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SUMMARY

At small central synapses, efficient turnover of vesi-
cles is crucial for stimulus-driven transmission, but
how the structure of this recycling pool relates to
its functional role remains unclear. Here we charac-
terize the organizational principles of functional vesi-
cles at native hippocampal synapses with nanoscale
resolution using fluorescent dye labeling and elec-
tron microscopy. We show that the recycling pool
broadly scales with the magnitude of the total vesicle
pool, but its average size is small (�45 vesicles),
highly variable, and regulated by CDK5/calcineurin
activity. Spatial analysis demonstrates that recycling
vesicles are preferentially arranged near the active
zone and this segregation is abolished by actin stabi-
lization, slowing the rate of activity-driven exocy-
tosis. Our approach reveals a similarly biased recy-
cling pool distribution at synapses in visual cortex
activated by sensory stimulation in vivo. We suggest
that in small native central synapses, efficient release
of a limited pool of vesicles relies on their favored
spatial positioning within the terminal.

INTRODUCTION

Most information transfer in the CNS depends on fast transmis-

sion at chemical synapses, and the mechanisms underlying this

process have been extensively examined. In particular, much

attention has focused on presynaptic terminals, characterized

by their cluster of neurotransmitter-filled vesicles lying close to

a specialized release site (Siksou et al., 2011). Although synaptic

vesicles appear morphologically similar, they are, in fact, orga-

nized into functionally discrete subpools that are key determi-

nants of synaptic performance (Denker and Rizzoli, 2010; Rizzoli

and Betz, 2005; Sudhof, 2004). Understanding the specific rela-
tionship between these functional pools and their organizational

and structural properties is thus a fundamental issue in neurosci-

ence. Specifically, several key questions merit attention. What is

the absolute size of the functional vesicle pool at a synapse and

how does its magnitude relate to other parameters of the

synaptic architecture? Do functionally distinct subpools have a

specific spatial organization that reflects or supports their

operational roles? If so, what molecular substrates regulate

this organization and what are the consequences for synaptic

function?

Addressing such questions is challenging because it requires

a readout of functional synaptic vesicle pools that can be iden-

tified in ultrastructure (de Lange et al., 2003; Denker et al., 2009,

2011; Harata et al., 2001b; Henkel et al., 1996; Paillart et al.,

2003; Richards et al., 2000, 2003; Rizzoli and Betz, 2004; Schi-

korski and Stevens, 2001; Teng and Wilkinson, 2000). This

challenge is particularly acute when considering native

synapses within their specific cytoarchitecture. The most infor-

mative results to date have come from studies of large and

mainly peripheral synapses, from which a consensus has

emerged regarding vesicle structure-function relationships. At

the frog neuromuscular junction, terminals contain substantial

populations of vesicles organized into functional subpools

(Rizzoli and Betz, 2005); elegant ultrastructural evidence has

shown that the vesicles belonging to the readily releasable

pool comprise a small subset (�15%–20%) (Richards et al.,

2000, 2003; Rizzoli and Betz, 2004) of the total vesicle popula-

tion and are randomly spatially distributed within the terminal

(Rizzoli and Betz, 2004). A similar lack of spatial segregation

has been shown in Drosophila neuromuscular junction (Denker

et al., 2009), the mammalian calyx of Held (de Lange et al.,

2003), and isolated retinal bipolar nerve terminals (Paillart

et al., 2003). Thus, in these large multirelease site synaptic junc-

tions, the spatial positioning of recycling vesicles appears to be

largely irrelevant for functional vesicle properties (Denker et al.,

2009).

How do these findings relate to functional vesicle pools in

small native central synapses? So far, such studies have been
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Figure 1. Heterogenous Release Properties of Functional Vesicle

Pools in Acute Hippocampal Slice

(A) Schematic illustrating experimental protocol for visualizing recycling vesi-

cles at fluorescence and electron microscope level using photoconversion of

FM1-43FX. SC, Schaffer collateral fiber.

(B) Typical sample image of FM dye-positive fluorescent puncta in CA1,

labeled using a 10 Hz 1,200 AP loading stimulus. Scale bar represents 5 mm.

(C) Dependence of FM dye-labeling intensity at synaptic terminals using

a range of different loading protocols at 10 Hz (0 APs, 100 APs, 600 APs,

1,200 APs, and 2 3 1,200 APs). Top: typical sample images for each

loading condition. Scale bar represents 1 mm. Bottom: plot showing average

labeling intensity of fluorescent puncta for each loading condition normalized

to intensity with 40 mM KCl (line and blue band show mean ± SEM). Labeling

intensity saturates at 1,200 APs (Kruskal-Wallis test, p < 0.0001; Dunn’s test

shows p values < 0.0001 for the following groups: 0 AP versus 600 AP, 0 AP

versus 1,200 AP, 0 AP versus 2,400 AP, 0 AP versus High K+, 100 AP versus

600 AP, 100 AP versus 1,200 AP, 100 AP versus 2,400 AP, and 100 AP versus

High K+, all other comparisons between groups were nonsignificant, p > 0.05).

Plot shows mean ± SEM.

(D) Sample time-lapse images demonstrating stimulus-driven dye loss at

synaptic puncta (10 Hz). Scale bar represents 1 mm.

(E) Sample traces with fitted exponential curves illustrating heterogeneity of

destaining rates for 2 and 10 Hz stimulation.

(F) Frequency histograms of destaining time constants for 2 Hz (n = 141

synapses) and 10 Hz (n = 156 synapses).
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almost exclusively limited to cultured neurons (Harata et al.,

2001b; Schikorski and Stevens, 2001), but the relevance of

these observations for native synapses remains unknown.

