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In this work, we study the Duffing equation. Analytical solution for undamped and unforced case is provided for any given
arbitrary initial conditions. An approximate analytical solution is given for the damped or trigonometrically forced Duffing
equation for arbitrary initial conditions. The analytical solutions are expressed in terms of elementary trigonometric functions as
well as in terms of the Jacobian elliptic functions. Examples are added to illustrate the obtained results. We also introduce new
functions for approximating the Jacobian and Weierstrass elliptic functions in terms of the trigonometric functions sine and

cosine. Results are high accurate.

1. Introduction

Many physical phenomena are modeled by nonlinear
systems of ordinary differential equations. The Duffing
equation is an externally forced and damped oscillator
equation that exhibits a range of interesting dynamic
behavior in its solutions. The Duffing oscillator is an
important model of nonlinear and chaotic dynamics. It
was introduced by Germanic engineer Duffing in 1918 [1].
The Duffing oscillator is described by the differential
equation:

5c'+r9&+w§x+/3x3:Fcoswt. (1)

It differs from the classical forced and damped harmonic
oscillator only by the nonlinear term $x*, which changes the
dynamics of the system drastically. Motivated by potential
applications in physics, engineering, biology, and commu-
nication theory, the damped Duffing equation

5c'+r9&+w§x+/3x3=0, (2)

is considered. Equation (2) is a ubiquitous model arising in
many branches of physics and engineering, such as the study
of oscillations of a rigid pendulum undergoing with mod-
erately large amplitude motion [2, 3], vibrations of a buckled
beam, and so on [3-5].

It has provided a useful paradigm for studying nonlinear
oscillations and chaotic dynamical systems, dating back to
the development of approximate analytical methods based
on perturbative ideas [2], and continuing with the advent of
fast numerical integration by the computer, to be used as an
archetypal illustration of chaos [2, 5-7]. Various methods for
studying the damped Duffing equation and the forced
Duffing equation (1) in feedback control, strange attractor,
stability, periodic solutions, and numerical simulations have
been proposed, and a vast number of profound results have
been established [2].

The Duffing equation has been studied extensively in the
literature. However, only few works are devoted to the study
of its analytical solutions not using perturbation methods
[8, 9]. Our aim is to avoid using such perturbation methods.
This study is organized as follows. In the first section, we give
exact analytical solution for the undamped and unforced
Duffing equation for any given arbitrary initial conditions.
In the second section, we provide formulas for obtaining a
good approximate analytical solution using a new ansatz.
The problems are solved for any arbitrary initial conditions.
Finally, in the last section, we give approximate analytical
solution to (1) and we compare it with Runge-Kutta nu-
merical solution. Other useful methods are the homotopy
perturbation method (HPM) [10-17], the Lindstedt—
Poincaré method, and the Krylov-Bogoliubov-Mitropolsky
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method. The importance of numerical solution of differ-
ential equations in different fields of science and engineering
is given in [18, 19].

2. Undamped and Unforced Duffing Equation
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x(0) = xyand x' (0) = . (4)

The general solution to equation (3) may be written in
terms of any of the twelve Jacobian elliptic functions [20].
Let, for example,

This is the equation: x(t) = cien(Vwt + ¢y, m). (5)
X + px+ qx3 =0, x = x(t), (3) Then,
and given the initial conditions,
%+ px+gx’ = (c?q - ZClmw)cn3 + (2c;mw + ¢ p — ¢;w)cn, wherecn = cn(Vwt + ¢y, m). (6)

Equating to zero, the coefficients of cr to zero gives an
algebraic system whose solution is

2
w:ﬂp+qcfandm:72( i (7)

p+aci)

Thus, the general solution to the Duffing equation is

2
x(t) :cn<\lp+qcft+c2,2(L>. (8)

p+qct)

x(t) =

q

Making use of the addition formula,

— pcn< VAt - sign (xo)en! <

cn(x, m)en(y, m) + sn(x, m)dn (x, m)sn(y, m)dn(y, m)

The values for the constants ¢; and ¢, are determined
from the initial conditions.

