the CNN model is 
not suitable to model the non-Euclidean structure data and thus the spatial relationships between air sensors cannot be effectively 
modeled.

Most recently, graph-based deep learning methods have gained popularity since they can process the non-Euclidean structure 
data by modeling it to a graph for training [20,21]. Wang et al. [22] and Zhang et al. [19] separately employed graph convolutional 
networks (GCNs) to model the contextual relationships among air quality stations and further predict the air quality in the future. In 
a relatively short period, this modeling approach was very successful.

Models based on GCN need to construct the graph structure in advance. Traditional methods for constructing graph structures 
are usually based on prior knowledge, which can be divided into three categories: methods based on geographic distance, time-

series similarity [22], and wind field information [23]. However, we cannot exhaustively enumerate all factors previously. Besides, 
parallel learning of too many graphs may result in too many parameters and high computational costs. In conclusion, inaccurate 
prior information may lead us to incorrectly connect two unrelated stations or lose links between two related stations. Moreover, 
the contextual relationships are constantly changing due to the impacts of the wind fields and other factors. Therefore, the dynamic 
graph is more suitable to model the relationships among stations in the real world [24,25]. But due to the incompleteness of prior 
knowledge, Wu et al. [26] proposed the model Graph WaveNet which developed an adaptive dependency matrix through node 
embeddings to capture hidden spatial dependency in data. But the node embeddings here are invariant on the time axis thus the 
graph learned is static. And this method also be used in Multivariate Time Series Forecasting with Graph Neural Networks (MTGNN) 
[27] to extract uni-directed relations among variables. However, the method of changing the adjacency matrix with epochs while 
training may introduce interference information and rise the difficulty of learning, which could potentially affect the prediction 
accuracy. As a result, Graph WaveNet did not perform well on actual air quality prediction datasets. To overcome these limitations, 
we develop a new method that learns the dynamic links between two stations automatically.

In this paper, we propose to construct a Dynamic Graph Neural Network with Adaptive Edge Attributes (DGN-AEA). Firstly, 
to address the shortcomings of prior information, we propose a method that uses self-use dynamic graph learning. However, the 
dynamic adjacency matrix represents the connection relationships between nodes will change with time. This kind of change will 
2

bring instability and difficulty to model training. So we divide the adjacency matrix into two parts, the connection relation (topology) 
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Fig. 1. The distribution of the observation station of the pollutant studied in our work. Each point represents one city-level observation station.

matrix, and the weight matrix, and propose to use an adaptive edge attributes (weights) matrix. Experiments show that the adaptive 
edge attributes can improve the prediction result. Secondly, in order to solve the physical consistency problem of many existing 
deep learning models, we designed a dynamic edge connection construction method using wind field information and combined it 
with adaptive edge connection through the method of multi-graph stitching. In this way, these learnable edges can be used as a 
correction of prior information, which can help the model get rid of the one-sidedness of prior knowledge. Thirdly, we also calculate 
the outbound and inbound directions respectively when aggregating the neighbor node’s information. In this way, the inflow and 
outflow processes during the diffusion of pollutants are simulated. In summary, the contributions of this paper are listed as follows.

• We introduce the adaptive dynamic graph learning unit to learn the dual-path weighted edges automatically, to solve the 
problem of correlation graph modeling in non-Euclidean space.

• The wind field data can be integrated into our model as a type of directed dynamic connection by a Multi-Graph Process Block 
(MGP). The physical consistency of the model is improved in this way.

• For each node, we calculate its in-degree and out-degree separately to model convolution calculations on weighted directed 
graphs, which is more suitable for complex systems in the real world.

• The proposed DGN-AEA model improves the prediction capabilities and achieves state-of-the-art prediction accuracy.

The remainder of this paper is organized as follows. In Section 2, we introduce the method to construct the adaptive dynamic 
graph and our proposed DGN-AEA model. In Section 3, we describe the data used in our research and how we design experiments to 
verify the performance of DGN-AEA on the real-world air quality dataset. In Section 4, we show the results of experiments and try 
to discuss what makes DGN-AEA performs better. Finally, we conclude this work in Section 5 and discussed the disadvantages and 
future works in Section 6.

2. Method used

In this section, we first give the mathematical definition of air quality prediction. Next, we describe how we construct the two 
kinds of dynamic graphs. Then, as illustrated in Fig. 2, we introduce the DGN-AEA model which is designed to solve the adaptive 
graph learning problem. We show the details of how we leverage the framework of GCNs on the spatial domain to handle message 
passing on directed edges. We also use the spatial block Dynamic Multi-Graph Process Block (MGP) to combine the adapted edge 
attributes and the wind graph with MLPs, and the temporal block GRU. Finally, we form the stacked GCNs, which need spatial and 
temporal blocks working together to capture the spatiotemporal dependencies among cities.

2.1. Problem definition

Air quality prediction can be seen as a typical spatiotemporal prediction problem. Let 𝑋𝑡 ∈ 𝑅𝑁 denote the observed PM2.5
3

concentrations at time step 𝑡. The method based on GCNs usually models the changing spatial correlations among different cities by 
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Fig. 2. Model structure of proposed model DGN-AEA.

the dynamic directed graph 𝐺 = (𝑉 , 𝐸, 𝑡), where 𝑉 is the set of nodes and it is always the number of 𝑁 . 𝐸𝑡 is the set of weighted 
edges representing the potential interactions among cities where its weight may change over time. Let 𝑆𝑡 ∈𝑅𝑁×𝑠 denote the nodes’ 
attribute and 𝑍𝑡 ∈𝑅𝑁×𝑧 denote the edges’ attribute at time step 𝑡, where 𝑠 and 𝑧 represent the variable dimensions of node features 
and edge features, respectively. The problem aims to predict the next 𝑇 steps of PM2.5 concentrations [𝑋𝑡+1, ..., 𝑋𝑡+𝑇 ]. based on the 
nodes’ attribute [𝑆𝑡+1, ..., 𝑆𝑡+𝑇 ] and the edges’ attributes [𝑍𝑡+1, ..., 𝑍𝑡+𝑇 ]. The mapping among the input and output can be shown as 
follows:

[
𝑋𝑡;𝑆𝑡+1, ⋯ , 𝑆𝑡+𝑇 ;𝑍𝑡+1,⋯ ,𝑍𝑡+𝑇

] 𝑓 (⋅)
⟶

[
𝑋̂𝑡+1, ⋯ , 𝑋̂𝑡+𝑇

]
(1)

where 𝑋̂𝑡 represents the predicted vector, and 𝑓 (⋅) is the prediction function based on the DGN-AEA framework.

