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Abstract
Analogy-based estimation (ABE) estimates the effort of the current project based on the information of similar past projects.
The solution function of ABE provides the final effort prediction of a new project. Many studies on ABE in the past have
provided various solution functions, but its effectiveness can still be enhanced. The present study is an attempt to improve the
effort prediction accuracy of ABE by proposing a solution function SABE: Stacking regularization in analogy-based software
effort estimation. The core of SABE is stacking, which is a machine learning technique. Stacking is beneficial as it works
on multiple models harnessing their capabilities and provides a better estimation accuracy as compared to a single model.
The proposed method is validated on four software effort estimation datasets and compared with the already existing solution
functions: closet analogy, mean, median and inverse distance weightedmean. The evaluation criteria used are meanmagnitude
of relative error (MMRE), median magnitude of relative error (MdMRE), prediction (PRED) and standard accuracy (SA).
The results suggested that the SABE showed promising performance for almost all the evaluation criteria when compared
with the results of the earlier studies.

Keywords Analogy-based estimation · Stacking · Software effort estimation · Machine learning

1 Introduction

Cost estimation is a methodology of forecasting the expense
of executing a project with a given framework. A cost esti-
mate is a summary of all costs involved, fromcommencement
to culmination (duration of the project). This pays for every
item required for the project, from supplies tomanpower, and
estimates a total amount deciding the cost of a project. Cost
estimation can be utilized for determining the performance
of a project. Accurate cost estimation leads to a successful
project, and inaccurate estimations result in a project fail-
ure. Analogy-based estimation (ABE) is a cost-evaluation
method used for software projects. It was commonly used
and researched as an alternative to multiple regression mod-
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els and expert judgment techniques over the last decennium
(Shepperd and Schofield 1997).

Portraying theABE approach in brief: Initially, the project
to be evaluated is kept alongside the projects, similar in char-
acteristics and present in historical archive. After that, one
or more identical project is discovered from the archive by
a predefined similarity function. At last, to generate the final
estimation, heuristic function is applied to predict the effort
of a new project based on the information of the retrieved
projects.

In this paper, the authors proposed amethodSABE (Stack-
ing regularization in analogy-based software effort estima-
tion). The authors utilized stacked generalization which is a
prevalent concept related to any knowledge feeding scheme
from one generalizer to another afore the final approximation
is made (Wolpert 1992). It is a machine learning technique
which couples the capabilities of various heterogeneousmod-
els and provides better estimate than a single model. The two
techniques used in designing SABE are polynomial regres-
sion and LASSO (Least Absolute Shrinkage and Selection
Operator) regression. Polynomial regression is a specialized
version of a linear regression in which a polynomial equation
shows the relationship between the objective variable and
the independent variables in data, and modeled with a curvi-
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linear relationship (Ostertagová 2012). LASSO is a kind of
regression analysis that uses shrinkage. It performs variable
selection and regularization so as to increase the prediction
accuracy and interpretability of the statistical model it gen-
erates (Tibshirani 1996). More details on these models are
described in the next section. Regression models have been
long used in software estimation studies by various authors
(Jørgensen 2004),(Yücalar et al. 2016), (Nassif et al. 2019),
(Anandhi and Chezian 2014) and provided good cost esti-
mates. The machine learning approaches are employed not
only for predictions in software engineering, but they are also
utilized in various other fields such as text document clus-
tering and COVID-19 predictions (Abualigah and Hanandeh
2015; Abualigah and Khader 2017; Abualigah et al. 2019,
2021)

The remaining portion of this paper is structured accord-
ing to the following: Section 2 reviews the relevant research;
Section 3 presents a succinct observation regarding the con-
text of this study; Section 4 addresses the proposed Stacking
regularization in analogy-based software effort estimation
(SABE). Section 5 describes the dataset and evaluation cri-
teria. Section 6 provides the experimental evaluation and
results. Section 7 presents the statistical performance assess-
ment of the proposed technique, and Sect. 8 finally concludes
the paper.

2 Related work

A variety of research (Kumar et al. 2020) have been per-
formed on numerous techniques that are acclimatized to
estimate the software cost. In fuzzy analogy software effort
estimation (FASEE), Ezghari and Zahi (Ezghari and Zahi
2018) suggested a new methodology to the uncertainty man-
agement. The proposal introduced consistency criteria in the
estimation model in order to increase the data quality and
infer a consistent possibility distribution, called Consistent
fuzzy analogy software effort estimation(C-FASEE). Idri et
al. (Idri et al. 2016) proposed a model using Missing Data
(MD) technique. They explored MD strategies with classi-
cal analogy and fuzzy analogy. The researchers used three
MD methods (toleration, elimination and imputation tech-
niques for K-nearest neighbors), three missing mechanisms
(MCAR: Missing completely at random, MAR: Missing at
random, NIM: Non-ignorable missing) and MD percent-
ages from 10 percent to 90 percent. Their findings revealed
that regardless of MD technique, the data set used, missing
mechanism orMD percentage, fuzzy analogy provided more
accurate estimates in terms of the standard accuracy mea-
sure (SA) than the classical analogy. Their analysis showed
that the utilization of k-nearest neighbors imputation may
increase the predictability of analogy-based techniques than
toleration or deletion. A model on analogy-based software

effort estimation is proposed byBenala andMall (Benala and
Mall 2018) using differential evolution. They investigated the
efficacyof the differential evolution (DE) algorithmbyapply-
ing five mutation strategies to optimize the feature weights
of homogeneous attribute functions of analogy-predicated
estimation (ABE). The empirical analysis is designated
as DABE: differential evolution in analogy-based software
development effort estimation by them. Singh et al. (Singh
et al. 2018a) presented an incipient variant of DE utilizing
homeostasis adaption-based mutation operator (HABMO)
and applied it for software cost estimation. They used mean
magnitude of relative error (MMRE),meanmagnitude of rel-
ative error relative to the estimate (MMER), mean squared
error (MSE) and rootmean squared error (RMSE) as the eval-
uation matrices. They found the proposed technique worked
best in comparison with different variants of DE. Azzeh
et al. (Azzeh et al. 2015) presented a model for analogy-
based effort estimation, entitled, An empirical evaluation
of ensemble adjustment methods for analogy-based effort
estimation. In their paper, they investigated the potential of
ensemble learning for variants of adjustmentmethods used in
analogy-based effort estimation. Their results were subjected
to statistical paramountcy testing, and showed consequen-
tial plausible amendments in predictive performance where
ensemble methods were applied. As a case study, Effendi
et al. (Effendi et al. 2019) utilized a student desk platform
in their paper to expound a use case point method. They
utilized the data from the actual software development in
their work and adjusted the effort using the use case point
process. The effort computed for three separate applica-
tions by using the use case point was compatible with the
actual result. Idri et al. (Idri et al. 2016) used classical and
fuzzy analogy ensembles for estimation of software devel-
opment effort. They conducted the study on 100/60 variants
of classical/fuzzy analogy techniques over seven datasets.
Using the Scott–Knott statistical test, these variants were
clustered and ranked. The results revealed that there was no
strongest single classical or fuzzy analogy technique for all
the datasets, and the ensembles that were built were con-
ventionally better than the single technique. Phannachitta
(Phannachitta 2020) proposed an innovative approach by
introducing a combined effort adapter for analogy estimation.
They cumulated gradient boosting machine algorithm and
conventional adaptation technology based on productivity
adjustment. They found their technique was at par in com-
parisonwith the already existing effort estimation techniques
used in the study. Zima (Zima 2015) presented a case-based
reasoning model of cost estimation at the preliminary stage
of a construction project. In the paper, it was postulated that
the benefits of themodel presentedwere its flexibility and the
ease of calculation. Singh et al. (Singh et al. 2018b) utilized
Improved environmental adaption model with real parame-
ter (IEAM-RP) to estimate the software effort. They used
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NASA dataset to evaluate their technique. The experimental
results demonstrated the effectiveness of IEAM-RP. Suresh
Kumar et al. (2021) proposed a gradient boosting regres-
sor model. The model is compared with stochastic gradient
descent, k-nearest neighbor, decision tree, bagging regressor,
random forest regressor, Ada-boost regressor, and gradient
boosting regressor. The authors evaluated the model using
mean absolute error (MAE), mean square error (MSE), root
mean square error (RMSE), and R2. They showed the results
on Cocomo81 and China datasets.

Above are the few experimental studies on software cost
estimation and modern techniques are integrated from time
to time. In this article, the authors have consequently endeav-
ored to incorporate a software cost estimation methodology
SABE (Stacking regularization in analogy-based software
effort estimation). The SABE method has not been used
up till now for analogy-based estimation as per the current
knowledge of the authors.