Definition 1. The number A = (p +qx2)* +2qx3 is called
the discriminant for the Duffing equations (3) and (4).

We will distinguish three cases depending on the sign of
the discriminant [20].

2.1. First Case: A > 0. The solution to the i.v.p. (3) and (4) is
given by

\j\/K—p 2 2+A )2 2VA )

cnx+y,m) = 1 —msn(x,m)sn(y, m) (10)
The solution (9) may be expressed as Solution (11) is a periodic solution with period
" xoen(VAtm) +(xo/ VA )sn( VAtm)dn( VAtm) T = 4|K((1/2) (1= (p/VA)) (13)
x(t) = , = : .
1+((p+qx(2)/2\/Z) —(1/2))sn(\4/E|m)2 | Va l
(11)
where Example 1. Let us consider the i.v.p.
X" () +x(t) +x° () =0,
m=s(1-L) (12) ; (14)
2 VA x(0) = 1&x' (0) = —1.
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Using formula (9), the exact solution to (14) is given by

B ~ | 1 l_ 1 l_ 1
x(t) = V6 1cn<x/€E cn (m,z 2%)'2 2\/3). (15)

According to the relations (11) and (12), the exact so-
lution to the i.v.p. (14) may also be written as

(t) = en(V/6t1(1/2) (1 = (1/6))) + /6 dn(¥/6t] (1/2) (1 — (1/V6)))sn (3/6t] (1/2) (1 - (1//6)))

(16)
1+((2 = V/6)/2v6)sn (Y6t] (1/2) (1 - (1/V6)))’
B 2c
The period is given by x(t)=c- 1+ y(t) (20)
T = @K 1 1- L ~ 4.37417. (17)  where y = y(t) is a solution to Duffing equation
% 2 \/E " 3
Yy () +ay(t)+by (1) (21)
In Figure 1, the comparison between the exact analytical o .
solution (??) and the approximate numerical RK4 solutionis ~ Wwith initial conditions
presented. Full compatibility between the two analytical and 2cx, . Cctxg
numerical solutions is observed. y(0) =y, = 5 and y/(0) = yo = —— (22)
(c= x) €= %o
2.2. Second Case: A<0. In this case, q<0. Define Inserting ansatz (1) into the ode

5 . 5 x"(t)+ px(t) +gx>(t) =0 and taking into account the
2pxy +gx, + 2x;

5= (18) relation,
1 ") =y +a2+94—a2(t)—94(t) (23)

Observe that y Yo+ @Yo T2V =4y > s

2

-A we get

s="? 5—>0. (19) &

q

Let
Cy(t)_C_xoy(t)_xo()'c'+px+qx3)

4(c— x) (y (&) + 1)*
8ac’ — 8ac*x, — 8ac’x} + 8ac’x, + 4bc” + 12bc*x, + 12bc x; + 4bc’ x, + ¢’ q — 5 qx, + 26 p
= +11c5qx(2) - 10c4px0 - 15c4qx3 + 20c3px§ + 15c3qx3 + 30c39&§ - 20c2px(3) - llcqug
~22c%x%p + 10cpxy + 5cqxs + 10cxgxs — 2pxy — qxg — 2xy%0 (24)
8ac* — 16ac’ x, + 8ac’x{ + 4bc* + 8bc’ x, + 4bc”x, — 3¢°q + 10°qx, + 2¢* p — 11c* gl -
+(c = %) y(®)
12c3pxO + 24c2px§ + llcqug + 22c29&§ - ZOCpxg - 10cqxg - 20cx09é§ + 6pxg + 3qxg + 6x§9&§

+(c— xo)z(4bc3 +4bc*xy +3¢°q - 5ctgx, — 26 p — 2 pxy + 10cpxé +5cqx; + 10cx; — 6px3 - 3gx; - 6x09€3)y2 (1)

+(c- xo)3(4bc2 —qct =27 p+2px; + qx; + 23&(2)))/3 ().