2.2. Dynamic graph construction

In the air quality forecasting problem, we need to predict the future steps of all the cities. So the number of nodes will not change 
with time, which is different from some evolving dynamic graph problems [28–30].

We define the weighted adjacency matrix 𝐴, which can be divided into two parts: the topology matrix (𝑃 ) of 0 or 1 indicating 
whether two nodes are connected, and the weight matrix (represents the edge attributes 𝑍) indicating the strength of mutual 
influence between nodes. When using a neural network for training, if the adjacency matrix changes with time, it will bring great 
instability during training. Therefore, we use the adaptive edge attribute to represent this changing node interaction since it does 
not change the connection relationship between nodes but changes the strength of these connections, which means that the topology 
matrix will be static but the adjacency matrix will be dynamic. Thus, we suppose that all the correlations among cites are decided by 
the Euclidean distance (Equation (5)) like many previous graph-based air quality prediction approaches.

2.2.1. Topology and adjacency matrix

As we all know, the pollutant (such as PM2.5, PM10) concentrations in one place are strongly affected by other adjacents. Consid-

ering that relationships like that in the real world are usually sparse and different, to model these two spatial correlation features 
explicitly, we define the adjacency matrix 𝐴 of Graph 𝐺 in Equation (2):

𝐴 = 𝑃 ⊙𝑍, (2)

where ⊙ represents the Hadamard product, 𝑍 represents the edge attributes matrix. The formulation of 𝑍 will show in the following 
4

sections.
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As to the topology matrix 𝑃 , we introduce the effect of distance on-site relevance for the impact of the site is inversely proportional 
to the distance. And when the altitude between the two stations is too high, the connections will also be blocked out. To consider 
the above two factors, we use a Heaviside step function to filter out the edges that do not meet the rules as Equation (3):

𝑃𝑖𝑗 =𝐻
(
𝑑 − 𝜉𝑑

)
⋅𝐻

(
𝑎− 𝜉𝑎

)
, (3)

where 𝐻(⋅) is the Heaviside step function see Equation (4):

𝐻 (𝑥) =

{
1, x>0

0, otherwise
, (4)

where 𝑎 represents the altitude of each node. 𝑑 is the Euclidean distance calculated by the relative positions between two stations:

𝑑 =
√(

𝑥1 − 𝑥2
)2 + (

𝑦1 − 𝑦2
)2

. (5)

Here the Euclidean distance and altitude threshold 𝜉𝑑 and 𝜉𝑎 equals 300 km and 1.2 km respectively. Here we get the topology 
matrix 𝑃 .

2.2.2. Node attributes

The node attributes 𝑆𝑡 are mainly meteorological data. Which includes 17 types of variables same as [23]. We chose 8 of them as 
the final node attributes: Temperature, Planetary Boundary Layer height, K index, Relative humidity, Surface pressure, Total precipitation

and the u and v component of wind. The time interval is consistent with these node attributes with the PM2.5 concentration data as 3 h.

2.2.3. Edge attributes

In our work, there are two kinds of edge attributes: One is from the wind field and another is from the adaptive neural network 
parameter. We use the advection coefficient as attributes from wind data and calculate it as Equation (6):

𝑍𝑡
𝑤 = 𝑟𝑒𝑙𝑢

(||𝑣𝑡||
𝑑

⋅ cos (𝛼 − 𝛽)
)

, (6)

where 𝑣𝑡 represents the wind speed at time 𝑡, 𝑑 is the distance between stations, and 𝛼 and 𝛽 are angles of cities and wind directions. 
𝑟𝑒𝑙𝑢(⋅) is the ReLU activation function.

𝑍𝑡
𝑎 ∈𝑅1×𝑙 the adaptive neural network parameters, where 𝑙 represents the number of edges, i.e., the number of 1 in the topology 

matrix 𝑃 . We set it as one important parameter which can be seen as another kind of useful edge attribute in addition to wind effects 
in the air quality prediction problem. This parameter can be obtained by continuous iterative optimization through the training 
stage.

By setting adaptive dynamic edge weights as learnable parameters, such dynamic correlations can be directly learned during the 
end-to-end training process. Even in practical scenarios where some prior information is missing, the correlation network between 
sites can still be adaptively learned for spatiotemporal prediction. When using wind field information, we can consider this learnable 
parameter as a supplement to wind field information. The prediction accuracy can be further improved in this way. The details will 
be presented in Section 3.

2.3. Dynamic graph neural network with adaptive edge attributes

2.3.1. Graph convolution block

Many dynamic graph neural network methods are based on the spectral domain. The convolution operation on the graph is equiv-

alent to the product in the spectral domain after the Fourier transform. The corresponding Fourier transform basis is the eigenvector 
of the Laplace matrix. And the model Chebnet [31] uses the Chebyshev polynomial to approximate the spectral convolution. How-

ever, these methods cannot handle the directed graph since the Laplacian matrices are used for undirected graphs [32,33]. They are 
not suitable for complex system modeling because many relations in complex systems are directed. Besides, the prediction accuracy 
is limited by the order of the Chebyshev polynomial fit, and in many cases does not perform as well as spatial GCNs [34]. To solve 
these problems, we take the spatial domain GCN i.e., the Message Passing Neural Network (MPNN) in use.