3 Background techniques

3.1 Stacking

Stacking (infrequently kenned as Stacked Generalization) is
an ensemble algorithm of machine learning. It integrates the
results from several models of machine learning. First pro-
posed by David Wolpert (Wolpert 1992) in 1992, the key
purpose is to minimize the error of generalization. As per his
view, it is a more sophisticated variant of cross-validation.

The core concept behind the framework of stacking is to
render forecasts utilizing one or more first-stage models and
their estimates as feature, to match up to one or more second-
level models. The principle of stacking is shown in Fig. 1.

3.2 Polynomial regression

Polynomial regression is a form of linear regression, where
the association between the independent x variable and the
dependent y variable is formulated as a polynomial nth

degree. The first proposal was created in 1815 (Stigler 1974;
Gergonne 1974) for an experiment with polynomial regres-
sion. This is a special case of linear regression where the data
with a curvilinear relationship between target variable and
independent variables are compiled in a polynomial equation.
The value of the target variable changes, with the predictor
(s), in a curvilinear relationship uniformly. The fundamental
objective of regression analysis is for modeling the expected
value of the dependent variable y according to the value of
the independent variable x . The authors utilized Eq.(1) in
simple regression:

y = p + qx + e (1)

where y is the dependent variable on x, p is y intercept, q
defines the slope, e is the rate of error. The above equation is
conventionally model for nth term in equation 2:

y = p + q1x + q2x2 + ... + qnxn (2)

As the regression function is linear in terms of unknown
variables, these models are consequently linear from the esti-
mation perspective.

3.3 LASSO regularization

3.3.1 Regularization

The regularization is considered to make things regular or
acceptable. It regularizes or decreases the coefficient toward
zero. It is a methodology practiced by introducing an exter-
nal penalty term to the error function to adjust the process. It
makes the optimal solution unique. The supplemental term
regulates the exceedingly shifting function to avert extreme
values from being taken by the coefficients. This technique
avoids the risk of overfitting and improves model inter-
pretability.

3.3.2 LASSO regression

LASSO regression is a regularization technique used over
regression methods for accurate predictions. It was pub-
lished in 1986 (Santosa and Symes 1986) in the literature
of geophysics and afterward was rediscovered and popu-
larized separately by Robert Tibshirani in 1996 (Tibshirani
1996). LASSO regression implements L1 regularization that
integrates a penalty equivalent to the absolute value of the
coefficient’s magnitude. This method of regularization will
result in sparse models containing fewer coefficients; certain
coefficients can be zero and omitted from the model. Larger
penalties lead to coefficient values that aremore proximate to
zero, which is ideal for making simpler models. Equation 3
indicates the cost feature of LASSO regression.

M∑

i=1

(
yi − ŷl

)2 =
M∑

i=1

⎛

⎝yi −
p∑

j=0

w j ∗ xi j

⎞

⎠
2

+ λ

p∑

j=0

∣∣w j
∣∣

(3)

where λ is the shrinkage amount:

1. When λ=0, no parameters are eliminated. The calculation
is equivalent to that of linear regression.

2. When λ rises, the coefficients are gradually set to zero and
discarded.

3. As there is an increase in λ, the bias grows.
4. As there is a decrease in λ, the variance grows.
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Fig. 1 Stacking process

3.4 Analogy-based effort estimation

The analogous estimation is a method utilized for calculating
specific parameters for future operation by utilizing histori-
cal data values. In analogy-based effort estimation, the effort
of a new project is calculated based on the past development
experience of similar projects. TheABEmethodbroadly con-
sists of a four-step procedure (Aamodt and Plaza 1994):

1. First, extract the most similar cases to the current project
from the historical database.

2. Second, reuse the knowledge of these similar projects in
effort estimation of the current project.

3. Third, evaluate the solution function and find the effort of
the current project.

4. Fourth, preserve the solution for future estimations.

3.4.1 Similarity function

The similarity degree is determined by the similarity function
between the projects. Four similarity functions are utilized
in this paper, namely the Euclidean distance, Manhattan
distance, Jaccard distance and Minkowski distance. The

predilection of similarity measure determines the option of
k-nearest neighbors. Themost acknowledged variant of com-
puting distance is the Euclidean distance. Euclidean distance
is:

d (P1, P2) =
√√√√

n∑

k=1

(P1k − P2k)2 (4)

where P1 is the targeted project and P2 is the historical
project and n is the number of attributes. Distance fromMan-
hattan which is shown in Eq.(5) is a metric in which the
distance between the two points is the sum of their Cartesian
coordinates’ absolute differences, where P1 is the targeted
project and P2 is the historical project and n is the number
of attributes.

d (P1, P2) =
n∑

k=1

∣∣∣(P1k − P2k)
2
∣∣∣ (5)

Coefficient of Jaccard distance formula is a metric used to
explain the distinctions between the samples. It can be shown
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as (6):

d (P1, P2) =
∣∣P1

⋂
P2

∣∣
∣∣P1

⋃
P2

∣∣ (6)

The distance from Minkowski given in (7) is a simplified
statistical version of Euclidean distance and Manhattan dis-
tance.

d(m, n) = α

√√√√
j∑

i=1

∣∣xm,i − xn,i
∣∣α (7)

In the above equation, Minkowski distance between data
recordm and n is represented by d(m, n). j is the total num-
ber of variables of x , i is the variable’s index, and α is the
Minkowski metric order.

3.4.2 k-nearest neighbors

The number of k − most proximate neighbors is a critical
parameter impacting the estimation of a new project. k =
1 to 5 is used in this article, as it is perceived in several
researches (Benala and Mall 2018; Jørgensen et al. 2003;
Huang and Chiu 2006)

3.4.3 Solution functions

Once k most similar projects are chosen, certain statistics are
estimated depending upon the chosen similar projects. This
is called solution function, and it is used in the final forecast
of a new project. During experimental analysis, the following
assessmentmethods are utilized by the author as the substruc-
ture for the solution function: the closet analogy (most similar
project) (Walkerden and Jeffery 1999), the mean of chosen
similar projects (Shepperd and Schofield 1997), the median
of chosen similar projects (Angelis and Stamelos 2000) and
the inverse distance weighted mean (Kadoda et al. 2000).
The mean is the average or a quantified “central” value of
the efforts of k most homogeneous projects, where k > 1.

The median is the median of the efforts of the most homo-
geneous projects, where k > 2 . When the number of the
most similar projects increases, the median becomes a more
reliable figure compared with the mean.

The inverse distance-weighted mean (IWM) indicates
that the importance of more related projects is greater than
the less homogeneous projects. It can be defined as (8):

ĉp =
n∑

k=1

Sim(P, Pk)∑n
i=1 Sim(P, Pk)

Cpk (8)

where P represents the project being estimated, k is the total
number of most similar projects, Pk is the kth most similar

Table 1 Difference table (Azzeh, 2011)

Input Output

d1(P1, Pa1)....dN (P1, Pa1) de(P1, Pa1)

d1(P2, Pa2)....dN (P2, Pa2) de(P2, Pa2)

d1(P3, Pa3)....dN (P3, Pa3) de(P3, Pa3)

.... ....

d1(Pn, Pan)....dN (Pn, Pan) de(Pn, Pan)

project, Sim(P, Pk) shows the similarity between projects
Pk and P , andCpk denotes the cost of themost similar project
Pk .

4 Proposed work

For decades, incorrect cost estimate of the project has
plagued software developments. Weak forecasts have not
only resulted in projects exceeding budget and timeline but
also, in many cases, being entirely terminated. The qual-
ity to accurately estimate software development time, cost,
and manpower, changes as more incipient methodologies
supersede old ones. Consequently, an effective and precise
software cost estimation model is highly required in soft-
ware project management. The proposed framework SABE
(Stacking regularization in analogy-based software effort
estimation) is discussed in this section. The conventional
analogy- based estimation approach is first considered to pro-
duce an unadjusted retrieval effort when a new target project
comes to be predicted. The primary aim of the adjustment
is to locate the ‘update’ that transforms the effort from the
projects retrieved into the target effort.