Here we used an approach based on stimulus-driven fluores-

cence labeling of recycling synaptic vesicles, dye photocon-

version, and serial section electron microscopy in acute hippo-

campal brain slices and visual cortex in vivo to address these

questions (Figure 1A). This method allows us to make com-

parisons between the functional recycling pool and other

ultrastructural parameters within the same terminals. In hippo-

campal synapses, we demonstrate that the functionally recy-

cling vesicle fraction is, on average, only a small subset

(approximately one-fifth) of the total pool, is highly variable

across the synaptic population, and is regulated by cyclin-

dependent kinase 5 (CDK5) and calcineurin activity. Spatial

and cluster analyses reveal a clear positional bias in the presyn-

aptic vesicle cluster where recycling vesicles tend to occupy

sites nearer to the active zone. Actin remodeling contributes

to this spatial segregation and filament stabilization perturbs

vesicle release properties, suggesting that vesicle positioning

has functional consequences for signaling efficacy. Experi-

ments in visual cortex in vivo, in which functional vesicles are

dye labeled by visually driven activity, reveal a similar spatial

organization, supporting the idea that this is a conserved

feature across different types of small central synapse. Our

findings suggest that a small recycling pool supports neuro-

transmission in native central synapses and that the physical

position of recycling vesicles in the terminal is an important

factor in their favored stimulus-driven fusion.

RESULTS

Vesicle Recycling Properties in Native Tissue
To label functional vesicle pools in native hippocampal tissue, we

prepared acute slices from rat brain and activated CA3 axons

while the styryl dye FM1-43 (Betz and Bewick, 1992; Gaffield

and Betz, 2006; Ryan et al., 1993) was applied to a target region

in CA1 (Zakharenko et al., 2001) (Figure 1A). Confocal imaging

revealed clear punctate fluorescent staining (Figure 1B), the

intensity of which was stimulus dependent (0–2,400 action

potentials [APs]), consistent with the loading of synaptic vesicles

in presynaptic terminals (Figure 1C). Labeling intensity reached

saturation when electrical stimulation exceeded 600 APs and

thismaximal loadwas not significantly different from the intensity

of synapses labeled with hyperkalemic stimulation (Figure 1C,

bottom, see figure legend for statistics).

Next, we tested whether labeled terminals were release

competent by monitoring fluorescence intensity during a

further round of stimulation. Synapses readily underwent

activity-evoked destaining consistent with exocytosis and dye

loss (Figures 1D and 1E). Across the synaptic population, the

timecourse of destaining became faster as the stimulation

frequency increased but was highly variable between terminals

(Figures 1E and 1F), reflecting substantial heterogeneity in indi-

vidual synaptic release properties similar to previous findings

in cultured hippocampal neurons (Branco et al., 2008; Murthy

et al., 1997; Waters and Smith, 2002; Welzel et al., 2011). To

establish that the recycling pool accessed during these



Figure 2. Ultrastructural Visualization of the

Functional Vesicle Pool in Native Synapses

(A) Photoconversion of target region in CA1. Top:

bright-field image of fixed hippocampal slice

before photoconversion with red box indicating

target region. Bottom: photoconversion reaction

in target region for 0, 5, 10, 15, and 20 min time

points. Right: mean ± SEM line plot showing

reduced bright-field light transmission with

progression through photoconversion reaction.

(B) Top: electron micrograph showing the different

appearance of PC+ and PC� vesicles. Bottom:

intensity plot with pseudocolor look-up table

illustrates different lumenal density profiles for

PC+ (red lumen) and PC� (blue lumen) vesicles.

(C) Left and middle: examples of synapses with

PC+ and PC� vesicles. Right: example synapse

from control slice for which no stimulation was

delivered during the FM dye-labeling protocol (see

Figure S1).

(D) Consecutive serial electron micrographs of

a synapse containing PC+ vesicles.

(E) Full three-dimensional reconstruction of the

same presynaptic terminal from (D) based on 13

consecutive serial sections. PC+ vesicles appear

as black spheres and PC� as empty spheres with

active zone in red. Scale bars represent 100 nm.
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destaining experiments had the same composition as the pool

that was dyemarked during the loading protocol—in other words

that it was preferentially reused—we compared our experimental

dye loss profiles to simulated destaining curves based on the

reuse of varying fractions (0%–100%) of the recycling pool

(see Experimental Procedures). The experimental data were

best described by the simulated destaining profile correspond-

ing to �90% vesicle reuse (see Experimental Procedures),

implying that the recycling pool was essentially immutable over

the timecourse of our experiments. These results demonstrate

the robust stimulus-driven FM dye labeling and subsequent

reuse of functionally recycling synaptic vesicles in native hippo-

campal slice.

Ultrastructural Characterization of the Functional
Vesicle Pool
Next, we used an experimental approach that allows dye-

labeled functional vesicle pools to be visualized at ultrastructural

level. We took advantage of the fact that vesicles labeled with

FM dye can readily photoconvert diaminobenzidine (DAB) to

an osmiophilic polymer (Darcy et al., 2006a; de Lange et al.,

2003; Denker et al., 2009, 2011; Henkel et al., 1996; Rizzoli

and Betz, 2004; Schikorski and Stevens, 2001; Teng and Wilkin-

son, 2000). In this way, recycling vesicles can be discriminated

from nonrecycling vesicles in electron micrographs by their

increased vesicle lumen opacity. Loaded slices were rapidly

fixed, incubated in DAB, and bubbled with oxygen before photo-

illumination with wide-field epifluorescence to drive photocon-

version. Calibration of the illumination time needed to yield a

maximal photoconversion product was established by moni-

toring light transmission through the tissue (Figure 2A). Target

regions of the slice were then processed, embedded, and

sectioned for visualization in the electron microscope.
At ultrastructural level, FM dye-labeled slices were character-

ized by synapses containing photoconverted (PC+) and non-

photoconverted (PC�) vesicles (Figures 2B and 2C). In control

experiments, we confirmed that the number of PC+ vesicles

was negligible when slices were not stimulated during the

labeling protocol and zero without photoillumination (see Fig-

ure S1 available online). To measure the size of the recycling

vesicle pool, we examined full serial reconstructions from maxi-

mally loaded synapses and counted the total number of PC+

vesicles (Figures 2D, 2E, and 3A, see Experimental Procedures).