MPNN framework can be divided into two stages: message passing stage and readout stage [35]. Compared with spectral-domain 
GCN which can only model node attributes, MPNN directly aggregates messages from neighbor nodes and can also model edges, 
which makes it more flexible and intuitive. For node 𝑖 at time 𝑡, our GCN block with MPNN framework will work as the following 
equations:

𝜀𝑡𝑖 =
[
𝑋̂𝑡−1

𝑖 , 𝑆𝑡
𝑖

]
, (7)

𝑚𝑡
𝑖𝑗 = 𝜑

([
𝜀𝑡𝑖, 𝜀

𝑡
𝑗 ,𝑍

𝑡
𝑖𝑗

])
, (8)

𝑡

( ∑ (
𝑡 𝑡

))
5

𝑒𝑖 = 𝜔
𝑗∈𝑁(𝑖)

𝑚𝑖𝑗 −𝑚𝑗𝑖 , (9)
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Fig. 3. Illustration for our used MPNN to process incoming and outgoing edge processing separately (use node 𝑎 as an example). Different colors of arrows represent 
the import and export process separately.

where [⋅, ⋅] represents the concat operator that merges two 1-D vectors into a single vector. Equation (7) represents the splicing 
operation of neighbor information and edge connection weights. 𝜀𝑡

𝑖
in Equation (7) represents the result after the concatenation 

operation of the input matrix. 𝜑(⋅) in Equation (8) represents one layer of MLP. 𝑁(𝑖) represents the neighbors of node 𝑖. The whole 
Equation (8) represents the process of aggregating neighbor information according to the edge weights. 𝑚𝑖𝑗 and 𝑚𝑗𝑖 respectively 
represent the in-degree and out-degree information of the node. In Equation (9), 𝜔 (⋅) is another layer of MLP. After Equation (9), we 
can calculate the increase and decrease after the node’s message passing process.

In our proposed method, we use two kinds of edge attributes. For each different edge attribute, 𝑍 may represent 𝑍𝑤 or 𝑍𝑎, then 
we can get 𝑒𝑤 and 𝑒𝑎 following Equation (9). Next, we concat the two graph-level embeddings through the transfer layer:

𝜁𝑡 = 𝜓
(
[𝑒𝑡𝑤, 𝑒𝑡𝑎]

)
. (10)

It should be noted that 𝑍𝑎 is a learnable parameter in our model, thus it will be updated through the model training stage. After 
that, we can get an adaptive edge attribute 𝑍𝐴𝐸𝐴.

Since the PM2.5 transport graph network is a directed graph, in order to realize the material conservation of source and sink 
nodes, we calculate the message aggregation process of each node’s incoming and outgoing edges respectively. This is consistent 
with the physical process of pollutant diffusion. It can improve the prediction accuracy of the model. The specific calculation process 
is shown in the following Fig. 3.

2.3.2. Temporal processing block

Our model DGN-AEA in Fig. 2 can be seen as a stacked structure: it is processed by MPNN, which is good at processing information 
on graphs, and then input the aggregated results to the GRU, which is good at iterative prediction of time series. Such a structure can 
more clearly extract effective information in the temporal and spatial domains, respectively. Here we will introduce the temporal 
processing block GRU. The input of GRU includes the historical PM2.5 concentrations of the nodes and future meteorological data, 
which is embedded in the node embedding 𝜀𝑡

𝑖
. We also input the information gathered on the graph to the GRU. The prediction 

process for node 𝑖 at time 𝑡 is shown as follows:

𝑐𝑡𝑖 =
[
𝜁𝑡
𝑖 , 𝜀

𝑡
𝑖

]
. (11)

This concatenates the input variables (results after graph convolution and the meteorological variables) to prepare for subsequent 
matrix operations:

𝑞𝑡𝑖 = 𝜎
(
𝑊𝑞 ⋅

[
ℎ𝑡−1
𝑖 , 𝑐𝑡𝑖

])
, (12)

𝑟𝑡𝑖 = 𝜎
(
𝑊𝑟 ⋅

[
ℎ𝑡−1
𝑖 , 𝑐𝑡𝑖

])
, (13)

where 𝑞𝑡
𝑖

and 𝑟𝑡
𝑖

in Equation (12) represent the results after operations of the update gate and forget gate in GRU respectively. 𝜎(⋅)
represents the sigmoid activate function. ℎ𝑡−1

𝑖
is the hidden state of the previous time step, 𝑐𝑡

𝑖
represents the aggregated input features 

after Equation (11). The update gate is used to control the degree to which the state information of the previous moment is brought 
into the current state. The state information brought in at the previous moment is somewhat positively related to the value of the 
update gate. The reset gate controls how much information from the previous state is written to the current candidate set ℎ̃𝑡

𝑖
. The 

smaller the reset gate, the less information from the previous state is written. ̃ℎ𝑡
𝑖

is calculated by:

ℎ̃𝑡
𝑖 = 𝑡𝑎𝑛ℎ

(
𝑊 ⋅

[
𝑟𝑡𝑖 ∗ ℎ𝑡−1

𝑖 , 𝑐𝑡𝑖
])

, (14)

where 𝑊𝑞 , 𝑊𝑟, 𝑊 in Equation (12) to Equation (14) are learnable parameters. After the gate control signal is obtained, we first 
6

use the reset gate to obtain the data after “reset”. After the Hadamard product operation of the reset gate 𝑟𝑡
𝑖

and the hidden layer 
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Algorithm 1 PM2.5 Prediction Algorithm.

Input: Historical PM2.5 concentrations 𝑋0 ;

Node’s attributes 𝑆 = [𝑆1 , ⋯ , 𝑆𝑇 ];
Edge’s attributes(by wind) 𝑍𝑤 = [𝑍1

𝑤
, ⋯ , 𝑍𝑇

𝑤
];

Randomly initialized adaptive edge’s attributes 𝑍𝑎 = [𝑍1
𝑎
, ⋯ , 𝑍𝑇

𝑎
];

Output: Future PM2.5 concentrations 𝑋̂ = [𝑋̂1 , ..., 𝑋̂1+𝑇 ];
Learned adaptive edge attributes 𝑍𝐴𝐸𝐴 = [𝑍1

𝐴𝐸𝐴
, ..., 𝑍1+𝑇

𝐴𝐸𝐴
];

Evaluation metric MAE and RMSE.