In SABE framework, the model is fed with a series
of projects. One project is kept as a test project and the
remaining projects as historical projects. After applying the
similarity functions as discussed in Sect. 3.4.1, the closest
analogy projects are determined. These projects are now
subjected to a solution function as explained in Sect. 3.4.3,
and Stacking Regularization (SR) algorithm. The effort com-
puted by both the procedures is then adapted to provide
the final SABE solution function. The flowchart of SABE
is given in Fig. 2. The code for the proposed model and
other methods of comparative adaptation are implemented
in Python. The algorithm of effort prediction and adjustment
through SABE is as follows:

Step 1 : Start with Data Preprocessing.
Step 2 : Project number Pt is exempted from the

dataset as a test project, and the remainder
projects are considered as historic.
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Fig. 2 Flowchart of SABE

Step 3 : The analogy projects Pa most similar to the
test project Pt are retrieved using various
similarity functions as discussed in 3.4.1
for each k-nearest neighbors (k = 1...5) .
Equation (9) depicts theEuclidean distance.

SM
(
Pt , Pj

) =
√∑

kεN

(
Pt , Pj

)2
, j = 1, 2, 3...., n (9)

where SM indicates measure of similarity,
N is the count of predictor attributes, Pt and
Pj are projects under investigation. This
step is repeated with the rest of the sim-
ilarity functions, i.e., Manhattan distance,
Minkowski distance and Jaccard distance.

Step 4 : The closest analog projects, i.e., Pa , are uti-
lized to perform two variety of operations
indicated under step 4.1 and step 4.2.

Step 4.1(a) : Fed closest analogies to the solution func-
tion as discussed in Sect. 3.4.3 to find effort
of the project to be estimated. The effort
computed through one of the solution func-
tions is depicted in Eq.(10).

E f f orts =
∑K

a=1 SM(Pt , Pa) × Size(Pa)∑K
a=1 SM(Pt , Pa)

(10)

where SM(Pt , Pa) indicates measure of
similarity between Pt and Pa , Size(Pa) is
the size of the project Pa as given in the
dataset.

Step 4.1(b) : Make the difference table as shown in Table
1 (Azzeh 2011), taking difference between
the predicted effort using Eq.(10) and the
test project effort along with all predictable
attributes as shown in Table 1.

dk (Pt , Pa) = Ptk − Pak, k = 1, 2, 3..., N (11)

de (Pt , Pa) = Pte − Pae (12)

where dk is the difference between t th

project Pt and its closest analogy Pa at kth

attribute, de is the difference between t th

project Pt and its closest project Pa at effort
attribute.

Step 4.2 : Provide the closest analogies to the Stack-
ing Regularization (SR) algorithm, which
constructed SABE dependent adaptation
mechanism as illustrated in Fig. 4 to esti-
mate E f f ortSR .

Step 5 : The predicted difference table and esti-
mated effort obtained from the SR algo-
rithm is used to adapt and update the goal
project effort as given in Eq.(13).

E f f ort(Pt ) = E f f ortSR ± de (Pt , Pa) (13)

Step 6 : Final calculation of MRE, MMRE,
MdMRE, PRED and SA is performed.

Step7 : End.

The process of SR algorithm is described as below:
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Step 1 : Read each test project and its corresponding
similar projects obtained using similarity
functions for training.

Step 2 : Set polynomial regression features as
degree from 2 to 8.

Step 3 : Set LASSO regression features as eps =
0.0001(Length of the path), nalphas =
1(number of alphas along the regularization
path) and normalization=True.

Step 4 : Perform stacking by first using polynomial
regression as the first stage model for each
test project and using its similar projects.

Step 5 : Output from polynomial regression is fed to
the second stagemodel of stacking, LASSO
regressionwith cross-validations = 10 to get
the final effort for each test project.

Step 6 : Output from LASSO regularization is trea-
ted as predicted effort from SR algorithm.

5 Dataset description and evaluation criteria

5.1 Dataset description

For the intent of SABE model evaluation, four datasets have
been utilized by authors which are Cocomo81, NASA93,
Maxwell and China datasets (http://promise.site.uottawa.ca/
SERepository/datasets-page.html). The Cocomo81 dataset
consists of 63 projects. Each project contains 15 cost drivers,
the software size measured in KDSI (kilo delivered source
instructions), the actual effort and the mode of development.
The NASA93 dataset includes 93 NASA projects from dif-
ferent centers for various years. It comprises of 24 attributes
containing 15 standardCocomo-I attributes, 7 others describ-
ing the project; one lines of code measured in KLOC and
the actual effort. The Maxwell dataset contains 62 software
projects with 26 features each including software size, dura-
tion and effort. The China dataset consists of 499 projects
with 19 features where 18 are independent variables and 1
is a dependent variable. These datasets are publicly avail-
able at http://openscience.us/repo/(2019). Table 2 exhibits
the concise information and the explanatory statistics of the
datasets.

5.2 Evaluation criteria

For the assessment and comparison of the precision of the
analogy-based effort estimation model, the following preva-
lent evaluation criteria is employed. The magnitude of error
correlated with estimated effort is kenned as absolute error
(AE). It is the distinction between a certain project’s esti-
mated effort and actual effort. This is represented in Eq.(14),

where αi is the actual effort and α̂i is predicted effort.

AEi = ∣∣αi − α̂i
∣∣ (14)

As seen in Eq.(15), magnitude of relative error (MRE) mea-
sures the total error percentage to actual effort. It can be
evaluated by dividing absolute error by αi which is actual
effort.

MREi = AEi

αi
(15)

MMRE is mean of magnitude of relative error. For the n
number of projects, it is the average of MRE. MMRE can be
interpreted in mathematical terms as in Eq.(16), where n is
number of projects.

MMRE = 1

n

n∑

i=1

MREi (16)

PRED(x), the output predictor, is the percentage of pre-
dictions that fell inside the actual kenned value x , expressed
in Eq.(18), where n is number of projects and Di can be
calculated by:

Di =
{
1 i f MREi ≤ 0.25
0 otherwise

(17)

PRED(x) = 100

n

n∑

i=1

Di (18)

MMRE and PRED are rendered on MRE. Because of their
asymmetric distribution, theMRE-predicated quantifications
have intrinsic drawbacks as performance metrics, biasing
against presage model that they are. Therefore, MMRE and
PRED are also underestimated prejudiced measures (Ange-
lis and Stamelos 2000; Kadoda et al. 2000; Boehm 1984).
Another measure was also published, named as the mean
absolute error (MAE), which is not prejudiced and does not
show asymmetric distribution as MMRE does. The MAE
(Gergonne 1974) is measured using an average of absolute
errors as shown in Eq.(19):

MAE = 1

N

N∑

i=1

AEi (19)

MAE became challenging to decipher since its residuals are
not standardized. Consequently, an incipient metric called
standardized accuracy (SA) as given in Eq.(20) was stated by
Shepperd and MacDonell (Shepperd and MacDonell 2012).
The SA ratio is specifically used to assess how a predictive
model outperforms a random guessing baseline and engen-
ders accurate estimates. If not, themodel of prediction cannot
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Table 2 Statistical properties of
datasets

Datasets name Features Count of projects Effort data

Unit Min Max Mean Median

Cocomo81 17 63 Months 6 11,400 686 98

NASA93 3 93 Months 5 138.3 49.47 26.5

Maxwell 27 62 Hours 583 63,694 8223.2 5189.5

China 18 499 Hours 26 54,620 3921 1829

be considered subsidiary. The SA value proximate to zero
suggests poorer reliability, and a negative value is often
deemed unsatisfactory.

SA = 1 − MAR

MARP0

(20)

where MAR (mean absolute residual) is calculated as:

MAR =
∑m

1 |ActualE f f ort − EstimatedE f f ort |
m

(21)

MAR is the MAR of the proposed technique and MARP0
is the mean of MARs obtained through large runs of ran-
dom guessing (Shepperd andMacDonell 2012).m is the total
number of projects.

6 Experimental evaluation

The authors define in this segment the experimental setup
that is utilized in the experiments. The authors have omitted
the various consequences of the features as a preprocessing
phase by normalizing in the interval [0, 1] utilizing the min–
max normalization method (Kocaguneli and Menzies 2013).
In the current study, leave-one-out (LOO) (Kocaguneli and
Menzies 2013) is used for generating train and test datasets.
The experiment with the proposed SABE framework is car-
ried out using all the four datasets and all the evaluation
criteria as discussed in Sect. 5.1 and Sect. 5.2, respectively.
To further explain clearly the SABE framework, Project 2
from Cocomo dataset is selected with attributes 0.88, 1.16,
0.85, 1, 1.06, 1, 1.07, 1, 0.91, 1, 0.9, 0.95, 1.1, 1 and 1. These
values are normalized. This project is the test project, and the
rest of the projects are the historic projects. The similarity
functions are then applied on the test project and the historic
projects. The five best similar projects are retrieved. These
projects then undergo two separate operations as explained
in Step 4.1 and Step 4.2. The output obtained from Step
4.1 and Step 4.2 is then adapted using Eq. (13) to get the
final estimated effort of the test project. The estimated effort
and the actual effort are then subjected to performance met-
rics MMRE, MdMRE, PRED and SA. Tables 3, 4, 5 and 6

depict the results on the four datasets. On each dataset, all the
four similarity functions are applied and the best k-nearest
neighbors are retrieved; they are then submitted to solution
functions and the SABE technique by varying k values from
1 to 5. The experimental findings are also used to obtain the
most desirable ABE framework in terms of k value, similar-
ity measure and solution function with all the performance
metrics.
Apart from the results of SABE technique, Tables 3, 4, 5
and 6 also depict the results of CA, mean, IWM and median
solution functions for all the four datasets.