This yielded an average recycling pool size of 45 ± 9 vesicles,

a small proportion of the total vesicle pool (331 ± 67 vesicles,

n = 21 reconstructed synapses). Notably, however, the number

of recycling vesicles was highly variable across the synaptic

population, illustrated by a high coefficient of variation (0.94).

To address what might underlie this variability, we compared

our ultrastructural readout of the functional pool against other

morphological parameters from the same terminals (Harris and

Sultan, 1995; Murthy et al., 1997, 2001; Schikorski and Stevens,

1997, 2001). First, we examined how the absolute size of the

recycling pool relates to the total vesicle population. This re-

vealed a strong positive correlation (Figure 3B), but the plot

was characterized by a broad scatter around the regression

line, suggesting that the fraction of total vesicles that recycle

was highly variable (Figure 3C). A similar relationship was ob-

served when the recycling pool was plotted against the number

of vesicles docked at the active zone (Figure 3D), another param-

eter that scales with the total pool (Figure 3E). Notably, the

recycling vesicle fraction showed no correlation with the total

pool size (Figure 3F). Thus, in native tissue the maximal available

recycling pool is highly variable but, on average, represents

a small fractional subset of the total pool (0.17 ± 0.01, n = 93).

This variability is a consequence of a broad spread in recycling
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Figure 3. Quantification of the Functional Vesicle Pool in Native

Synapses

(A) Full three-dimensional reconstruction of sample synapse used for quanti-

fication. Scale bar represents 100 nm.

(B) Scatter plot and regression line for total recycling pool size versus total pool

size for 21 fully reconstructed synapses (two-tailed Spearman’s test, r = 0.80,

p < 0.0001, n = 21).

(C) Frequency histogram for recycling pool fraction for 93 synapses, illustrating

a broad spread in the relative magnitude of the recycling pool.

(D–F) Scatter plot and regression lines for comparisons between synaptic

parameters for serial section reconstructions.

(D) Total docked vesicles versus total pool size (two-tailed Spearman’s test,

r = 0.67, p < 0.05, n = 17).

(E) Total recycling pool size versus total docked vesicle number (two-tailed

Spearman’s test, r = 0.89, p < 0.0001, n = 17).

(F) Fractional recycling pool size versus total pool size (two-tailed Spearman’s

test, r = �0.36, p = 0.11, n = 21).
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fractions that is independent of the total vesicle number, sug-

gesting that factors other than the absolute size of the synapse

are important in regulating the functional pool fraction. To

explore neuronal activity as a potential factor influencing the
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recycling pool fraction, we also carried out experiments using

a lower frequency loading protocol (1,200 APs, 4 Hz). We found

that the mean recycling fraction (0.17 ± 0.01, n = 68) was essen-

tially identical to the 10 Hz loading condition (p = 0.52, two-tailed

Mann-Whitney test) and similarly variable (Figure S2), suggesting

that stimulus frequency was not a critical determinant of the

functionally recruited pool size.

Preferential Proximity of Functional Vesicles to the
Active Zone
Next, we used our ultrastructural readout of the functional

vesicle pool to investigate the spatial organization of recycling

vesicles within the presynaptic terminal (Figures 4A and 4B).

First, we examined how recycling vesicles were mixed within

the total vesicle pool by performing a cluster analysis (n = 368

photoconverted vesicles from 31 synapses). Calculating the re-

cycling fraction in the population of vesicles surrounding each

PC+ vesicle at increasing distances from the vesicle center (Fig-

ure 4C, inset) showed that at a 50–70 nm radius, the recycling

fraction was not significantly different from the baseline fraction

for the whole synapse (p values > 0.09, two-tailed one-sample

t tests, n = 31), demonstrating that recycling vesicles did not

cluster at small distances (Figure 4C). However, a significant

peak in the recycling fraction was seen at a 90–110 nm radius

(p = 0.02, 0.04, two-tailed one-sample t test, n = 31), after which

the fraction tends toward baseline levels as the distance radius

approaches the total synapse size (all distances > 110 nm,

p values = 0.06–0.98, two-tailed one-sample t tests, n = 31).

This demonstrates that recycling vesicles tend to occupy

a subset of the total pool area, suggesting a potential spatial

bias in vesicle organization (see Figures 4A and 4B). To examine

this directly, we analyzed representative middle sections of 24

synaptic terminals and measured the distance from each

vesicle—both recycling and nonrecycling—to the nearest point

on the active zone and generated cumulative frequency distance

plots. These revealed that the distributions of the two popula-

tions were significantly different (p < 0.0001, two-tailed paired

t test, n = 24), with recycling vesicles occupying positions closer

to the active zone than nonrecycling vesicles (Figure 4D).

Comparable findings were made for synapses labeled with

4 Hz loading (Figure S2). For the 10 Hz data, we also performed

the same analysis on nine fully reconstructed synaptic terminals,

which took into account the three-dimensional distance relation-

ships, and this revealed the same preferential bias for recycling

vesicles to be close to the release site (Figures 4E and 4F,

p < 0.0001, two-tailed paired t test, n = 9).

To test whether this preferential proximity is reflected in the

fraction of recycling vesicles in the docked vesicle pool, we

next analyzed the composition of docked vesicles and com-

pared it to the composition of the undocked vesicle pool. We

found that the proportion of recycling docked vesicles was

0.29 ± 0.04, significantly larger than the fraction of recycling

vesicles in the total pool of nondocked vesicles (0.12 ± 0.01,

p < 0.01, two-tailed paired t test, n = 41 synapses, Figure 4G).

This demonstrates that the tendency for recycling vesicles to

be distributed at sites near the active zone is reflected in a larger

occupation of the release site itself. Synapses labeled with the

4 Hz loading protocol yielded a comparable result (Figure S2).



Figure 4. Preferential Distribution of the Re-

cycling Vesicle Pool toward the Active Zone

(A) Sample electron micrograph and correspond-

ing cartoon illustrating the organization of re-

cycling vesicles (black circles) and nonrecycling

vesicles (open circles) in relation to the active zone

(red). Scale bar represents 100 nm.

(B) Sample cartoons showing vesicle positions for

four other synapses. Scale bar represents 100 nm.