The Scientific World Journal

1.0 |-

0.5 |-

0.0

-0.5

-1.0

0 1

2

3 4

Figure 1: Comparison between the exact solution and the numerical solution for Example 1.

Equating to zero, the coefficients of y/(t) give an al-
gebraic system. A solution to this system is

a:%(_p_%/gq),b:%(p—\/gq),c:\4/5. (25)

Observe that the Duffing equations (21) and (22) have a
positive discriminant given by

o S 8(c—x0)4(2643&g+6(cz+x§)2)

(a+by0) +2by, = :

4c8x(2]
(26)

Then, the problem reduces to the first case.

Example 2. Let us assume the following i.v.p.:

X" () +2x(t) - x> (1) =0,x(0) =-landx' (0) = 1. (27)

The solution of i.v.p. (27) according to the relation (??)
reads

2.9907

x(t) = 149535 —

The period of solution (28) is given by
_ 4K (1/m)

T = 22T
w~/m

=10.9034 (form = 1.00018 and w = 2.08627).
(29)

Comparison between the exact solution and numerical
solution is shown in Figure 2.

2.3. Third Case: A = 0 and p # 0. If the discriminant vanishes
(A =0), then g<0, and the only solution to problem (??)
with

, (pra)

x'(0)* = x; = 4 (30)

reads

x(t) = \/%tanh[\/gt + tanh_1<xo\/%>]> (31)

which may be verified by direct computation.

1+((0.198509c1(2.08627¢[1.00018) — 0.230219 dn(2.08627t1.00018)sn (2.08627¢|1.00018))/1 — 1.00072s11(2.08627¢[1.00018)° )

(28)

2.4. Fourth Case: A = 0 and p = 0. The solution is given by

x(t) = - 32
C2++/~2gx, t (32)
Remark 1. The solution to the i.v.p.
X+ px+ qx3 =0,x(0) = x,and x' (0) = 0, (33)
is
2
9%
x(t) = xycn \/p+qx2,4 . (34)
< " 2(p+axi)

Remark 2. Let p + 1/ p? + 2qx3 > 0. Then, the solution to the
Lv.p.
X + px+ qx3 =0, x(0) = 0and x/ (0) = x,,, (35)

is
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F1GURE 2: Comparison between the exact solution and the numerical solution for Example 2.

V%, PP T2% P gk - P+ 2050 p (36)

x(t) =—————sn , 5

5 :
\p*+ 2955 + p T*o

Remark 3. Using the identity

6
cn(Vot,m)=1- >
(Vaot,m) (4m + 1)(1+ 12/ (4m + Dawp(t; 1/12(16m” — 16m + 1)w’, 1/216 (2m — 1)(32m” - 32m - 1)w’)) (37)
the solution to the Duffing equations (3) and (4) may be
written in terms of the Weierstrass elliptic function p. More
precisely, if A>0, then
A(2+(4p/3A%q+p))
x(t)=A- 2 2,4 2, 2 2,4 2. 2\ (38)
1+(12/3A q+p)p(t+t0; (1/12)(—3q A" —6pgA” +p ), (1/216)p(9q A" +18pgA” + p ))
where
-1 3A3q+3Aquo+5AP+Pxo 1 42 2 2 1 42 2 2
_ (e _ . 39
ty =g ( 2(A-xy) ,12( 3A%q 6qu+p),216p(9Aq +18qu+p) , (39)

N _Pim:i\j—l’iﬂ_ (40)
q q

The solution (38) is periodic with period

T= ZJde—x (41)

P\ - gox - gs
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where p is the greatest real root to the cubic 4x® — g,x — g5 =
0 and

1 2 44 2 2 1 4 2 2 2
9 :E(—f},q A —6qu +p )andg3 :2_16p(9A q +18A pq+p ) (42)
On the other hand,
. /3g g, (4m +1)
©(t: 92 95) = - -G (43)

Viem® — 16m + 1(1 - cn(\/f </3g2/16m2 - 16m + 1t,m>) 2V48m’ - 48m + 3

where m is a root to the sextic

4096(g; - 2795 )2° - 12288(g; - 2793 )2° + 13056( g - 2793 )" - 5632(g; - 2795 )2° + 12(59g, — 183643 )2”