By using the results of MMRE, MdMRE, PRED, and SA
for Cocomo81, NASA93, Maxwell and China datasets, the
best values are highlighted for each evaluation criteria. A
prediction technique is considered better if it has low MRE,
and MMRE values, and high PRED, and SA values. The
highlighted train and test values from the Tables 3, 4, 5 and
6 show that the best solution function for all the datasets
and similarity functions irrespective of the k values, is the
proposed SABE framework. For example, from Table 3 for
Cocomo dataset with Euclidean similarity, the best testing
value for MMRE is found at k = 3, for MdMRE it is at
k = 5, for PRED it is at k = 1, 4 and for SA it is at k = 5
and all at SABE solution function.

Few of the results are depicted graphically also. Figures 3,
4, 5 and 6 depict the performance of all the solution functions
at k=3 and at Euclidean similarity. The graphs for Cocomo,
NASAandMaxwell datasets show the performance of SABE
is at par over all the evaluation criteria. In China dataset,
SABE is performing best for MMRE and MdMRE criteria,
and there is less variation for PRED and SA criteria. But as
depicted from the results of Table 6 on China dataset, it can
be seen that SABE is outweighing PRED and SA criteria for
Jaccard, Manhattan and Minkowski similarity functions.

The researchers Benala and Mall (Benala and Mall 2018)
contributed various ABE models, and they concluded that
the best ABE configuration is found at Euclidean simi-
larity, with k=3 and mean solution function. The authors
have compared the performance of SABE with Benala and
Mall models (Tables 13-15) (Benala and Mall 2018) on
Cocomo81, NASA93 and China datasets. The proposed
approach is compared with the six models (ABE, GA-ABE,
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Table 3 Cocomo

Similarity K Solution MMRE MdMRE PRED SA

Train Test Train Test Train Test Train Test

Euclidean k=1 CA 1.6193 1.9748 0.7802 0.9256 0.0937 0.0645 0.3988 0.1026

SABE 0.0677 0.078 0.0238 0.0659 1.00 1.00 0.992 0.9207

k=2 Mean 1.2925 1.597 0.6392 0.9305 0.2812 0.0645 0.4626 0.1649

IWM 1.3531 0.4012 0.7013 0.9275 0.2812 0.0967 0.4178 0.1462

SABE 0.033 0.1012 0.0168 0.0798 0.9655 0.931 0.997 0.9709

k=3 Mean 0.3392 0.4245 0.5997 0.3333 0.1937 0.2645 0.508 0.5659

IWM 1.3995 0.5197 0.6022 0.3414 0.1625 0.1967 0.4921 0.4553

Median 0.4795 0.162 0.6693 1.0566 0.1625 0.1967 0.4909 0.4662

SABE 0.0568 0.0702 0.011 0.069 0.9677 0.9375 0.9974 0.9721

k=4 Mean 1.2498 0.7595 0.6992 1.4673 0.125 0.0322 0.5105 0.1893

IWM 1.2424 3.0035 0.7217 1.5394 0.125 0.0322 0.4848 0.1764

Median 0.942 0.2573 0.7092 0.9764 0.1562 0.129 0.4099 0.2454

SABE 0.0525 0.0828 0.0169 0.0647 1.00 1.00 0.9964 0.9681

k=5 Mean 1.2365 2.4305 0.6195 1.5172 0.0937 0.0645 0.4932 0.2122

IWM 1.2329 2.4016 0.6625 1.6933 0.125 0.0322 0.4675 0.2167

Median 0.9145 1.7991 0.6913 0.9133 0.0937 0.0645 0.3117 0.3074

SABE 0.0515 0.0752 0.0157 0.0481 0.9677 0.9655 0.9974 0.9765

Jaccard k=1 CA 81.6399 78.0105 0.9815 1.6311 0.9815 0.129 0.0467 0.0476

SABE 0.0853 0.1048 0.0305 0.0367 0.9032 0.9062 0.9965 0.9771

k=2 Mean 48.3441 49.7176 0.8658 3.4166 0.0937 0.129 0.0132 0.0584

IWM 47.7264 48.8814 0.867 2.111 0.125 0.129 0.1333 0.0634

SABE 0.0625 0.0989 0.0188 0.0809 0.9032 0.9375 0.9968 0.9727

k=3 Mean 41.287 57.5678 0.9235 2.7295 0.1562 0.0645 0.0439 0.0576

IWM 40.3921 59.1934 0.9121 2.689 0.125 0.0967 0.0309 0.0537

Median 17.6182 54.9928 0.918 0.8275 0.1562 0.1612 0.0297 0.0494

SABE 0.0454 0.0137 0.0135 0.0546 0.9677 0.9687 0.9974 0.9742

k=4 Mean 31.705 55.1464 0.9296 14.0634 0.0937 0.1612 0.0242 0.0316

IWM 30.8003 54.4105 0.9455 14.8007 0.0937 0.129 0.0118 0.0287

Median 10.3729 33.5503 0.8703 3.5793 0.125 0.1612 0.0311 0.0412

SABE 0.0341 0.0984 0.0181 0.0597 1.00 0.906 0.9973 0.9975

k=5 Mean 25.5855 49.0576 0.8983 11.1809 0.125 0.1612 0.0228 0.0295

IWM 24.4279 46.9769 0.9527 11.2051 0.1562 0.1612 0.0002 0.0278

Median 3.1144 20.1641 0.8897 0.8222 0.125 0.2258 0.0032 0.1033

SABE 0.0472 0.1155 0.0127 0.0874 0.9677 0.9062 0.9978 0.9689

Manhattan k=1 CA 1.4431 1.3877 0.7581 0.8048 0.125 0.129 0.4039 0.2626

SABE 0.1821 0.084 0.0175 0.069 0.9677 0.875 0.9975 0.9753

k=2 Mean 1.0989 2.0539 0.6392 0.8125 0.25 0.0645 0.4627 0.1896

IWM 1.1529 2.2902 0.6878 0.6432 0.2812 0.0645 0.4226 0.1702

SABE 0.0686 0.0915 0.0168 0.0668 0.9032 0.9375 0.9968 0.9727

k=3 Mean 1.1195 2.4378 0.5672 1.1047 0.0937 0.0645 0.5091 0.3701

IWM 1.1305 2.6637 0.6057 1.0365 0.0937 0.0967 0.4928 0.2561

Median 1.1561 1.9735 0.6913 0.8962 0.0937 0.0967 0.291 0.1768

SABE 0.0699 0.0938 0.0168 0.0157 1.00 0.875 0.9974 0.9788

k=4 Mean 1.1443 2.2563 0.6992 1.4019 0.125 0.0645 0.5167 0.4011

IWM 1.1653 2.3663 0.7282 1.4677 0.1562 0.0322 0.4933 0.3937

Median 0.9423 1.7527 0.6728 0.8143 0.125 0.129 0.4133 0.3576
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Table 3 continued