(C) Cluster analysis plot showing the mean re-

cycling vesicle fraction for the vesicle population

surrounding PC+ vesicles with increasing distance

from the vesicle center (see inset).

(D) Summary cumulative frequency plot of linear

distances from vesicles to active zone for re-

cycling and nonrecycling vesicles from 24 central

synaptic sections. Line and shading indicate data

fits and 95% confidence intervals.

(E) Summary cumulative frequency plot of three-

dimensional distances from vesicles to active

zone for nine fully reconstructed synaptic termi-

nals. Line and shading indicate data fits and 95%

confidence intervals.

(F) Three-dimensional reconstructions illustrating

spatial organization of functional vesicles for two

synaptic terminals. Scale bar represents 100 nm.

(G) Bar charts comparing the fraction of PC+

vesicles in the nondocked and docked pools (see

cartoon).

(H) Spatial frequency distribution plot for non-

recycling vesicles (top) and recycling vesicles

(bottom) with respect to the center of the active

zone generated from normalized projections of 24

synaptic terminals. Scale bars represent 0.1 of

normalized distances.
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To analyze our findings further, we measured the position of all

vesicles—recycling and nonrecycling—with respect to the

center of the active zone andgenerated a spatial frequency distri-

bution map for each vesicle class, which allowed us to visualize

the net organization of the two vesicle pools for 24 synapses.

As shown in Figure 4H, the spatial arrangement of the two

pools is strikingly different. The nonrecycling pool is broadly

distributed around the center of the vesicle cluster but the

frequency peak of the recycling pool is biased toward the active

zone center and more tightly distributed. These differences in

spatial distributions are highly significant (p < 0.0001, two-tailed

one-sample t test, n = 24, see Experimental Procedures). Taken

together, our findings demonstrate a clear spatial segregation of

functional vesicle pools in native presynaptic terminals.

Regulation of Size of Recycling Pool Fraction by
Calcineurin/CDK5 Pathway
The variable nature of the recycling pool fraction seen across

populations of synapses suggests that it may be actively regu-

lated under local control. Recent evidence in cultured neurons

indicates that the balance of calcineurin and CDK5 activity

determines functional pool size (Kim and Ryan, 2010). To test

this idea in native synapses, we incubated slices with FK506,

a calcineurin inhibitor (Kumashiro et al., 2005; Leitz and Kavalali,

2011), or roscovitine, a CDK5 inhibitor (Kim and Ryan, 2010),
before and during synaptic dye labeling. Subsequently, target

regions were fixed, photoconverted, embedded, and viewed in

ultrastructure. Strikingly, FK506 treatment yielded a significant

reduction in the fraction of functional vesicles compared to

our basal condition, while roscovitine produced a significant

increase (FK506: 0.12 ± 0.01, n = 72; roscovitine: 0.36 ± 0.02,

n = 86; basal: 0.17 ± 0.01, n = 93; Kruskal-Wallis test,

p < 0.0001, Dunn’s multiple comparison test: FK506 versus

basal, p < 0.05; roscovitine versus basal, p < 0.001; FK506

versus roscovitine, p < 0.001) (Figures 5A–5C), consistent with

previous findings (Kim and Ryan, 2010; Kumashiro et al.,

2005). In some individual synapses from roscovitine-treated

slices, the functional pool fraction exceeded 0.8, implying that

the majority of vesicles could be converted to recycling ones.

Nonetheless, in spite of the roscovitine-driven increase in

recycling pool fraction, the preferential spatial organization of

recycling vesicles was preserved (p = 0.008, two-tailed paired

t test, n = 15, Figure 5D). Thus, an increase in the recycling

pool fraction through CDK5 inhibition does not affect the spatial

bias of recycling vesicles toward the active zone.

Disruption of Recycling Pool Segregation by
Stabilization of Actin
What components might contribute to the preferential organi-

zation of recycling vesicles near the active zone? A potential
Neuron 76, 579–589, November 8, 2012 ª2012 Elsevier Inc. 583



Figure 5. Size of Recycling Pool Fraction Is

Regulated by CDK5/Calcineurin Activity

(A) Bar chart showing mean ± SEM recycling

pool fractions for basal, roscovitine-treated, and

FK506-treated synapses. Asterisks indicate sig-

nificance (*p < 0.05, ***p < 0.001) for Dunn’s mul-

tiple comparison tests (see Results).

(B) Sample cartoons illustrating the organization

of recycling vesicles (black circles) and non-

recycling vesicles (open circles) in typical rosco-

vitine-treated synapses. Active zones are shown in

red. Scale bar represents 100 nm.

(C) Frequency distribution for recycling pool

fraction for synapses treated with roscovitine (red, n = 86) or FK506 (green, n = 72). Synapses for basal condition are shown with dashed line.

(D) Summary cumulative frequency plot of linear distances from vesicles to active zone for recycling and nonrecycling vesicles for 15 central synaptic sections

from roscovitine-treated samples. Line and shading indicate data fits and 95% confidence intervals. Dashed lines show data fits for synapses under basal

conditions.
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candidate is actin, the highly dynamic cytoskeletal element that

is concentrated at synapses (Bloom et al., 2003; Colicos et al.,

2001; Sankaranarayanan et al., 2003; Siksou et al., 2011). We

tested its possible involvement by incubating slices in the

actin-stabilizing agent jasplakinolide before and during synaptic

labeling. As with synapses under basal conditions, the average

fraction of recycling vesicles in jasplakinolide-treated synapses

was small (0.18 ± 0.01, n = 63, Figures 6A and 6B) and similarly

distributed (p = 0.32, two-tailed Mann-Whitney test, Figure 6B).