1: 𝑋̂0 =𝑋0

2: ℎ0 = 0
3: for each training epoch 𝑒𝑝𝑜𝑐ℎ ∈ [1, 50] do

4: for each time step 𝑡 ∈ [1, 𝑇 ] do

5: for all 𝑣𝑖 ∈𝐕 do

6: 𝜁 𝑡
𝑖
= 𝜓

(
𝑀𝑃𝑁𝑁1

(
𝑋̂0

𝑖
, 𝑆𝑡

𝑖
,𝑍𝑡

𝑤

)
,𝑀𝑃𝑁𝑁2

(
𝑋̂0

𝑖
, 𝑆𝑡

𝑖
,𝑍𝑡

𝑎

))
;

7: 𝑋̂𝑡
𝑖
= 𝐺𝑅𝑈 (𝜀𝑡

𝑖
, 𝜁 𝑡

𝑖
, ℎ𝑡−1

𝑖
);

8: 𝑋̂ = [𝑋̂, 𝑋̂𝑡
𝑖
].

9: end for

10: end for

11: Compute loss between 𝑋̂ and 𝑋 use Equation (17).

12: Gradient update the adaptive edge attributes 𝑍𝐴𝐸𝐴, and other learnable parameters such as 𝑊𝑞 , 𝑊𝑟 , 𝑊 .

13: end for

14: Calculate MAE and RMSE follow the Equation (18) and Equation (19);

15: return 𝑋̂, 𝑍𝐴𝐸𝐴 , MAE, RMSE

information of the previous step ℎ𝑡−1
𝑖

, then spliced the input signal 𝑐𝑡
𝑖

of the current step. Then we multiply the result of the above 
operation by a learnable matrix and then let the result pass a tanh activation function to scale the result to the range of [-1, 1]. As 
shown in Equation (14). The input information is added to the current hidden state in a targeted manner, which is equivalent to 
memorizing the state at the current moment.

Finally, Equation (15) performs the memory and updates operations at the same time, and obtains the updated hidden layer state:

ℎ𝑡
𝑖 =

(
1 − 𝑞𝑡𝑖

)
∗ ℎ𝑡−1

𝑖 + 𝑞𝑡𝑖 ∗ ℎ̃𝑡
𝑖, (15)

After the whole operation, we finally get the prediction result of PM2.5 concentration by Equation (16):

𝑋̂𝑡
𝑖 =Ω

(
ℎ𝑡
𝑖

)
, (16)

where Ω (⋅) is a MLP layer.

2.3.3. Proposed learning algorithm

We use the stacked spatiotemporal prediction structure. As shown in Fig. 2, we first use MPNN to perform a convolution operation 
on the PM2.5 concentration of each site on the graph according to the edge weight. Two MPNN blocks are used to process the wind 
field information map and adaptive dynamic map respectively. Then the two graph processing results are aggregated through a 
layer of MLP (as shown in Equation (7) to Equation (10)). Then, the output of the entire graph convolution part and the historical 
meteorological data [36,23] are input into the GRU for time series iterative processing as Equation (11) to Equation (15). Finally, 
we get the future forecast result as Equation (15). The whole process of the proposed DGN-AEA is shown in Algorithm 1.

3. Data and experiment design

In this section, we will show the details of our selected dataset and experiment settings.

3.1. Experiment settings

Our experiments are conducted on a Linux system with CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz and GPU: NVIDIA 
Corporation Device 2204 (rev a1) The batch size of model training, validation, and test data are all 32. All models are trained up 
to 50 epochs by early stop rules with 10 steps and use RMSProp optimizer. The learning rate is 5e-4 and weight decay is also set to 
5e-4. All the prediction results are the average result after 10 repetitions. In the training stage, we aim to minimize the Mean Square 
Error (MSE) Loss function as the following equation:

𝑀𝑆𝐸 𝐿𝑜𝑠𝑠 = 1
𝑇

𝑇∑
𝑡=1

(
1
𝑁

𝑁∑
𝑖=1

(
𝑋̂𝑡

𝑖 −𝑋𝑡
𝑖

)2)
, (17)

where 𝑇 is the length of the prediction time step, and 𝑁 represents the number of samples. 𝑋̂ and 𝑋 represent the predicted value 
and the ground truth of PM2.5 concentrations respectively.

To evaluate the prediction accuracy between models, we adopt two evaluation metrics: Mean Absolute Error (MAE) and Root 
7

Mean Square Error (RMSE).
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𝑀𝐴𝐸 = 1
𝑁

×
𝑁∑
𝑖=1

||𝑦̂𝑖 − 𝑦𝑖
|| , (18)

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑁

×
𝑁∑
𝑖=1

(
𝑦̂𝑖 − 𝑦𝑖

)2
, (19)

where 𝑦 is ground truth and 𝑦̂ represents the prediction results given by models. These two are commonly used indicators to evaluate 
the accuracy of time series forecasting.

3.2. Data used

To examine the ability of the model to solve real problems, we conduct experiments on the real-world datasets from the previous 
work [9]. This dataset is collected from MEE1 and ERA52. It contains three types of data: Sites’ geographic information, meteoro-

logical data, and pollutant concentration (PM2.5) data. The last two types of variables are time series data ranging from 2015-1-1 
00:00:00 to 2018-12-31 23:59:59, with 3 hours for each time step. The dataset includes 184 city-level observation stations as shown 
in previous Fig. 1.