Similarity K Solution MMRE MdMRE PRED SA

Train Test Train Test Train Test Train Test

SABE 0.0718 0.0951 0.0168 0.0657 0.9677 0.9062 0.9974 0.9649

k=5 Mean 1.2601 2.301 0.697 1.0981 0.0625 0.0645 0.4886 0.3216

IWM 1.2912 2.4231 0.6919 1.1552 0.1562 0.1045 0.463 0.216

Median 0.9574 1.6755 0.764 0.7679 0.0312 0.3225 0.3067 0.3088

SABE 0.0741 0.0973 0.0168 0.0657 0.9354 0.9687 0.997 0.9799

Minkowski k=1 CA 1.6193 2.0449 0.7802 0.9444 0.0937 0.0449 0.3988 0.1048

SABE 0.0727 0.0965 0.0168 0.0659 0.9032 0.875 0.9975 0.9672

k=2 Mean 1.2857 2.6298 0.6392 0.9764 0.2812 0.0967 0.4629 0.1681

IWM 1.3331 2.9438 0.6857 0.9997 0.2812 0.129 0.4181 0.15

SABE 0.064 0.0962 0.0168 0.0657 0.9354 0.9062 0.9973 0.9758

k=3 Mean 1.3654 2.4735 0.6284 1.3888 0.0937 0.0645 0.5068 0.1704

IWM 1.4026 2.5492 0.6138 1.1827 0.0625 0.0967 0.4906 0.1631

Median 1.1977 2.1619 0.6913 1.0566 0.0625 0.0967 0.2897 0.166

SABE 0.0772 0.0965 0.0168 0.0657 0.9032 0.9375 0.9972 0.974

k=4 Mean 1.1975 2.6724 0.6992 1.775 0.125 0.0645 0.5149 0.192

IWM 1.136 2.8472 0.7008 1.5457 0.125 0.0645 0.4919 0.1806

Median 0.9817 2.0547 0.6729 0.9764 0.1562 0.0967 0.4107 0.2432

SABE 0.0819 0.0963 0.0168 0.0657 0.9032 0.9062 0.9977 0.9834

k=5 Mean 1.2275 2.4605 0.6119 1.5172 0.1875 0.0645 0.4945 0.2117

IWM 1.2195 2.3564 0.644 1.7774 0.1875 0.0645 0.4688 0.2207

Median 0.9111 1.9396 0.661 0.93 0.0937 0.0322 0.3125 0.3027

SABE 0.0858 0.0941 0.0168 0.0657 0.9354 0.9062 0.9972 0.9736

Bold values represent the best solution function for all the datasets and similarity functions irrespective of the K values

DABE-3, PSO-ABE, SADE-ABE, JADE-ABE) fromBenala
and Mall’s work.

For Cocomo81 dataset, the best MMRE test value is given
by SADE-ABEwhich is 0.016, whereas the best MMRE test
value for SABE is 0.0137 at Jaccard similarity and at k=3.
In PRED, the best value is given by DABE-3 which is 0.816,
for SABE the best PRED value is 1.00 at k=1,4 and using
Euclidean similarity. For MdMRE, it is given by PSO-ABE
which is 0.021, whereas for SABE the best value is 0.0157
using Manhattan similarity and at k=3. The best SA value is
given by DABE-3 which is 98.940, whereas using SABE it
is 99.75 at k=4 using Jaccard similarity.

For NASA93 dataset, the best MMRE test value is given
by GA-ABE which is 0.009, whereas the best MMRE test
value for SABE is 0.0211 atMinkowski similarity and at k=5.
In PRED, the best value is given by ABE which is 0.839, for
SABE the best PREDvalue is 1.00 at k=4, 5 andusing Jaccard
similarity. It is also found at k=4, with Manhattan similarity
and at k=5 with Minkowski similarity. For MdMRE, it is
given by GA-ABE which is 0.009, whereas for SABE the
best value is 0.0089 using Euclidean similarity and at k=1.
The best SA value is given by DABE-3 which is 94.234,

whereas using SABE it is 99.22 at k=5 using Minkowski
similarity.

For CHINA dataset, the best MMRE test value is given
by PSO-ABE which is 0.010, whereas the best MMRE test
value for SABE is 0.0116 at Jaccard similarity and at k=4.
In PRED, the best value is given by ABE which is 0.868, for
SABE the best PRED value is 1.00 at k=1,2,3,4,5 by using
Euclidean, Manhattan and Minkowski similarity measures.
ForMdMRE, it is given by DABE-3 which is 0.039, whereas
for SABE the best value is 0.0127 usingManhattan similarity
and at k=3. The best SA value is given by DABE-3 which is
96.509, whereas using SABE it is 99.62 at k=5 using Man-
hattan similarity.

All the analyses performed above concluded that SABE is
providing the best results for mostly all the models and eval-
uation criteria except for GA-ABE at MMRE for NASA93
dataset, and for PSO-ABE at MMRE for China dataset. But
the best performance of SABE is not restricted to a single
configuration. It is giving good results at different similarity
measures and at different k values. This is further confirmed
using statistical analysis.
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Table 4 NASA

Similarity k Solution MMRE MdMRE PRED SA

Train Test Train Test Train Test Train Test

Euclidean k=1 CA 0.5972 2.6799 0.2887 0.5821 0.234 0.1086 0.5699 0.522

SABE 0.0713 0.0362 0.0445 0.0089 0.9782 0.9565 0.9604 0.9901

k=2 Mean 0.3573 0.9007 0.6 0.7632 0.2765 0.1521 0.4376 0.6093

IWM 1.5157 1.5746 0.5917 0.7656 0.3404 0.1304 0.4875 0.6146

SABE 0.0857 0.0708 0.0609 0.0163 0.9545 0.9574 0.9801 0.991

k=3 Mean 0.2687 0.617 0.6716 0.7586 0.2553 0.2304 0.7015 0.7793

IWM 0.3396 0.3001 0.6423 0.7146 0.1702 0.1904 0.6866 0.736

Median 0.2573 0.0359 0.3243 0.5664 0.3404 0.3086 0.776 0.7786

SABE 0.0211 0.0234 0.072 0.0271 0.9318 0.9787 0.9778 0.99

k=4 Mean 0.5902 0.7754 0.7465 0.7404 0.234 0.1086 0.5344 0.5756

IWM 0.9108 1.5824 0.6499 0.5805 0.2553 0.2173 0.5323 0.5489

Median 0.5147 0.6129 0.4763 0.5579 0.3191 0.1521 0.5992 0.6885

SABE 0.0824 0.0624 0.033 0.0191 0.9148 0.9565 0.9819 0.9831

k=5 Mean 1.4779 1.6126 0.956 0.65 0.1489 0.1956 0.4579 0.3417

IWM 1.6269 1.4248 0.7519 0.5763 0.234 0.2608 0.4136 0.3697

Median 0.4796 1.0124 0.3461 0.657 0.3191 0.1521 0.5472 0.5888

SABE 0.0661 0.0399 0.0287 0.0264 0.9787 0.9782 0.9835 0.9901

Jaccard k=1 CA 29.6726 4.697 10.4795 0.8928 0.0212 0.0652 0.0439 0.0189

SABE 0.1302 0.0503 0.0638 0.0312 0.8297 0.9565 0.9776 0.9886

k=2 Mean 18.7283 9.8978 6.7806 0.9121 0.0851 0.0652 0.0074 0.0795

IWM 15.0173 10.4523 6.5494 0.9317 0.0851 0.0869 0.0181 0.0783

SABE 0.1165 0.0508 0.0588 0.0277 0.851 0.9565 0.9764 0.9895

k=3 Mean 14.423 8.3864 5.6034 0.8813 0.0851 0.0869 0.0078 0.0668

IWM 12.0727 8.6593 5.6034 0.8821 0.1489 0.0652 0.0304 0.0678

Median 10.6561 6.6932 3.9236 0.8353 0.0851 0.1086 0.0332 0.0154

SABE 0.0858 0.0599 0.044 0.017 0.9148 0.9565 0.9826 0.9909

k=4 Mean 13.7776 6.8011 5.289 0.8902 0.1489 0.1304 0.02 0.0514

IWM 12.3934 6.9039 4.5456 0.8949 0.1702 0.1086 0.0194 0.0519

Median 10.3432 4.3692 3.0763 0.87 0.1063 0.0434 0.039 0.0205

SABE 0.0893 0.0349 0.0637 0.0226 0.9361 1.00 0.9813 0.9905

k=5 Mean 20.5229 9.2866 7.2791 0.8078 0.1489 0.1521 0.0213 0.0336

IWM 21.0114 9.8992 6.8732 0.6773 0.1489 0.1956 0.0314 0.0465

Median 9.2402 6.775 1.2291 0.9027 0.0851 0.0434 0.0554 0.0413

SABE 0.0852 0.0284 0.0529 0.0182 0.9361 1.00 0.9829 0.9912

Manhattan k=1 CA 0.6401 2.7096 0.3333 0.657 0.4042 0.1521 0.5486 0.5101

SABE 0.1261 0.0518 0.0747 0.0266 0.851 0.9782 0.976 0.9892

k=2 Mean 0.7362 1.8428 0.4797 0.7486 0.3404 0.2173 0.5073 0.4141

IWM 0.9252 1.6671 0.3795 0.7478 0.3829 0.1956 0.4429 0.3087

SABE 0.1074 0.0728 0.0708 0.0311 0.9148 0.9565 0.979 0.9888

k=3 Mean 0.7802 1.5986 0.6111 0.7423 0.2765 0.1521 0.5461 0.4948

IWM 0.9059 1.3882 0.6432 0.7296 0.234 0.1304 0.5045 0.3352

Median 0.4298 1.0469 0.3333 0.5277 0.3191 0.1086 0.5597 0.4829

SABE 0.1012 0.047 0.0761 0.0273 0.9361 0.9782 0.9795 0.9897

k=4 Mean 0.7712 0.1744 0.5037 0.1062 0.4765 0.6086 0.5988 0.6945

IWM 0.8373 1.4886 0.4447 0.616 0.3191 0.1739 0.5894 0.5509
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Table 4 continued