3 2 3 2 (44)
+12(5g5 + 10843 )z + g, — 2745 = 0.
Thus,
+eo d sf16m” — 16m + 1
J X Gy omr . MK (m) form< 1. (45)
PoJax’ - 92X — g3 92
3. Approximate Analytical Solution Using These functions are good approximations to the Jacobian
Elementary Functions elliptic functions sn and cn for —1 <m < 1/2. For example, let
s
We define the generalized sine and cosine functions as T'=2K(m) = Vitr (49)
follows:
Th >
. P = sin(V1 +«t) -
sin,,, (t) = \/1 et () (46)  MaX_peper1ame(uyp|sn (£,m) = sing, (8)] = 0.00290582,
(50)
V1+xcos(V1+xt
cos,, (t) = ( ) (47) Ma-X—TgtsT,—ISmsl/Zlcn(t’ m) — cos,, (t)| = 0.00541969.
\/1+KCOSZ(\/1+Kt) (51)
1 Table 1 provides the errors for different values of m.
k=1g (m — 12+ \144 — 144m + m’ ) (48) More accurate approximations are obtained by letting
. sin(V1 +xt)
sin,, (t) = - - (52)
\/1 +x cos” (V1+xt)+u cos (V1+xkt)
VI+x+pcos(V1+xt)
cos,, (1) = (53)

\/1+Kcosz(\/1+xt)+y cos* (V1 + kt)
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TaBLE 1: Errors for approximations (46) and (47).

m Max_r,rlsn(t,m) — sin,, (¢)] Max_r,rlen(t,m) — cos,, (t)|
0 0 0

0.05 0.0000186142 0.0000332484
0.1 0.0000775641 0.000139051
0.15 0.000182102 0.000327722
0.2 0.000338416 0.000611534
0.25 0.000553861 0.00100522
0.3 0.000837256 0.00152665
0.35 0.0011993 0.00219775
0.4 0.00165312 0.00304575
0.45 0.00221506 0.00410502
0.5 0.00290582 0.00541969
0.55 0.00375209 0.00704758
0.6 0.00478916 0.0.0090664
0.66 0.00606499 0.0115838
0.7 0.00764718 0.0147546
0.75 0.00963546 0.0188129
0.8 0.0121865 0.0241364
0.85 0.055962 0.0313949
0.9 0.0203137 0.0419635
0.95 0.0277681 0.0595356

sin(t\/—x —pu— 1/ — 1)\/1 —pcos’ (ty—k—p—1/Ju—1)

sin,, (t) = (54)
\/‘u cos* (b~ —p—1/\Ju—1) + Kk cos” (trJk—p— 1/ Ju—1) +1
(5184m” — 14256m + 15633 )" +(-24192m” + 92016m — 89856 )’ +
(42048m” — 211392m + 193536 )" +(~32256m” + 207360m — 184320)u | + (=72m — 9)u* + (168m — 960)u — 96m — 256
+9216m” — 73728m + 65536
= 48 (3 + 10)
(55)
4m®(1061m" - 7768m” + 24128m” — 32768m + 16384) (56)
H T 10520m® — 136752m" + 786336m" — 2345984m’ + 3792896m” — 3145728m + 1048576
For these new approximations, we will have Table 2 provides the errors for different values of m.