To test the predictive ability of the model under different circumstances. We divide the dataset into three parts by time. The 
training set of the first dataset is the data for two years in 2015 and 2016, and the test set and validation set are the data for the 
whole year of 2017 and 2018, respectively. The training, validation, and testing of data set 2 were sequentially intercepted in the 
winter of 2015 - 2018 for three consecutive years (November 1st - February 28th of the following year). This is because winter is 
usually the season of high PM2.5 pollution in China, and the average value of the data is higher. Dataset 3 uses the 2016 autumn and 
winter 4 months (September 1st - November 30th) for training and uses the winter data of the following two months for verification 
(December 1st to December 31st) and test (January 1st to January 31st of the following year) respectively. The period of 2016 was 
chosen because that winter saw almost the worst pollution in Chinese history.

The amount of training data and time periods differ among the three datasets. Dataset 1 includes 2 years of time series data 
for training, while dataset 2 and 3 only have 4 and 3 months, respectively. Generally, more data can enhance the model’s training. 
Moreover, the time period of dataset 3 coincides with the frequent occurrence of heavy pollution in China, resulting in a higher mean 
value. This enables testing the model’s ability to predict pollutant concentrations during heavy pollution seasons. It is worth noting 
that the experimental settings for all three datasets are the same.

3.3. Baselines

In our work, we consider baselines to examine the model effect. Baselines include classical statistical models, classical spatiotem-

poral prediction models, and state-of-the-art deep learning models with adaptive graph components.

• HA: The Historical Average (HA) model is a typical time series analysis model, which main idea is to use the average of all the 
values at the corresponding time in history (known data) as the predicted value for the future. Therefore, there is no concept of 
the prediction time step. Here we refer to the construction method in the article [37] to calculate the test dataset and intercept 
all the moments of one week to predict the corresponding time points.

• LSTM: The long short-term memory (LSTM) [38] model is an improvement of the RNN model, which uses three types of gates 
to extract more useful related historical data.

• GC-LSTM: GC-LSTM [39] is a model which uses two spectral-based GCNs embedded into the long-short term memory model to 
extract spatiotemporal features from data.

• PM2.5-GNN: PM2.5-GNN [23] is a state-of-the-art prediction model for PM2.5 concentrations prediction. It also uses the stacked 
spatiotemporal structure based on GCNs and RNNs.

• Graph WaveNet (w/o weather): The Graph WaveNet [26] develops a novel adaptive dependency matrix, which can auto-

matically capture the spatial dependency from data. It uses Temporal Convolutional Network (TCN) as the temporal block. It 
has achieved state-of-the-art results in many real-world datasets, especially in traffic flow forecasts. Since the original model 
uses one-dimensional convolution to operate on only one variable, we do not use multi-dimensional meteorological information 
when reproducing the model. The results will be presented in Fig. 6, and a detailed comparison with DGN-AEA (w/o weather) 
can be found in Table E.3.

3.4. Ablation study

In order to further illustrate the role of the adaptive dynamic edge attribute, we compare the results with models with some parts 
removed, which are:

1 https://english .mee .gov .cn/.
8

2 https://climate .copernicus .eu /climate - reanalysis.

https://english.mee.gov.cn/
https://climate.copernicus.eu/climate- reanalysis
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Table 1

Prediction accuracy compared with baselines.

Dataset
Methods

HA LSTM GC-LSTM PM2.5-GNN DGN-AEA
Metric

D
a
ta

se
t

1
RMSE

3

25.81

12.17±0.10 12.03±0.07 11.55±0.11 11.34±0.07

6 15.61±0.11 15.40±0.07 14.76±0.10 14.53±0.09

12 18.56±0.11 18.38±0.09 17.70±0.15 17.06±0.11

24 20.87±0.16 20.81±0.09 20.18±0.17 19.20±0.15

MAE

3

37.26

9.43±0.09 9.31±0.06 8.93±0.05 8.75±0.05

6 12.44±0.12 12.25±0.06 11.70±0.10 11.50±0.08

12 14.88±0.14 14.69±0.10 14.11±0.17 13.56±0.11

24 16.48±0.15 16.45±0.08 15.90±0.19 15.06±0.14

D
a
ta

se
t

2

RMSE

3

52.21

18.01±0.17 18.30±0.11 17.61±0.17 17.15±0.07

6 23.55±0.22 23.65±0.19 22.94±0.24 22.29±0.09

12 28.60±0.23 28.547±0.17 27.52±0.30 26.85±0.11

24 32.82±0.27 33.03±0.33 31.70±0.29 30.79±0.20

MAE

3

35.84

14.01±0.15 14.21±0.08 13.70±0.15 13.33±0.06

6 18.90±0.19 18.95±0.19 18.38±0.23 17.83±0.09

12 23.14±0.21 22.96±0.16 25.26±0.41 21.60±0.10

24 26.61±0.32 26.37±0.36 25.26±0.41 24.45±0.22

D
a
ta

se
t

3

RMSE

3

42.33

26.43±0.36 26.56±0.20 25.51±0.32 24.75±0.17

6 33.87±0.41 34.06±0.27 32.95±0.33 31.98±0.36

12 40.98±0.55 40.84±0.66 39.76±0.71 38.78±0.27

24 45.08±1.02 44.86±0.70 45.04±0.88 42.18±0.84

MAE

3

29.31

20.52±0.28 20.63±0.18 19.84±0.27 19.22±0.14

6 27.14±0.40 27.23±0.23 26.37±0.32 25.53±0.34

12 33.16±0.59 32.92±0.58 32.14±0.74 31.19±0.24

24 36.89±1.01 36.62±0.73 36.23±0.99 34.08±0.78

• Static: To demonstrate the role of dynamic graphs, we conduct experiments using only static graph structures based on distance 
and altitude calculations.

• Only AEA: As described before, DGN-AEA integrates wind edge information. Here the wind information is removed and only 
adaptive edge attributes are used. This can illustrate the important role of wind in modeling PM2.5 forecasting.

• Only Wind: Contrary to Only AEA, here we only use the wind field information and remove the adaptive edge attributes. 
Similar to the control variables approach, this can illustrate the importance of using adaptive edge attributes.