Thus, actin does not have a significant role in determining the

proportion of recycling vesicles available for turnover. Next, we

examined its potential impact on vesicle spatial organization

by generating cumulative frequency distance plots. Strikingly,

the preferential distribution of recycling vesicles toward the

active zone was abolished; both the recycling and nonrecycling

pools showed a similar distribution profile (p = 0.38, two-tailed

paired t test, n = 17), comparable with the nonrecycling pool

profile observed in basal conditions (Figure 6C). We examined

how recycling vesicles were mixed with respect to nonrecycling

vesicles by performing a cluster analysis. This revealed a flat

profile (Figure 6D) with a clear absence of the sharp peak seen

under basal conditions and was consistent with a homogeneous

mixing of the two pools within the synapse. Taken together, our

findings suggest that the impairment of actin remodeling during

exo-endocytic vesicle turnover disrupts the overall spatial segre-

gation of recycling vesicles.

The selective effect of jasplakinolide treatment in disrupting

spatial segregation allowed us to test for a possible impact

of vesicle organization on release properties. Slices were incu-

bated in jasplakinolide or vehicle and subsequently FM dye

labeled and destained (Figure 6E) so that we could explore the

effects of disrupting the positioning of vesicles on exocytotic

kinetics. Fluorescent puncta underwent effective activity-

evoked dye loss in both conditions (Figure 6F) but the destaining

timecourse was significantly slower in jasplakinolide-treated

synapses (p = 0.003, two-tailed Mann-Whitney test, Figure 6G).

Although we cannot definitively rule out other possible direct

effects of actin disruption on vesicle turnover, our findings

provide evidence that the preferential spatial segregation of

recycling vesicles serves to increase the efficacy of fast sus-

tained neurotransmitter release.
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Preferential Distribution of Recycling Vesicles
Recruited by Sensory Stimulation In Vivo
How do our findings in acute slice relate to function-structure

properties of central synapses in intact brain? To address

this question, we used the same FM dye loading, photoconver-

sion, and ultrastructure approach, but this time in visual

cortex in vivo where vesicle recycling could be driven by the

presentation of a defined sensory stimulus (Figure 7A). First,

we performed in vivo whole-cell recordings during presentation

of defined visual stimuli (drifting square-wave gratings) to

confirm network activity (Figures 7A and 7B) and revealed

robust orientation-tuned spike responses (Figures 7B and 7C).

Next, FM1-43 was applied to the recording region (Figure 7D)

while repetitive visual stimulation (10 min) was presented to

drive vesicle recycling. The animal was then sacrificed and

the brain fixed, sliced, photoconverted, and prepared for ultra-

structural analysis. In electron micrographs from the target

region, activated synapses were evidenced by PC+ vesicles

(Figures 7E and 7F), analogous to those seen in our hippo-

campal experiments. As expected, in control synapses from

mice presented with a gray screen visual stimulus during dye

labeling, the average fraction of PC+ vesicles was significantly

lower (gray screen: 0.03 ± 0.01, n = 30; grating: 0.13 ± 0.02,

n = 35; based on randomly collected samples for each condi-

tion; p = 0.0002, Mann-Whitney t test; Figure S3). Next, we

examined the spatial organization of functionally recycling vesi-

cles by generating cumulative frequency distance plots for

activated synapses (average recycling fraction: 0.23 ± 0.04,

n = 17). Notably, there was a preferential spatial organization

of recycling vesicles toward the active zone (p = 0.008, two-

tailed paired t test, n = 17, Figure 7G) and a larger representa-

tion in the docked vesicle pool (Figure 7H), analogous to our

findings in hippocampus. Furthermore, spatial frequency distri-

bution maps for the two vesicle classes matched our previous

results, showing that the spatial arrangement of the two pools

was different with the frequency peak of the recycling pool

biased toward the active zone center and more tightly distrib-

uted (p < 0.0001, two-tailed one-sample t test, n = 17, Figure 7I).

Taken together, our findings extend the observation of a

spatially segregated functional vesicle pool to presynaptic

terminals in vivo.



Figure 6. Disruption of Preferential Segregation of the Recycling

Pool and Activity-Evoked Fusion Kinetics after Actin Stabilization

(A) Sample cartoons illustrating the organization of recycling vesicles (black

circles) and nonrecycling vesicles (open circles) in typical jasplakinolide-

treated synapses. Scale bars represent 100 nm.

(B) Frequency distribution for recycling pool fraction for 63 synapses treated

with jasplakinolide (red). Synapses for basal condition are shown with dashed

line.

(C) Summary cumulative frequency plot of linear distances from vesicles to

active zone for recycling and nonrecycling vesicles from 17 central synaptic

sections. Line and shading indicate data fits and 95% confidence intervals.

Dashed lines show data fits for synapses under basal conditions.

(D) Cluster analysis plot showing the mean recycling vesicle fraction for the

vesicle population surrounding PC+ vesicles with increasing distance from the

vesicle center (see inset). Jasplakinolide abolishes the peak associated with

local vesicle clustering seen under basal conditions (dashed line).

(E) Schematic of experimental protocol for testing effect of jasplakinolide on

vesicle fusion kinetics.

(F) Sample images showing activity-evoked FM1-43 dye loss in typical vehicle

(DMSO) and jasplakinolide-treated synapses.

(G) Average destaining plots with single exponential fits and 95% confidence

intervals for DMSO (n = 40) and jasplakinolide-treated synapses (n = 20). Inset:

bar chart showing mean ± SEM timecourse for destaining curves. **p = 0.01.
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DISCUSSION

Here we combined FM dye labeling with photoconversion and

serial electron microscopy to examine the ultrastructural organi-
zation of the recycling vesicle pool in small native central

synapses. This approach provides a selective readout of the

functional pool that can be directly related to the morphological

ultrastructure of the same synaptic terminals. Our findings offer

important insights into the relationship between pool size and

synapse size. Additionally, spatial analysis reveals shared

features of vesicle organization in different types of small central

synapse, suggesting that physical positioning of vesicle pools

may be an important factor in their favored release.