From Tables 1 and 2, it is seen that for the values
0.8 <m < 1, the approximations (46) and (47) are better than
(53) and (54). Thus, we have

Max_roier 1emeoolsn(t,m) = sin,, (£)] = 0.0607706, (57)

MaxX oyer 1emeoolcn (t;m) = cos,, ()] = 0.030797.  (58)

sn(t,m) = sin,, (t),cn(t,m) = cos,, (t)anddn(t,m) = \[1 - msn® (t,m) = dn,, (t)for —1<m<1. (59)

We may write approximate elementary solution to
Dufling equations (3) and (4) as follows:

) xocosm(VA_t) + xolﬂsinm(W)dnm(W)
x(t) = ,
1+((p + gxli2VA ) - (1/2))sin,, (VAt)*

(60)
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TaBLE 2: Errors for approximations (52) and (53).
m Max_popl|sn(t,m) — sin,, (¢)| Max_y.rlen(t,m) — cos,, (t)]
0 0 0
0.05 8.066e-9 6.548e-9
0.1 1.4551e-7 1.158e-7
0.15 8035e-7 6.51e-7
0.2 3.0125e-6 2.23e-6
0.25 8.45e-6 6.29¢-6
0.3 0.00002 0.000015
0.35 0.00004 0.000031
0.4 0.000089 0.000061
0.45 0.00017 0.00011
0.5 0.00032 0.00021
0.55 0.00058 0.00037
0.6 0.0011 0.00065
0.65 0.0019 0.0012
0.7 0.0036 0.0021
0.75 0.0071 0.0039
0.8 0.0146 0.0079
0.85 0.0327 0.0173
0.9 0.0832 0.043
0.95 0.265 0.136
where

m =

x(t)=A

1 p 2\2 2
E(l—ﬁ),p>0, A:(p+qx0) +2gx;, > 0.

2A
, A<O.

The values for the constants in (62) are the same as in (??).

Remark 4. In the case when [m|>1, we wuse the

approximations:

x(t) =

1+ B(bycos,, (Vt) + bysin,, (Vo t)dn,, (Vo 1)/1 + bysin,, (Va )?)

xodnl,m(\q/Z\/ﬁt) + XO/VZMSin(I/m)(\/ﬁ W)cos(l/m)(i’/z\/ﬁt)

cn(t,m) = dny,,, (\WVmt),

sn(t,m) = \j%sinl,m (\/mt),

dn(t,m) = cos,,, (\/mt).

(61)

(62)

(63)

(64)

(65)

Then, formula (60) takes the following form when p <0

and m > 1:

,A>0.

Similar formula for (62) when A <0.

In the case when 0.9 <m < 1.1, we may use the following

approximations:

1+ (l/m)((p + qxé/Z\/Z) - (1/2))sinf,m(\4/zx/ﬁt)

(66)
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( 1
cn(t,m) = 3 (m — 1) (sinh (2t) — 2¢t)tanh (¢t)sec h(t) + sec h(t),
1 2
1 51= 4 (O =Dt sec 1 (£) = (m = S)tanh (1), (67)
1
dn = sec h(t) — 1 (m — 1)tanh (¢) (sinh (t) + t sec h(t)).
Example 3. Let us return to Example 1. The approximate elementary analytical solution is
" 3
x (t) +x(t) +x (t) =0,
(1) +x( )’ (t) (68)
x(0) = 1&x' (0) = —1.
Xapp (1) =
((3.4319 cos(1.435526))/14. - 222208 cos’ (1.435521) ) —(0.638943 sin (1.43552)1 +(4.14226 sin’ (1.435521)/2.22208 cos” (1.435521) — 14.) /1.  0.15872 cos’ (1.43552t)>
1-(0.0917517 sin” (1.43552¢)/1. - 0.15872 cos” (1.43552¢) ) '
(69)

The exact period is given by T = 4.37417. The approx-
imate period is that of (59), and it is given by
T - 2
PP 1.4355163606
This value differs from the exact value by 0.00278457.

The error of the approximate solution comparted with exact
solution is

= 4.37695. (70)

MaX 75172 Xapp (1) = Xexace (t)| =0.001847. (71)

V39>

Comparison between the exact solution and the ap-
proximate analytical solution is shown in Figure 3.

Example 4. Let us return to Example 2. Let (Figure 4)
X () +2x(t) = x° (1) =0, x(0) = —landx (0) = 1. (72)

Remark 5. From (47)-(44) or (53)-(44), we obtain the
following approximate expression for the Weierstrass elliptic
function by means of the cosine function:

VG, (4m +1)

0 (t; 92 95) =

where m is a root to the sextic (44).