• W/O weather: Here we also compare the effect of not inputting the future weather GRU module as known information to 
illustrate the effect of using future weather.

• AEA+Wind(ours): As shown in Fig. 2, we will use the multi-graph information of adaptive edge attributes and wind at the same 
time.

4. Results and discussion

4.1. Performance comparisons with baselines

We compare the prediction results with the evaluation metric between our DGN-AEA and baselines in all three datasets. In 
addition, we set different prediction horizon time steps with 3 (9 h), 6 (18 h), 12 (36 h), and 24 (72 h) so that we can compare the 
predictive ability of various models under different time prediction lengths. The best results are highlighted in boldface in Table 1.

We divided the data into three datasets. By designing the number of samples and seasons of the training set dataset, it can be 
considered that the training difficulty on the three datasets is increasing. The training set of dataset 3 has the least data and the 
corresponding value is large, since winter is the high season of haze in China, the value of PM2.5 is generally higher. All the results 
in Table 1 have been repeated 10 times without fixed random seeds, so parameter sensitivity can be ruled out.

It can be seen that our model always performs the best and the traditional statistical model HA is not always the worst. GC-LSTM 
performs a little better than LSTM, nevertheless, it does not perform well on our dataset overall. In dataset 3, our model DGN-AEA 
improves the RMSE of GC-LSTM by 6.81%, 6.11%, 5.04%, and 6.7%, respectively. PM2.5-GNN performs better than other baselines, 
but our model is more accurate. On the RMSE of dataset 3, DGN-AEA is 2.98%, 2.94%, 2.46%, 6.3% more accurate than PM2.5-GNN.

Compared with another adaptive graph model, Graph WaveNet requires a large number of parameters and has a high compu-

tational resource overhead, so the training is slow. Its effect is also not good. Compared with Graph WaveNet, our proposed model 
DGN-AEA improves the RMSE of dataset 3 by 47.46%, 45.32%, 44.56%, 43.98%, and 38.08%, 36.05%, 37.61%, 36.99% on MAE 
9

(shown in Fig. 6 and Table E.3). We speculate that it may be due to the construction of the adjacency matrix that changes from time 
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Fig. 4. Future PM2.5 concentrations predicted by DGN-AEA.

Fig. 5. Visualization of forecast results in the Yangtze River Delta region. The data is derived from dataset 3 with 24 prediction horizon time steps. (The unit is 
μg/m3).

to time and brings great difficulty to training on PM2.5 datasets, making it difficult for the model to grasp the exact topology of the 
stations.

The prediction fit curves of Linan are also plotted in Fig. 4. We achieve the most accurate result compared with other models.

The above results are the average of the whole map and fit curves for individual cities. In order to examine the prediction ability 
of the model at the local regional scale, we select the ground truths and predicted results of the Yangtze River Delta region for a 
10

continuous period of time to visualize. The result is shown in Fig. 5.
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Table 2

Result of ablation study.

Dataset
Methods

Only Wind Only AEA Static W/O weather AEA+Wind
Metric

D
a
ta

se
t

1
RMSE

3 11.55±0.05 11.38±0.04 11.58±0.08 13.03±0.06 11.34±0.06

6 14.76±0.10 14.55±0.06 14.72±0.09 17.08±0.07 14.53±0.09

12 17.70±0.15 17.36±0.07 17.51±0.13 20.78±0.10 17.06±0.11

24 20.18±0.17 19.78±0.09 19.80±0.19 24.41±0.08 19.20±0.15

MAE

3 8.93±0.05 8.78±0.04 8.95±0.06 10.14±0.05 8.75±0.05

6 11.70±0.10 11.51±0.06 11.68±0.08 13.73±0.06 11.50±0.08

12 14.11±0.17 13.79±0.08 13.97±0.13 16.90±0.11 13.56±0.11

24 15.90±0.19 15.55±0.09 15.60±0.19 18.84±0.09 15.06±0.14

D
a
ta

se
t

2

RMSE

3 17.61±0.17 17.60±0.14 17.35±0.16 19.62±0.04 17.15±0.07

6 22.99±0.21 23.02±0.20 22.34±0.08 26.17±0.03 22.29±0.09

12 27.60±0.30 27.71±0.25 27.15±0.13 32.87±0.07 26.85±0.11

24 31.70±0.29 31.50±0.33 31.49±0.34 38.89±0.08 30.79±0.20

MAE

3 13.70±0.15 13.69±0.13 13.69±0.13 15.31±0.04 13.33±0.06

6 18.41±0.20 18.45±0.20 18.67±0.08 21.12±0.03 17.83±0.09

12 22.26±0.32 22.37±0.23 22.35±0.14 26.99±0.08 21.60±0.10

24 25.26±0.41 25.06±0.31 24.81±0.33 31.94±0.11 24.45±0.22

D
a
ta

se
t

3

RMSE

3 25.51±0.32 25.32±0.23 24.80±0.28 27.16±0.05 24.75±0.17

9 32.95±0.33 32.74±0.46 32.13±0.22 36.12±0.14 31.98±0.36

12 39.10±0.63 39.26±0.26 39.31±0.41 44.91±0.13 38.78±0.27

24 43.44±0.42 42.83±0.52 42.32±0.77 49.71±0.11 42.18±0.84

MAE

3 19.84±0.27 19.68±0.20 19.26±0.24 21.15±0.05 19.22±0.14

6 26.37±0.32 26.17±0.45 25.63±0.22 29.11±0.14 25.53±0.34

12 31.54±0.64 31.51±0.28 31.72±0.42 36.93±0.16 31.19±0.24

24 35.72±0.45 35.08±0.53 34.58±0.79 41.44±0.13 34.08±0.78

4.2. The prediction accuracy

As shown in Table 1, it can be observed that as the prediction horizon increases, the difference between predicted and observed 
data also increases. However, our proposed DGN-AEA model consistently holds the lowest prediction error. Furthermore, in Fig. 5, 
which displays the prediction results (Fig. 5(b)), ground truth (Fig. 5(a)) and the MAE value between the two (Fig. 5(c)) on four 
randomly selected time steps, we can see that our proposed model achieves accurate predictions across different locations.