Similarity k Solution MMRE MdMRE PRED SA

Train Test Train Test Train Test Train Test

Median 0.4438 0.9921 0.3513 0.5579 0.4404 0.4521 0.6074 0.5926

SABE 0.1015 0.0421 0.0577 0.0254 0.9148 1.00 0.9804 0.9903

k=5 Mean 0.9469 1.5989 0.5968 0.6913 0.234 0.1956 0.4912 0.442

IWM 0.4721 1.0034 0.3461 0.5914 0.2978 0.1739 0.4314 0.4516

Median 1.0678 1.4628 0.5311 0.6227 0.234 0.2391 0.5472 0.5914

SABE 0.0853 0.0667 0.0496 0.0218 0.9361 0.9782 0.9827 0.9912

Minkowski k=1 CA 1.4365 2.7628 0.5 0.6912 0.234 0.1086 0.4464 0.0924

SABE 0.1188 0.0756 0.0605 0.0248 0.8297 0.9565 0.9783 0.9893

k=2 Mean 1.3923 1.901 0.6011 0.7632 0.234 0.1304 0.4353 0.107

IWM 1.4897 1.5349 0.5901 0.7674 0.2978 0.1086 0.3909 0.216

SABE 0.1264 0.0809 0.0785 0.0292 0.851 0.9347 0.9776 0.9881

k=3 Mean 1.355 1.6207 0.7724 0.7694 0.234 0.1304 0.4936 0.5666

IWM 1.348 1.2811 0.6137 0.7131 0.1489 0.1304 0.4909 0.4247

Median 0.4566 1.0474 0.3333 0.5664 0.3191 0.1304 0.56 0.58

SABE 0.118 0.0406 0.0685 0.0234 0.8723 0.9782 0.9793 0.9904

k=4 Mean 1.5893 1.7759 0.7465 0.7404 0.234 0.1086 0.5346 0.2693

IWM 1.8293 1.6313 0.6651 0.5863 0.2765 0.2608 0.546 0.2426

Median 0.5166 1.0221 0.4763 0.5579 0.2978 0.1304 0.5986 0.18

SABE 0.0909 0.0505 0.0594 0.0279 0.9361 0.9565 0.9803 0.9896

k=5 Mean 1.4761 1.5942 0.956 0.6715 0.1702 0.1739 0.458 0.235

IWM 1.5173 1.4125 0.7425 0.5625 0.2765 0.2391 0.4245 0.2626

Median 0.4885 0.9804 0.3888 0.657 0.3191 0.1521 0.5466 0.1901

SABE 0.0824 0.0211 0.0381 0.0117 0.8936 1.00 0.9862 0.9922

Bold values represent the best solution function for all the datasets and similarity functions irrespective of the K values

7 Statistical analysis

Statistical analysis helps us to find the appropriateness of
one model to another (Kitchenham andMendes 2009), (Mit-
tas and Angelis 2008). From the discussion in Sect. 6, it is
evident that the SABE solution function is providing the best
results but now using statistical analysis this will be further
confirmed.Also itwill help to find the best similarity function
and k value to be chosen for SABE. The datasets for software
cost estimation studies do not follow any particular distribu-
tion so nonparametric statistical tests are used (Kaushik et al.
2016). All these tests are performed on KEEL (Knowledge
Extraction based on Evolutionary Learning) tool (Alcalá-
Fdez et al. 2011), and the statistical analysis is done on
MMRE metric.

Initially, the authors compared all the solution functions
using Friedman test (Hodges and Lehmann 2012). This test
computes the statistical differences among the solution func-
tions. It provides the lowest rank to the best solution function.
The Friedman test is computed by:

FT =
(q − 1)

[∑q
j=1 M̂

2
j − (

qn2

2 )(qn + 1)2
]

{[qn(qn + 1)(2qn + 1)] /6} − (1/q)
∑n

i=1 M̂
2
i

(22)

where q is the total number of techniques, M̂i is the total
rank of the i th data-set, and M̂ j is the total rank of the j th

technique. This test is conducted for all the solution func-
tions at k=3with Euclidean similarity on all the four datasets.
The authors have chosen k=3, for the Friedman test as it is
considered as the optimal value and it is covering all the solu-
tion functions (Benala and Mall 2018). The null hypothesis
assumed that all the solution functions performed equally.
The results of the Friedman test is given in Table 7.

Here, N is the number of input datasets, the degree of
freedom (d f ) is 3 as there are four solution functions to com-
pare. The standard χ2 value with 3 d f and significance value
α = 0.05 is 7.815. The null hypothesis is rejected as the χ2

value listed in the test statistic (Table 7) is more than 7.815
and the p − value is less than 0.05. So, it is deduced that all
the solution functions are different. Fig. 7 shows the average
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Table 5 Maxwell