) T e 73
\/16m2—16m+1<1— cosm<\/§\/3gz/16m2—16m+1t>) 2V48m® — 48m + 3 73)

Example 5. Let g, =2 and g;=1. For this choice,
m = 0.0119056. We have

2.71867

p(t;2,1) =

—0.474691.

The period is T' = 2.70262, and the error on the interval
—(T/2)<t< (T/2) in the sup norm is E=8.52x107".
Comparison between the approximate analytical solution

1 —<3.73048 cos(2.32484t)/\/14. —0.0835474 cos’ (2.32484t1) )

(74)

and the numerical solution is shown in Figure 5. The re-
ciprocals of the two functions are plotted on the interval
—(T/12)<t< (T/2).
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FiGure 3: Comparison between the exact solution and the approximate analytical solution for Example 3.
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FiGure 4: Comparison between the exact solution and the approximate analytical solution for Example 4.
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Figure 5: Comparison between the approximate analytical solution and the numerical solution for Example 5.

We will say that (75) is a constantly forced Duffing
equation. When F =0, that becomes an undamped and
unforced Dufling equation, and we already know how to
solve it for arbitrary initial conditions. Let

4. Analytical Solution to a Generalized
Duffing Equation

Let us consider the i.v.p. [21]:

. 3
Ui +au+fu’ =F, (75) x(t)=A+ B ) 77
L+g(pt +1; 92, 95) 7
given that
_ where A, u, w, g,, g5, and t, are some constants to be de-
u(0) = ugand ur (0) = 4. (76)  termined. Plugging ansatz (77) into (75) gives
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—2(F —al-pA - Zypz) - 2(3F —3ad —au — 3PN -3\ u+ 6yp2)(@+
1

i +ou+pPu’ —F = m (—6F —3g,up” + 60 + dap + 617 + 12BA 7 + 6/3M42)[(J2+ , (78)
te
(—2F + goup” — 4gsup” + 2ad + 20 + 2BA° + 61 2 u + 6P + 2/3;13)@3
where g =p(pt +1t,; g5, g3). Equating to zero, the coef-  gives an algebraic system. A nontrivial solution to this

ficients of @/ (j =0,1,2,3) in the right-hand side of (78)  system is

_6(F-A(a+p)))

1 |« 2
= ,p ===+ pA,
I (x+3[3/\2 P o \3 B
1 (79)
" 144BA(~F + ok + p1°) 8(27F°B + 9apA(BA’ - 4F ) + o’ + 18a°B)*)
g = — g = .
’ (a+3p1%)° ’ (a+3812)’
Now, to find the values of ¢, and A, we make use of the
addition formula:
1 (¢ (w;9,95) ~ ¢ (2:92.95) \’
pw+z9,9 =—( e I 3) - p(w; g, 93) — 9 (2: 92, 93)- (80)
( »9s) =} o (w; 95, 95) — 0 (2 95, 93) (w:92.95) =9 (2:92.95)
x(0) = xyand x/ (0) = X, (84)

We then find that
- is a particular case of (75) and (76). Indeed, let
ty = _1< 0 ;gz,g3). (81) x(t) = u(t) — (q/3r). Then, problems (83) and (84) reduce

A= to the problem
The number A must be a solution to the quartic 2 207
P . n+u(t)<p—q—)—ﬁ+i2+m(t)3+u“(t):o, (85)
4Fu, — Puy — 2uga — 21y — 4FA + 20" + A" = 0. (82) 3r) 3r 27r
Using (75), we also may obtain an approximate ana- _ q Ty _ ok
Iytical solution in terms of the cosine function. u(0) = xo + 3r andu’ (0) = % (86)
Remark 6. The i.v.p. Example 6. Let
X +n+px+gx’ +rx =0,x = x(t), (83) d+u()+u (t) = 1Au(0) = 1A' (0) = 1. (87)
given the initial conditions The exact solution is

2.45792

u t) = 0.29637 - >
exact (1) 1 +(0.370192 — 0.709561¢; —0.657491, 1.34218)

with period

T = 4.24726758. (89)

exact
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An approximate analytical solution is
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2.45792

Uypp () = 1.29637 —

with period
T,pp = 4.24748881. (91)

The error is

MAX (172t (172 [Mexact () = tapp (t)] =0.000105178.  (92)

Comparison between the approximate analytical solu-
tion and the numerical solution is shown in Figure 6.