4.3. The function of dynamic graph

To explain why we choose to retain two types of graph edges, we conduct ablation studies to explore the predictive effects of 
using different edges. We find that our proposed model is the best in most cases, regardless of the dataset or prediction at any time 
scale. Results in Table 2 also have been repeated 10 times without fixed random seeds, so parameter sensitivity can be ruled out.

We can see that the models where we do not use dynamic information perform worse than the dynamic graph method in the vast 
majority of cases.

In addition, the prediction accuracy of Only Wind and Only AEA are similar, and in most cases Only AEA has even better MAE and 
RMSE metrics. Especially in Dataset 3, our proposed DGN-AEA has an average of 4.3%,4.7%, 3.4%, and 7.8% MAE metric decrease 
than the other two dynamic edge attribute.

4.4. The function of future weather

Our model uses future weather data known for future air quality prediction. We compare DGN-AEA and DGN-AEA (w/o weather) 
models respectively. As shown in Fig. 6, by using future meteorological data, the prediction accuracy can be improved by 9.13%, 
12.30%, 15.54%, 17.76% on MAE (Fig. 6(a) to Fig. 6(b)) and 8.87%, 11.76%, 13.65%, 15.15% on RMSE (Fig. 6(e) to Fig. 6(f)). This 
shows that it is very useful to use future weather data.

We compared our results with another adaptive graph model without future weather, Graph WaveNet. Graph WaveNet requires a 
large number of parameters and has a high computational resource overhead, so the training is slow. What’s more, because the TCN 
model used by the time series module of Graph WaveNet can only perform convolution operations on one-dimensional variables, it 
cannot input future weather data. Compared with Graph WaveNet, our proposed model DGN-AEA(w/o weather) improves the RMSE 
of dataset 3 by 42.35%, 38.25%, 35.80%, 33.98%, and 31.86%, 27.10%, 26.13%, 23.39% on MAE. We speculate that it may be due 
to the construction of the adjacency matrix that changes from time to time and brings great difficulty to training on PM2.5 datasets, 
11

making it difficult for the model to grasp the exact topology of the stations.
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Fig. 6. Comparison among DGN-AEA, DGN-AEA (w/o weather) and Graph WaveNet(w/o weather) models. The results are the average of ten training sessions.

4.5. Comparison of two attributes

Following the above steps, we can get two kinds of graph edge attributes: one can be calculated by wind field data (Fig. 7(b)), 
and another can be learned after training (Fig. 7(a)). To get through the difference (Fig. 7(c)) and explain why the adaptive edge 
attribute is useful, we visualize both of them at the same time step shown in Fig. 7.

4.6. Complex network analysis on the learned adaptive edges

With DGN-AEA, an adaptive correlation network structure can be obtained after the training phase. The properties of the obtained 
correlation network can be discussed with the help of some analytical methods and indicators in the field of complex networks. We 
listed it in the supplementary information.

We separately count the sum of the weights on the incoming and outgoing edges of different nodes and calculate the total 
weight of the connected edges minus the total weight of the incoming and outgoing edges. The positive or negative value of this 
difference indicates that the node belongs to the type that is more affected by the surroundings or has a greater influence on the 
surrounding (Fig. E.8). At the same time, we can also compare the relationship between edge weights and degree (Equation (E.1)), 
and the relationship between edge weights and the degree centrality (Equation (E.2)) of the complex network. Shown in Fig. E.9

and Fig. E.10. We see a clear positive correlation between node weight and degree value. However, there is no obvious correlation 
between node degree centrality and degree value.

5. Conclusions

In this paper, we propose flexible Dynamic Graph Neural Networks with Adaptive Edge Attributes (DGN-AEA) based on the spatial 
domain. This method retains edges by the wind to follow the basic prior physical knowledge of air pollution transmission. At the same 
12

time, we calculate the transmission volume on the outgoing edge and incoming edge respectively when doing message transmission 
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Fig. 7. Difference between the two matrices used in our model.

and aggregation to the nodes, which simulates the law of conservation of matter in the transport and diffusion of pollutants to some 
extent. Besides, we fuse adaptive edge attributes using the multi-graph structure. Experiment results show that our model achieves a 
better level of prediction effect on the real-world PM2.5 dataset.

In this way, we can adaptively learn the correlation between real sites and obtain better time series prediction results. However, 
how much of the network relationship in the real world can be restored in real data sets by this way of adaptively constructing 
learnable parameters is also worth exploring. There are still some ideas of network reconstruction methods that may be worth 
learning from.

6. Limitation and future work

This work assumes that future air quality prediction results should be derived from weather forecast data. However, due to the 
time delay of ERA5 forecast reanalysis data, the use of different data during the training and prediction phases may lead to increased 
model errors. Hence, future studies should explore the possibility of incorporating weather forecast data to address this issue.

Additionally, a limitation of the model discussed in this paper is its reliance on a parameter matrix for constructing learnable 
edges. The process of learning this matrix is a black box, posing challenges for conducting a comprehensive principle analysis. 
Moreover, it is essential to note that our study utilized 184 city-level stations in China. However, it is worth mentioning that the 
distribution of these stations is not evenly spread throughout the country, and the potential heavy pollution issues in certain areas 
outside our sample have not been considered.

Furthermore, it was observed that the model occasionally exhibits inadequate prediction accuracy for extremely heavy pollution 
events. Consequently, there exists significant potential for enhancing spatiotemporal modeling. For example, incorporating prior 
information, utilizing high-order graph neural networks to model the pollutant reaction process, and integrating more effective 
adaptive components are prospective areas for improvement.
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Appendix A. Related work about air quality prediction

Air quality prediction issues have been studied for years. These issues were first studied by some conventional statistical methods, 
e.g., autoregressive integrated moving average (ARIMA) [9,40]. However, there are too much uncertainty and non-linearity in air 
quality prediction, which is not suitable for these statistical models to achieve high prediction accuracy for long-term prediction.