Similarity k Solution MMRE MdMRE PRED SA

Train Test Train Test Train Test Train Test

Euclidean k=1 CA 0.094 0.0599 0.0574 0.0615 0.2258 0.2666 0.5784 0.5537

SABE 0.0042 0.0028 0.0026 0.0014 1.00 1.00 0.999 0.9984

k=2 Mean 0.0807 0.053 0.0568 0.0556 0.129 0.3 0.6997 0.7692

IWM 0.0812 0.0549 0.0567 0.0406 0.1935 0.3 0.6832 0.7172

SABE 0.0037 0.0029 0.0017 0.0013 1.00 1.00 0.9991 0.9983

k=3 Mean 0.0715 0.0353 0.0501 0.0362 0.329 0.3666 0.822 0.9782

IWM 0.0856 0.0555 0.0566 0.0432 0.129 0.2333 0.8214 0.9241

Median 0.0743 0.046 0.0503 0.0412 0.2058 0.2 0.8476 0.9434

SABE 0.0047 0.0029 0.0026 0.002 1.00 1.00 0.9989 0.9983

k=4 Mean 0.0781 0.0493 0.0541 0.0429 0.129 0.2666 0.8394 0.9725

IWM 0.0784 0.0492 0.0552 0.0356 0.1612 0.2666 0.8593 0.5356

Median 0.0745 0.0439 0.0562 0.0329 0.1935 0.3 0.3999 0.5604

SABE 0.0043 0.0026 0.0015 0.0014 1.00 1.00 0.999 0.9984

k=5 Mean 0.0742 0.0457 0.051 0.0369 0.129 0.3333 0.4744 0.5926

IWM 0.0766 0.047 0.0562 0.0313 0.4677 0.4333 0.4806 0.5586

Median 0.0745 0.0415 0.054 0.0397 0.1935 0.3 0.3854 0.5241

SABE 0.0042 0.0026 0.0018 0.0016 1.00 1.00 0.999 0.9983

Jaccard k=1 CA 0.1552 1.8261 0.8122 0.7825 0.1935 0.1333 0.3107 0.4047

SABE 0.0054 0.0031 0.0029 0.0018 1.00 1.00 0.9989 0.9982

k=2 Mean 2.6104 2.1184 0.9081 0.7066 0.0645 0.1 0.0904 0.1966

IWM 2.6207 2.1183 0.9081 0.7066 0.0645 0.1 0.0923 0.1965

SABE 0.0057 0.0031 0.0037 0.0021 1.00 1.00 0.9989 0.9982

k=3 Mean 3.0696 2.018 0.9311 0.7868 0.0645 0.0666 0.1539 0.2261

IWM 3.1044 2.0283 0.9311 0.7869 0.0645 0.0666 0.1563 0.2254

Median 2.707 2.0612 0.9634 0.811 0.1935 0.0666 0.1631 0.2112

SABE 0.0051 0.0035 0.002 0.0021 1.00 1.00 0.9989 0.9981

k=4 Mean 2.7083 1.9209 0.9356 0.6958 0.0645 0.1333 0.144 0.1987

IWM 2.7211 1.9285 0.9356 0.7165 0.0645 0.1333 0.1438 0.1969

Median 2.3147 1.9227 0.9253 0.7458 0.129 0.1333 0.1437 0.2757

SABE 0.0039 0.0032 0.0016 0.0016 1.00 1.00 0.999 0.9983

k=5 Mean 2.6988 2.2508 1.1339 0.6933 0.0645 0.1 0.1415 0.1614

IWM 2.6719 2.2766 1.1807 0.6956 0.0967 0.1 0.1388 0.1587

Median 2.2649 2.0011 1.3373 0.7415 0.0645 0.1333 0.1426 0.2268

SABE 0.007 0.0034 0.0021 0.0019 1.00 1.00 0.997 0.9981

Manhattan k=1 CA 0.0838 0.0575 0.0475 0.0553 0.2258 0.3333 0.451 0.4709

SABE 0.005 0.003 0.0022 0.0017 1.00 1.00 0.999 0.9981

k=2 Mean 0.0798 0.051 0.0544 0.0485 0.1612 0.3733 0.4066 0.5757

IWM 0.0826 0.0544 0.0549 0.0461 0.2258 0.2666 0.387 0.5137

SABE 0.0046 0.0036 0.0021 0.0016 1.00 1.00 0.999 0.9982

k=3 Mean 0.0749 0.0495 0.0477 0.0442 0.129 0.2333 0.4325 0.5706

IWM 0.0755 0.0499 0.0489 0.0455 0.129 0.2 0.4347 0.5403

Median 0.066 0.0441 0.0494 0.0412 0.1612 0.2666 0.4586 0.5798

SABE 0.0039 0.0026 0.0021 0.0013 1.00 1.00 0.9991 0.9984

k=4 Mean 0.0709 0.0447 0.0541 0.0419 0.2258 0.2666 0.4682 0.5806

IWM 0.0696 0.0432 0.0553 0.0346 0.2258 0.3333 0.489 0.5486
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Table 5 continued

Similarity k Solution MMRE MdMRE PRED SA

Train Test Train Test Train Test Train Test

Median 0.065 0.0414 0.0559 0.0329 0.2258 0.3666 0.4386 0.5636

SABE 0.0034 0.0028 0.0019 0.0017 1.00 1.00 0.999 0.9983

k=5 Mean 0.0745 0.0441 0.05 0.0357 0.1612 0.3333 0.4772 0.605

IWM 0.077 0.0449 0.0521 0.0342 0.129 0.3 0.4829 0.5754

Median 0.0713 0.0417 0.0503 0.0366 0.2258 0.2666 0.3861 0.5091

SABE 0.005 0.0032 0.0021 0.0015 1.00 1.00 0.9989 0.9983

Minkowski k=1 CA 0.0945 0.066 0.0574 0.0626 0.2258 0.2666 0.3777 0.4264

SABE 0.004 0.003 0.0015 0.0018 1.00 1.00 0.9991 0.9982

k=2 Mean 0.0837 0.0516 0.058 0.048 0.1612 0.3333 0.3802 0.5783

IWM 0.0827 0.053 0.0573 0.0365 0.1935 0.3666 0.3698 0.5302

SABE 0.0044 0.0031 0.0021 0.0015 1.00 1.00 0.9989 0.9983

k=3 Mean 0.0831 0.0553 0.0589 0.0442 0.0967 0.2 0.415 0.5446

IWM 0.0874 0.0555 0.0577 0.0418 0.0967 0.2333 0.4154 0.5192

Median 0.0745 0.0461 0.0503 0.0412 0.2258 0.2666 0.4471 0.5727

SABE 0.004 0.0031 0.0021 0.0023 1.00 1.00 0.9989 0.9981

k=4 Mean 0.0771 0.0478 0.0541 0.0419 0.129 0.2666 0.4357 0.578

IWM 0.0754 0.0473 0.0552 0.0343 0.129 0.3 0.4605 0.5437

Median 0.0734 0.0418 0.0562 0.0309 0.1935 0.3333 0.3974 0.5688

SABE 0.0044 0.0025 0.0018 0.0013 1.00 1.00 0.9991 0.9984

k=5 Mean 0.0756 0.0461 0.057 0.0369 0.0967 0.3333 0.4609 0.5862

IWM 0.0788 0.0486 0.0586 0.0314 0.0645 0.4 0.4618 0.5455

Median 0.0729 0.0415 0.0543 0.0397 0.1935 0.3 0.3875 0.5242

SABE 0.0042 0.0034 0.0021 0.0014 1.00 1.00 0.999 0.9982

Bold values represent the best solution function for all the datasets and similarity functions irrespective of the K values

ranks of all the solution functions as given by Friedman rank
test. In this, the SABE function has theminimum rank of 1 so
this is considered as the best solution function. Next, Holm
post hoc test (Holm 1979) is conducted to find the differences
among the techniques with SABE as the control method. Its
test statistics is given in Table 8.

As per the Holm test statistics, the hypothesis is rejected
for mean and IWM but it is accepted for Median. This shows
that there is not much significant difference between SABE
and the median solution function. Now, these two solution
functions are statistically validated using Wilcoxon signed
rank test (Wilcoxon 1992), which compares the two func-
tions basedonpositive andnegative differences of their ranks.
The null hypothesis assumed here is the two techniques per-
formed equally. The test statistics of the test is provided in
Table 9.

Here, R+ shows the sum of ranks in which the first algo-
rithm outperformed the second and R−shows the sum of
ranks for the opposite. From the test statistics (Table 9), the
p-value is less than 0.05, so the null hypothesis is rejected,
and SABE has outperformedmedian solution function for all
the datasets. The authors also performed statistical analysis

to know which is the best similarity function and the best
k value for SABE. In order to find the best similarity func-
tion, the authors have chosen the best MMRE test values for
all the datasets. First, the Friedman test is performed. The
null hypothesis assumed that all the similarity functions per-
formed equally. The results of Friedman test for similarity
function are given in Table 10.

Here, N is the number of input datasets, the degree of
freedom (d f ) is 3 as there are four similarity functions to
compare. The null hypothesis is accepted as the χ2 value
listed in the test statistic (Table 10) is less than 7.815 and
the p-value is more than 0.05. So, it is deduced that all the
similarity functions performed equally and there are no sig-
nificant differences.

Figure 8 shows the average ranks of all the similarity
functions as given by Friedman rank test. It shows that the
Minkowski similarity function has the lowest rank of 1.875,
so this similarity function is taken as the control method. The
statistical analysis is further performed to find the best k value
for SABE.The results considered for analysis areMMRE test
values for all the k values with Minkowski similarity func-
tion and SABE solution function. The Friedman test results
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Table 6 China