Our findings provide important insights into structure-

function relationships in presynaptic terminals, an issue which

has attracted considerable recent interest (Holderith et al.,

2012; Sheng et al., 2012). Specifically, we demonstrate that

the average functional pool size in synapses from acute hippo-

campal slices is small (approximately one-fifth of the total

pool). From work in cultured hippocampal neurons, there is no

clear consensus on the magnitude of the recycling pool fraction,

with a wide range of reported values (Branco et al., 2010; Darcy

et al., 2006a; Fernandez-Alfonso and Ryan, 2008; Fredj and

Burrone, 2009; Ikeda and Bekkers, 2009; Kim and Ryan, 2010;

Li et al., 2005; Micheva and Smith, 2005; Welzel et al., 2011),

although some are directly comparable with our findings

(�15%–20%) (Harata et al., 2001a, 2001b). In studies from

other native terminals, recycling fractions can also be relatively

small (de Lange et al., 2003; Rizzoli and Betz, 2004) and recent

work demonstrates that a very small functional pool (1%–5%)

is sufficient to support naturally driven or spontaneous vesicle

turnover in a range of native, mostly peripheral terminals

(Denker et al., 2011). Taken together, this suggests that, across

a range of synapse types from native tissue, a limited subset

of the total vesicle pool is typically used during synaptic trans-

mission. While we found a broad scaling of the recycling

pool size with other parameters of synaptic morphology (see

also Harris and Sultan, 1995; Schikorski and Stevens, 1997),

the fraction of recycling vesicles was highly variable and not

related to total vesicle pool size, suggesting that, at individual

terminals, this parameter could be independently regulated.

Importantly, recent work in cultured hippocampal neurons has

demonstrated that modulation of the recycling pool fraction

is associated with forms of activity-dependent plasticity (Kim

and Ryan, 2010; Ratnayaka et al., 2012) and that CDK5 and

calcineurin are important control points in such regulation (Kim

and Ryan, 2010). Our current results provide support for this in

native synapses; we show that inhibition of CDK5 activity

doubles the average recycling pool fraction, while inhibition of

calcineurin reduces it by a third. Taken together, these findings

support an emerging view of the recycling fraction as a modifi-

able parameter contributing to synapse operation; we suggest

that its limited average size in native tissue confers a broad

dynamic range over which synaptic performance can be

adjusted.

Our analysis of the spatial positions occupied by recycling

vesicles within the total vesicle cluster in native hippocampal

synapses reveals a strong preferential bias toward sites nearer

to the active zone. Importantly, recycling vesicles were not

significantly clustered at short distances but instead were

distributed within a subset of the total cluster volume. Moreover,

recycling vesicles were not confined just to sites that were
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Figure 7. Preferential Segregation of Recy-

cling Vesicles Labeled In Vivo during Visual

Processing

(A) Schematic of experimental approach: lightly

anesthetized mouse viewed visual stimuli (drifting

gratings) during whole-cell patch-clamp recording

(red pipette) in visual cortex to confirm network

activity. Subsequently, FM1-43 dye was applied to

region of recorded neuron while repetitive visual

stimulation was presented (either a single orien-

tation of a drifting grating or gray screen control).

(B) Spike raster plot showing orientation-tuned

spike responses (eight directions, six trials/orien-

tation). Gray shading indicates period of visual

stimulation.

(C) Polar plot showing spike tuning for the same

cell as in (B).

(D) Two-photon image of visual cortex in vivo

showing FM dye fluorescence in region of re-

corded neuron (reconstruction overlaid). Scale bar

represents 100 mm.

(E) Top: electron micrograph of synapse with PC+

vesicles. Scale bar represents 100 nm. Bottom:

grayscale and intensity plot with pseudocolor

look-up table illustrates different lumenal density

profiles for PC+ (red lumen) and PC� (blue lumen)

vesicles.

(F) Full three-dimensional reconstruction of

synapse in (E) based on 12 consecutive serial

sections. Scale bar represents 100 nm.

(G) Summary cumulative frequency plot of linear

distances from vesicles to active zone for re-

cycling and nonrecycling vesicles from 17 central

synaptic sections. Line and shading indicate data

fits and 95% confidence intervals.

(H) Bar charts comparing the fraction of PC+

vesicles in the nondocked and docked pools (see

cartoon).

(I) Spatial frequency distribution plot for non-

recycling vesicles (top) and recycling vesicles

(bottom) with respect to the center of the active

zone generated from normalized projections of 17

synaptic terminals. Scale bars represent 0.1 of

normalized distances.
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close to the active zone; the fraction of photoconverted vesicles

within the docked vesicle pool was much higher than expected

by chance. This suggests a model in which recently recycled

vesicles take up positions, on average, toward the front of the

vesicle cluster. This finding is broadly consistent with a landmark

study in dissociated hippocampal cultured neurons looking at

a different functional pool—the readily releasable pool—which

characterized the tendency for vesicles to occupy positions

close to the active zone (Schikorski and Stevens, 2001). In

theory, our total recycling pool could include a subset of prefer-

entially reused vesicles (Ertunc et al., 2007; Pyle et al., 2000) and

the spatial bias we observe here could be indicative of a fast

mode of recycling (Gandhi and Stevens, 2003; Park et al.,

2012; Zhang et al., 2009); further work will be needed to test

the relevance of these ideas in native terminals.

To explore the generality of our findings, we also used a

modified formof our FMdye photoconversionmethod to charac-

terize the nanoscale appearance of functional vesicle pools
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in vivo, in this case, specifically recruited by activity driven by

defined sensory input. This report establishes an experimental

strategy for delineating function-ultrastructure characteristics

of synapses from intact brain. Notably, our findings regarding

functional pool organization in visual cortex were highly consis-

tent with those in hippocampal slices: functional vesicles were

preferentially located near the active zone, suggesting that this

is a shared feature among different types of small central

synapses.

We investigated a possible role for the cytoskeletal element

actin as a candidate in contributing to spatial segregation. We

showed that stabilizing actin with jasplakinolide disrupted the

preferential distribution of recycling vesicles, indicating that

remodeling actin is important in facilitating the repositioning of

recycling vesicles toward the active zone after endocytosis.