5. Damped and Unforced Duffing Equation

Let us consider the i.v.p.

0.474364 + (2.2841 1/1 —(3.64963 cos (0.771764 — 1.47927t)/\/14. —0.68022 cos’ (0.771764 — 1.47927t) ))

(90)
z}i+2£a+au+ﬂu3=0,s>0, (93)

given that
u(0) = uyandu' (0) = 1. (94)

We will suppose that lim,_, u(¢) = 0. Define the re-
sidual as

R(t) = u'" (t) + 2eu’ () + pu(t) + qu’ (t). (95)

5.1. First Case: uy #0. Assume the ansatz

u(t) = exp (—pt

Then, from results in [22],
e

2](/ (t)z

() = a-2ep+p* + Puge P andm(t) = . (97)

\ ugen (f (t),m(t)) + bysn(f (£), m(t))dn (f (t),m(t))
1+ bys (£ (1), m(1)) '

(96)

so that

2 o 2
f) =;<\/ﬁu§+y - \/ﬁuge’2m+y + \/;7<tanh1< 1+ﬁu0€p> —tanh1< l+ﬁuo>>>, (98)

) 1/2
m(t) = —————>v
1 +(‘uezt’0/ﬁu§)
being

U= oc—2ep+p2. (100)

The numbers b,, b,, and p are obtained from the fol-
lowing conditions:

2 I
(99)
u' (0) = iy,
R(0) =0, (101)
R'(0) = 0.

Solving the two equations in (88) gives
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FiGUre 6: Comparison between the approximate analytical solution and the numerical solution for Example 6.

Upp + thy
Vo +u
4 - (102)
~ ugﬁ(&x —4ep —3u) + uo(ugﬁ(Zs -3p)+2(e—-p)(a+p(p— 28))) +2upp(e—p)(a+p(p —2¢))
= : -

2”0(”0ﬁ+.‘4)

b, =

b,

The number p is a root to the septic

- 2£(u§ﬁ + oc)z(ugoc + ugﬁ + 2uguyE + 3u§)

(i)

( SuS(xzs — diguya” + ISugocﬁs - 9110u30cﬁ + 4u§oc83 — Migugae’+ > 5

2upa’ + Sugaf + Sugae” — duigugae + 6l ot 3
3uS” + 8ugPe’ + 2uigusPe + igup + 161Uy + 24uie”
18tigae + 7ufBe — 3tigup + 4ugfe’ + 2uigupfe’ + 2luigug e + Stiguge’ + 12ipe’ (103)
Suga” + 17ugap + 32upae” — 40tigugae + 126050 + 5uf” + 24u0 e’ — ;
+ z

38ugup fe + 15uulf + 481ce”
4

-2 (17143045 — Suiguoa + 15ugBe — igup + Buge’ — 220 uye” + 15Ll(2,£)z

+2 (5“30( + 5ugf + 16u5" — 18tiuge + 314'3)25 — duy (5uge — 21iy)2° + 4ujz” = 0.

R'(0) = 0. To avoid solving this, the seventh-degree equa-  Example 7. Let
tion, we may set the default value p = e. Taking this value for 0.4 50
p> we get the following simplified expressions: urDauturu =9

(105)

1= > Y2~ 2 104
\uiB+a—¢& 2(u§ﬁ+cx— sz) (104)

b Uge + 1 b < uofe (uge + 1) 1(0) :i and ' (0) = -

The error of the approximate analytical solution com-
pared with numerical solution is

Remark 7. In the integrable case, we have p = 2¢/3 and then maxy_;<,
« = 8/9¢* From (99) and (100), 4 = 0 and m = 1/2. Thus, our

approach covers the only integrable case for the damped Comparison between the approximate analytical solu-
Duffing equation. tion and the numerical solution is shown in Figure 7.