Similarity k Solution MMRE MdMRE PRED SA

Train Test Train Test Train Test Train Test

Euclidean k=1 CA 0.1127 0.1143 0.0575 0.0566 0.9402 0.9314 0.9104 0.9174

SABE 0.0216 0.0275 0.0116 0.013 1.00 1.00 0.9935 0.9962

k=2 Mean 0.1169 0.1078 0.0772 0.0823 0.9521 0.9596 0.9146 0.9073

IWM 0.1195 0.1106 0.0813 0.0846 0.9442 0.9596 0.9161 0.904

SABE 0.0226 0.0279 0.0119 0.0133 1.00 1.00 0.9932 0.9959

k=3 Mean 0.1115 0.0907 0.0768 0.0524 0.9601 0.9996 0.9177 0.9885

IWM 0.1137 0.1108 0.0761 0.0828 0.9521 0.9475 0.9156 0.9588

Median 0.1161 0.0956 0.063 0.0606 0.9402 0.9796 0.9131 0.9799

SABE 0.0226 0.0278 0.0126 0.013 1.00 1.00 0.9932 0.9961

k=4 Mean 0.1098 0.1058 0.0713 0.0849 0.9681 0.9637 0.9216 0.9086

IWM 0.1123 0.1083 0.0733 0.0855 0.9641 0.9596 0.9201 0.9091

Median 0.1119 0.1002 0.0711 0.0744 0.9721 0.9637 0.9211 0.9117

SABE 0.0223 0.028 0.0127 0.0133 1.00 1.00 0.9933 0.996

k=5 Mean 0.1096 0.1061 0.0721 0.0854 0.9681 0.9596 0.9239 0.9098

IWM 0.1133 0.1091 0.0787 0.0868 0.9681 0.9637 0.9225 0.9098

Median 0.1128 0.102 0.0642 0.0725 0.9641 0.9677 0.9196 0.909

SABE 0.0219 0.0279 0.0109 0.013 1.00 1.00 0.9934 0.9959

Jaccard k=1 CA 7.1901 5.33 1.7325 1.3428 0.1235 0.0806 0.3466 0.3318

SABE 0.0912 0.149 0.0348 0.0344 0.88 0.8 0.9714 0.9765

k=2 Mean 2.6104 2.1184 0.9081 0.7066 0.0645 0.1 0.1712 0.1575

IWM 2.6207 2.1183 0.9081 0.7066 0.0645 0.1 0.1512 0.1554

SABE 0.1125 0.1604 0.0357 0.046 0.9 0.74 0.9651 0.9767

k=3 Mean 3.0696 2.018 0.9311 0.7868 0.0645 0.0666 0.177 0.2301

IWM 3.1044 2.0283 0.9311 0.7869 0.0645 0.0666 0.197 0.2301

Median 2.707 2.0612 0.9634 0.811 0.1935 0.0666 0.1463 0.2078

SABE 0.0697 0.1266 0.0332 0.0356 0.94 0.8 0.9728 0.9767

k=4 Mean 2.7083 1.9209 0.9356 0.6958 0.0645 0.1333 0.124 0.1541

IWM 2.7211 1.9285 0.9356 0.7165 0.0645 0.1333 0.114 0.1351

Median 2.3147 1.9227 0.9253 0.7458 0.129 0.1333 0.1603 0.1458

SABE 0.01126 0.01161 0.0408 0.0302 0.86 0.86 0.9633 0.9812

k=5 Mean 4.9357 3.5771 1.2954 0.8831 0.1553 0.129 0.8809 0.8898

IWM 4.9357 3.5771 1.2954 0.8831 0.1553 0.129 0.8709 0.8698

Median 3.1497 2.5163 0.8628 0.8209 0.1394 0.1451 0.8705 0.8727

SABE 0.0563 0.158 0.0223 0.0339 0.98 0.8 0.9712 0.9776

Manhattan k=1 CA 0.126 0.109 0.0602 0.0571 0.9362 0.9314 0.8992 0.9148

SABE 0.022 0.0278 0.011 0.013 1.00 1.00 0.9934 0.996

k=2 Mean 0.1159 0.1101 0.0758 0.0814 0.9561 0.9596 0.9196 0.9066

IWM 0.1184 0.1135 0.0808 0.0863 0.9482 0.9556 0.9197 0.9035

SABE 0.0227 0.0274 0.0125 0.0132 1.00 1.00 0.9931 0.9961

k=3 Mean 0.1125 0.1062 0.077 0.0855 0.9681 0.9556 0.921 0.9108

IWM 0.1153 0.1088 0.0771 0.082 0.9641 0.9475 0.9193 0.9107

Median 0.1158 0.1038 0.0633 0.0627 0.9482 0.9516 0.9174 0.9102

SABE 0.0221 0.0277 0.0116 0.0127 1.00 1.00 0.9932 0.996

k=4 Mean 0.1094 0.1118 0.0733 0.0875 0.9721 0.9556 0.9224 0.9028

IWM 0.1117 0.1161 0.0761 0.0913 0.9721 0.9435 0.9215 0.9004

Median 0.1112 0.1051 0.0765 0.084 0.9681 0.9596 0.9207 0.9065
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Table 6 continued

Similarity k Solution MMRE MdMRE PRED SA

Train Test Train Test Train Test Train Test

SABE 0.0221 0.0278 0.0118 0.0133 1.00 1.00 0.9934 0.996

k=5 Mean 0.1079 0.1097 0.0683 0.0867 0.9641 0.9596 0.9213 0.9056

IWM 0.1106 0.1133 0.0722 0.0865 0.9641 0.9596 0.9197 0.9054

Median 0.1077 0.1086 0.0603 0.0741 0.9641 0.9677 0.9212 0.9043

SABE 0.0202 0.0278 0.0111 0.0132 1.00 1.00 0.9937 0.9962

Minkowski k=1 CA 0.1144 0.124 0.0599 0.0697 0.9362 0.9233 0.9131 0.8998

SABE 0.0227 0.0279 0.0111 0.013 1.00 1.00 0.9933 0.9961

k=2 Mean 0.117 0.1116 0.0835 0.0832 0.9561 0.9516 0.9168 0.9037

IWM 0.12 0.1142 0.0808 0.0856 0.9402 0.9516 0.9175 0.9013

SABE 0.0224 0.0279 0.0119 0.0141 1.00 1.00 0.9935 0.996

k=3 Mean 0.1121 0.1054 0.0741 0.0756 0.9521 0.9596 0.9186 0.9084

IWM 0.1142 0.1077 0.0746 0.0789 0.9402 0.9556 0.9179 0.9092

Median 0.1148 0.1068 0.0603 0.0576 0.9362 0.9596 0.9161 0.9074

SABE 0.0222 0.0275 0.0113 0.013 1.00 1.00 0.9935 0.9961

k=4 Mean 0.1138 0.1046 0.074 0.0788 0.9681 0.9637 0.9186 0.9394

IWM 0.1163 0.107 0.0755 0.0816 0.9641 0.9596 0.9176 0.9105

Median 0.1123 0.1034 0.0704 0.0803 0.9681 0.9596 0.9191 0.9105

SABE 0.0217 0.028 0.0112 0.0138 1.00 1.00 0.9936 0.9959

k=5 Mean 0.1142 0.1037 0.0778 0.0811 0.9641 0.9596 0.9255 0.9139

IWM 0.1179 0.1064 0.0804 0.082 0.9641 0.9596 0.927 0.9144

Median 0.1145 0.1049 0.066 0.0719 0.9681 0.9556 0.9192 0.9074

SABE 0.0228 0.0279 0.0117 0.013 1.00 1.00 0.9934 0.9959

Bold values represent the best solution function for all the datasets and similarity functions irrespective of the K values

Fig. 3 Comparison of solution
functions with Cocomo dataset
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Fig. 4 Comparison of solution
functions with NASA dataset

Fig. 5 Comparison of solution
functions with Maxwell dataset

for this are given in Table 11. The hypothesis assumed here
is all the k values performed equally. The degree of freedom
(df) is 4 corresponding to 5 k values. The null hypothesis
is accepted again as the χ2 value listed in the test statistic
(Table 11) is less than 9.488 and the p-value is more than
0.05. So, it is deduced that all the k values performed equally
and there are no significant differences. The ranks as calcu-
lated by Friedman’s test is depicted in Fig. 9, and it shows
that k=5 has the lowest rank of 2.5. So, k=5 can be consid-

ered as the best value with Minkowski similarity function
and SABE solution function.

8 Conclusion

In this work, Stacking regularization in analogy-based soft-
ware effort estimation (SABE) is proposed for software
projects. The technique SABE is a solution function which
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Fig. 6 Comparison of solution
functions with China dataset

Table 8 Holm test statistics Solution Functions Z Holm Hypothesis (α=0.05)

SABE vs Mean 1.9170 0.025 Rejected

SABE vs IWM 3.0124 0.0166 Rejected

SABE vs Median 1.6431 0.05 Accepted

Table 9 Wilcoxon signed rank
test statistics for SABE vs.
median

Solution Functions Rank Positive (R+) Rank Negative (R-) Hypothesis (α=0.05) p-value

SABE vs Median 10.0 0.0 Rejected 0.04461

Table 7 Friedman rank test statistics for solution function

N 4

χ2 9.3

df 3

p − value 0.0255

Table 10 Friedman rank test statistics for similarity function

N 4

χ2 2.775

d f 3

p − value 0.4276

is evaluated alongside other solution functions like the
closet analogy (CA), mean, median and the inverse distance-
weighted mean (IWM). The technique is tested on four
software estimation datasets, i.e., Cocomo, NASA, Maxwell

and China. It is found that the SABE solution function pro-
vided the best results both in experimental evaluations as
well as in statistical validations. The four similarity functions
used are Euclidean, Jaccard, Manhattan andMinkowski. The
k most proximate neighbors from 1 to 5 are considered
in implementing the technique. The results of SABE are
also compared with other techniques. It is found that SABE
worked best maximum number of times for the evaluation
criteria in comparison with models proposed by the earlier
studies. The research has its own limitations too. The SABE
technique uses stacking, which comes with its own price.
Stacking involves training multiple base-models to predict
the target variable. So, the stacked models take longer time
to train than simpler models and require more memory. The
choice of the base models used can also affect the results of
the proposed technique. The base models used in the study
are polynomial regression and lasso regression. The future
work can include replacing these models with other base
models which will take less time to train and provide more
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Fig. 7 Average ranking of Friedman test for solution functions

Fig. 8 Average ranking of Friedman test for similarity functions

Table 11 Friedman rank test
statistics for k values

N 4

χ2 0.95

df 4

p − value 0.9172

efficient results. Thesemodels can be chosen from the current
state-of-the-art machine learning approaches.
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