These findings are broadly compatible with the current model

for actin function in the presynaptic terminal as a scaffolding

element, guiding vesicle-associated components to their



Neuron

Vesicle Pool Structure in Native Central Synapses
destination during repeated cycles of activity (Sankaranar-

ayanan et al., 2003; Shupliakov et al., 2002) (also see Pechstein

and Shupliakov, 2010). Importantly, we show that actin stabiliza-

tion, and by association the abolition of preferential recycling

pool distribution, does not prevent vesicle turnover but does

affect the rate of release; experiments measuring FM dye loss

show clear stimulation-evoked destaining but notably the time-

course of exocytosis is significantly slower compared to

controls. Given that a clear direct role for actin in driving synaptic

vesicle exocytosis has not been established (Sankaranarayanan

et al., 2003), the effects we observe most likely result from

disruption of the recycling pool distribution. We suggest that

the preferential spatial positioning of functional vesicles might

contribute to efficient vesicle release during sustained activity.

Interestingly, the segregation of recycling vesicles toward

release sites is not a universal property of presynaptic terminals.

Studies on neuromuscular junctions (Denker et al., 2011; Rizzoli

and Betz, 2004) and mammalian calyx of Held terminals (de

Lange et al., 2003) have previously demonstrated that releasable

vesicles are not preferentially arranged but mixed randomly in

the total vesicle pool. In the case of the frog neuromuscular

junction, this is particularly significant because the ultrastructur-

ally labeled vesicles, corresponding to the readily releasable

pool, are likely to undergo preferential reuse (Richards et al.,

2000, 2003; Rizzoli and Betz, 2004). This implies that their

privileged status must be conferred by factors other than their

specific spatial relationship to the active zone. A plausible

hypothesis is that these vesicles might retain only loose coupling

with the vesicle cluster and could have preferential access to the

release site by way of cytoskeletal tracks that link them to the

active zone (Rizzoli and Betz, 2004). Our findings indicate that

the total recycling pool in hippocampal synapses is also prefer-

entially reused, but in the case of these size-limited terminals,

vesicle positioning appears to be an important parameter

in conferring privileged release. Interestingly, recent work has

shown conclusively that different functional vesicle classes

have different molecular signatures (Hua et al., 2011), providing

a possible mechanistic basis for the selective regulation and

distribution of the functional vesicle pool subsets that we have

demonstrated here.
EXPERIMENTAL PROCEDURES

Acute Slice Preparation

Experiments were performed in accordance with the UK-Animal (Scientific

Procedures) Act 1986 and complied with local institutional regulations. Acute

transverse slices of hippocampus (300 mm) were prepared from 3- to 4-week-

old rats and maintained in artificial cerebrospinal fluid (aCSF) containing

125 mM NaCl, 2.5 mM KCl, 25 mM glucose, 1.25 mM NaH2PO4, 26 mM

NaHCO3, 1 mM MgCl2, 2 mM CaCl2, 20 mM mM CNQX, and 50 mM mM AP5

(pH 7.3 when bubbled with 95% O2 and 5% CO2) (see also Ratnayaka et al.,

2011; Staras et al., 2010; Zakharenko et al., 2001). Live labeling of functional

presynaptic terminals used FM1-43FX, the fixable form of the styryl dye

(Molecular Probes). We pressure applied 20 mM FM1-43FX in aCSF to the

CA1 region for 3 min prior to stimulation. Schaffer collaterals were stimulated

using a bipolar tungsten electrode (Figure 1A). FM1-43 solution was puffed

throughout the stimulation period and for 2 min after the end of stimulation to

ensure full completion of endocytosis (Granseth and Lagnado, 2008). Subse-

quently, slices were perfused continuously in fresh aCSF for 15–20 min at

25�C to wash residual FM dye from extracellular membranes. The imaging of
FM dye-labeled presynaptic terminals was performed using an Olympus

BX51WI microscope equipped with an FV-300 confocal system (Olympus

UK), a 488 nm Argon laser, and 520/10 emission. When indicated, slices

were continuously perfused with 100 mm roscovitine (Calbiochem) or 1 mm

FK506 (Tocris) or jasplakinolide (Calbiochem) in aCSF starting 30 min prior to

FM dye loading; for DMSO-control experiments, 1 ml/ml DMSO was used.

Photoconversion and Electron Microscopy Preparation

FM1-43FX-loaded slices were fixed using rapid microwave fixation in 6%

gluteraldehyde, 2% formaldeahyde in PBS as described previously (Jensen

and Harris, 1989). After fixation, the samples were transferred into 100 mM

glycine in PBS (1 hr), then rinsed in 100 mM ammonium chloride

(1 min) and washed in PBS. For photoconversion, the slices were incubated

in an oxygen-bubbled diaminobenzidine solution (DAB, 1 mg/ml, Kem En

Tec diagnostics). The DAB solution was refreshed after 10 min and the

region of interest was illuminated with intense blue light (<500 nm from a

Mercury lamp) for 22–25 min. After photoconversion, the samples were

prepared for electron microscopy using an established protocol (Jensen and

Harris, 1989). Briefly, the samples were placed in 1% osmium tetroxide

(Agar Scientific) and 1.5% potassium ferrocyanide (Sigma) in cacodylate

buffer and, after osmication, stained en block in uranyl acetate and dehydrated

for embedding in EPON resin (TAAB). Sectioned samples were laid on bare

mesh or formvar-coated slot grids and sections collected between �5 and

�15 mm from the photoilluminated surface (see also Figure S1) were viewed

using a Hitachi-7100 transmission electron microscope. Digital images were

acquired using a 2,048 3 2,048 charge-coupled device camera (Gatan).

In Vivo Surgeries

Wild-type C57/blk6 mice (24–56 days old) were anesthetized with isoflurane

(5% for induction, 1.5%–2.5% for surgery, and 0%–0.5% during recording),

augmented with chlorprothixene (0.5–2 mg/kg, intraperitoneally). A 2–3 mm

diameter craniotomy was opened over visual cortex. The dura mater was

left intact. A thin layer of agar (1.5%) dissolved in aCSF (150 mM NaCl,

2.5 mM KCl, 10 mM HEPES, 2 mM CaCl2, and 1 mM MgCl2; pH adjusted

with NaOH to 7.3; 300 mOsm) and placed on top of the brain helped dampen

movement. A homeothermic heat pad maintained body temperature within

the physiological range. Water-based opthalmic ointment maintained eye

health.