Machine learning methods make use of historical observations to perform accurate predictions. Liu et al. [15] proposed a multi-

dimensional collaborative support vector regression (SVR) model for air quality index (AQI) forecasting in the Beijing-Tianjin-Hebei 
region while considering the weather conditions. Dun et al. [41] adopted the linear regression (LR) and SVR methods for short-

term air quality prediction. Liu et al. [42] fused the principal component regression (PCR), SVR, and autoregressive moving average 
(ARMA) models to predict air quality with six different kinds of pollutants. However, these machine learning methods did not capture 
the spatiotemporal correlations and thus limited the prediction performance.

In recent years, deep learning methods are widely employed in air quality prediction issues due to their high prediction accuracy. 
Ma et al. [43] propose a transfer learning-based stacked bidirectional long short-term memory (LSTM) model which combined deep 
learning and transfer learning strategies to predict the air quality of some stations based on the data observed by other stations. 
Wen et al. [18] proposed a spatiotemporal convolutional long short-term memory neural network to capture the temporal and 
spatial dependencies with LSTM and convolutional neural networks (CNNs), respectively. Zhang et al. [19] proposed a hybrid model 
(MTD-CNN-GRU) for PM2.5 concentration prediction. In the MTD-CNN-GRU model, the CNNs were employed to extract the spatial 
relationships, and the gated recurrent units (GRUs) were applied to capture temporal features. In this way, they could capture the 
spatiotemporal correlations to achieve higher prediction accuracy.

Appendix B. Related work about graph-based prediction methods

Conventional deep learning methods are not suitable for data processing in non-Euclidean space, which can not model the 
spatial correlations very well. To solve the problem, graph-based deep learning methods are proposed and have been widely applied 
to air quality forecasting these years. Wang et al. [22] proposed an Attentive Temporal Graph Convolutional Network (ATGCN) 
for air quality prediction. The ATGCN encoded three types of relationships among air quality stations including spatial adjacency, 
functional similarity, and temporal pattern similarity into graphs and aggregated features using gated recurrent units (GRUs). Finally, 
a decoder was designed to conduct multi-step predictions. Qi et al. [39] then proposed a GC-LSTM model which combined the 
graph convolutional networks (GCNs) and LSTM to capture spatial terms and temporal attributes and predict the future PM2.5
concentrations. Wang et al. [23] proposed a PM2.5-GNN model, which incorporated the domain knowledge into graph-structure data 
to model long-term spatiotemporal dependencies, for PM2.5 concentrations prediction. Since multiple features were considered, this 
model could achieve excellent prediction performance, especially for long-term predictions.

Appendix C. Related work about dynamic graph models

Recently, to better model contextual information, dynamic graph models have been employed by some researchers. Zhou et 
14

al. [13] modeled a dynamic directed graph based on the wind field among the air quality stations. They then used the GCNs to 
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capture the dynamic relationships among the stations and applied a temporal convolutional network (TCN) to predict the PM2.5
concentrations. Diao et al. [24] employed a dynamic Laplacian matrix estimator to model the dynamic graph, which can better 
model the spatial dependencies. Based on the dynamic estimator, they proposed a dynamic spatiotemporal graph convolutional 
neural network for traffic forecasting and outperformed the baselines. Peng et al. [25] employed reinforcement learning to generate 
dynamic graphs and combined the graphs with the LSTM model for long-term traffic flow prediction. They further proved that 
dynamic graphs reduced the effects of data defects with extensive experiments.

Appendix D. Related work about adaptive graph learning models

To overcome the limitations of prior information, Wu et al. [26] developed an adaptive dependency matrix through node em-

bedding to capture the hidden spatial dependency in the data. And the model Multivariate Time Series Forecasting with Graph 
Neural Networks (MTGNN) [27] also used this method to extract the uni-directed relations among variables. However, this method 
of changing the adjacency matrix with the time of the event will bring a lot of interference information to the training of the model, 
thereby affecting the accuracy of the prediction. Therefore, Graph WaveNet does not perform well on actual air quality prediction 
datasets.

Appendix E. Other information

Fig. E.8. Cities sorted by the multiply of sum (in-weight) and sum (out-weight). The left red-colored cities mean they tend to inflect their neighbors, and the right 
blue ones are just the opposite.

Fig. E.9. Relationships between degree centrality and connection weights.
15
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Fig. E.10. Relationships between degree and connection weights.
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Table E.3

Prediction accuracy compared with Graph WaveNet(w/o weather).

Dataset
Methods Graph-WaveNet DGN-AEA

Metric (w/o weather) (w/o weather)

D
a
ta

se
t

1

RMSE

3 24.22±0.03 13.03±0.06

6 29.55±0.05 17.08±0.07

12 35.14±0.23 20.78±0.10

24 37.74±0.08 24.41±0.08

MAE

3 14.74±0.01 10.14±0.05

6 18.19±0.02 13.73±0.06

12 22.11±0.15 16.90±0.11

24 24.13±0.01 19.84±0.09

D
a
ta

se
t

2

RMSE

3 34.92±0.01 19.62±0.04

6 42.58±0.02 26.17±0.03

12 52.93±0.04 32.87±0.07

24 60.46±0.05 38.89±0.08

MAE

3 23.23±0.01 15.31±0.04

6 29.29±0.02 21.12±0.03

12 37.33±0.03 26.99±0.08

24 43.32±0.05 31.94±0.11

D
a
ta

se
t

3

RMSE

3 47.11±0.03 27.16±0.05

6 58.49±0.04 36.12±0.14

12 69.95±0.08 44.91±0.13

24 75.30±0.08 49.71±0.11

MAE

3 31.04±0.01 21.15±0.05

6 39.93±0.03 29.11±0.14

12 49.99±0.04 36.93±0.16

24 54.09±0.06 41.44±0.13
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