Visual Stimulus Presentation

Visual stimulus presentation was controlled by routines written in

MATLABusing the Psychophysics Toolbox extensions (Brainard, 1997; Kleiner

et al., 2007, Perception 36 ECVP, abstract; Pelli, 1997). Square-wave gratings

(0.04 cycles/deg, 2 cycles/s) of black (2 cd/m2) and white (86 cd/m2) bars in

eight different orientations were displayed on an LCD screen (ESAW 7 inch

VGA TFT, set at 1,024 3 768 resolution and 60 Hz refresh rate) to map orien-

tation selectivity. For control gray screen stimulation, the total luminance

was matched to that of the grating stimulus. The screen was shrouded with

a cone up to the eye of the mouse to prevent contamination of the imaging

pathway with light from the visual stimulus. The visual stimulus extended

from +20� to +124� in azimuth and from �10� to +42� in elevation.

In Vivo Two-Photon-Guided Electrophysiology and FM Dye Bulk

Loading

A custom-built two-photon microscope using galvanometer-based scan

mirrors (6 mm diameter, Cambridge Technologies) with a 163 magnification

and 0.8 numerical aperture water-immersion objective (Nikon) and a large

aperture collection pathway with low-noise photomultiplier tubes (models

3896 and 7422-40P, Hamamatsu) was used to image neurons. The software

ScanImage (Pologruto et al., 2003) was used to control the microscope.

For somatic patch-clamp recordings, the pipette solution contained 135mM

KMeSO4, 4 or 10mMKCl, 10mMHEPES, 10mMNa2-phosphocreatine, 4mM

Mg-ATP, 2 mM Na2-ATP, 0.3 mM Na2-GTP, 0.1 mM Oregon green BAPTA-1,

and 0.025–0.050 mM Alexa 594; pH adjusted with KOH to 7.2; 290 mOsm.

Pipette resistances ranged from 5 to 8 MU. Shadowpatching techniques

(Kitamura et al., 2008) were used to directly target the pipette to the soma.

Series resistance was 39 ± 5 MU.
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For in vivo labeling of functional recycling synaptic vesicles at the site of

electrophysiological recordings, FM1-43FX was bolus loaded into neurons.

Under two-photon microscopy, a patch pipette containing 20 mM FM1-43FX

in aCSF was guided in the vicinity of a previously patched and fluorescently

labeled pyramidal neuron. Pressure of 300–600 mbar was applied for

1–3 min to eject FM dye solution from the pipette. This stained a spherical

volume of 300–400 mm in diameter. After visual stimulation, the animal was

anaesthetized with ketamine/xylazine and perfusion fixed via cardiac injection

with 4%gluteraldehyde, 4%paraformaldeahyde (average time between visual

stimulation and end of fixation was �10 min). The brain was removed, 100 mm

coronal slices were prepared, and the slice containing the region of interest

was then photoconverted.

Analysis

Confocal images and electron micrographs were analyzed using ImageJ

(NIH). Destaining analysis was performed with regions of interest that encap-

sulated synaptic puncta. At ultrastructural level, target synapses were

randomly chosen and synaptic vesicles were scored as photoconverted

(PC+) or nonphotoconverted (PC�) based on their vesicle lumenal intensity

using methods outlined previously (Darcy et al., 2006a, 2006b). Vesicles

were sometimes observed in axons consistent with previous findings

(Shepherd and Harris, 1998); to ensure that we were analyzing the synaptic

vesicle cluster, we defined its boundary as the point where vesicles were

separated by 200 nm in a line running away from the active zone center.

Synapses outside the photoconversion region did not have any PC+ vesicles

(Figure S1). Synapses in photoconverted regions that were incubated in FM

dye but not stimulated occasionally contained PC+ vesicles (mean fraction:

0.005, corresponding to 11 positive vesicles from 92 synapses analyzed),

presumably a result of spontaneous and nonstimulus-specific release. To

ensure that this stimulus-independent labeling was not included in our data

set, we set a lower threshold for inclusion in the data set based on this

mean fraction +2 3 SD (see Figure S1). Micrographs were aligned and

reconstructed using Xara Xtreme and Reconstruct (Synapse Web, Kristen

M. Harris, http://synapses.clm.utexas.edu). Shapiro-Wilk normality test was

performed on all data sets to determine the appropriate type of statistical

analysis to carry out. ANOVA was used to examine variation across multiple

groups with post hoc Dunn’s multiple comparison tests. Two-tailed Spear-

man’s test was used to compare correlations. One-sample and paired t tests

were used for comparisons of clustering, distribution, and docking. To

compare the total spatial distribution of PC+ versus PC� vesicles (Figure 4H),

we computed the difference between the spatial frequency histograms. This

was done on a bin-by-bin basis for the bins with the highest 70% frequencies

of the PC+ cluster (i.e., the spatial area encompassing 70% of PC+ vesicles).

The distribution of differences was then tested with a one-sample t test under

the null hypothesis that the mean difference was 0. The alpha value of 0.05

was used for all statistical comparisons.

Modeling

To investigate the effect of preferential reuse of recycling vesicles on FM dye

destaining curves, we implemented a stochastic model of vesicle release in

Python. The model had a recycling pool of 40 vesicles, with a release

probability of 0.15 and a recycling time of 10 s. All recycling vesicles were

initially labeled as FM positive, and the synapse was stimulated at 10 Hz

while monitoring the decrease in the number of FM-positive vesicles. The

fraction of reuse was varied between 100% and 0% by drawing vesicles

from a pool with the desired fraction of FM-positive and FM-negative

vesicles. Statistical comparison between the model and experimental data

used a two-sample t test for each time point, and mean alpha value for the

whole curve was then calculated. The mean alpha value was >0.05 for reuse

fractions between 95% and 80%, and the highest value was for 88% reuse

(p = 0.28).
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