Uapp (£) = Upyinge-kutta (£)] = 0.00141579. (106)
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Figure 7: Comparison between the approximate analytical solution
and the numerical solution for Example 7.

Example 8. Let

i +0.020+u—u =0,

, (107)
1u(0) =0.1andu (0) = 0.

The error of the approximate analytical solution com-
pared with numerical solution is
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FiGgure 8: Comparison between the approximate analytical solution
and the numerical solution for Example 8.

Comparison between the approximate analytical solu-
tion and the numerical solution is shown in Figure 8.

Remark 8. Let p = e. An approximate analytical solution to
the i.v.p.

i+ 2t + au + fu’ = 0,
(109)

MAaXgp<150 [Uapp (t) - URyingeKutta (t)| =0.00135922. (108) u(0) = u, andu’' (0) =0,
is given by
u £
u(t) = ‘ en(f(O)lm(t) + ———=dn(f (O)Im®)sn(f O)m(t)) |e ",
1 —(ugﬁez/Z(ugﬁ +a- 52)2>51f1(f(t)|n’1(t))2 ( \/uéﬁ +a—¢&
(110)
where f (t) and m(t) are given by (98) and (99). we will have
PR TRy
5.2. Second Case: u, = 0. Let folt)" = EﬁA e i (113)
ii+2£1i+0cu+/5u3:O,u(O):Oandu'(O):uo. (111) ﬁAZ
my(t) = ———e (114)
Assuming the ansatz [22], 2f (1)
u(t) = A1 —my(t) exp (=pt)s d (f (t),my (),  (112) Then,
Yk + 2817 — \4x+ 260%7 +
1
) =— (115)
2p 2 2
Zﬁtanhl< 1+ﬂ62t">—2\/ﬁanhl< 1+£>
2K 2K
1
m(t) = — (116)

1+(2x/BA°

)eth’K =p-2pe+p’.



The Scientific World Journal

The number A is found form the initial condition
u' (0) = tiy, and its value reads

\/< \/4363/3 +(0c —2ep + p2)2 —a+2ep— Pz//j) (117)
3 :

The number p is a solution to some decic equation.
Default value is p = ¢.

Example 9. Let

i +0lu+u+u’ =0, u(0)=0andu' (0)=-0.1. (118)

The error of the approximate analytical solution com-
pared with numerical solution is

MaXype50|tapp () = Unginge Kutta (t)| =0.000303296. (119)

Comparison between the approximate analytical solu-
tion and the numerical solution is shown in Figure 9.

6. Damped and Forced Duffing Equation

Let us consider the Duffing equation as originally was in-
troduced by Georg Dufling:

X +r9€+w§x+ﬁx3 = F cos wt, (120)
given the initial conditions
x(0) = x, and x' (0) = Xo- (121)

15
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Figure 9: Comparison between the approximate analytical solution
and the numerical solution for Example 9.

Let

x(t) =u(t) + ¢, cos wt+c,sin wt. (122)

We will suppose that the function u = u(¢) is a solution
to the Duffing equation

.. . 3
U+riu+au+fPu =0,

432F* ] + 1152Fr fw’c’ - 192[3(3F2ﬁw2 - 3F2[5w§ —4r*w* - 40 + 8r2w§w4 - 41’2(4%(4)2)::1

~ 192FB(3F’p - 4rw" + 4r’wiw®) = 0

2 2

432F°Bc) - 1152c§Frﬁ2w(w - wo)cg + 768r2,8a)2(r2w2 + o' - 2w + a)g)c2 — 768FrBw’ = 0.

Example 10. Let

% +40.1%+x+x° =0.1 cos 0.4 £, x(0) = 0and x' (0) = 0.
(127)

005 (—0.117339¢cn — 0.00791022dnsn)

x(t)=e -
1+1.411 x10 "sn

+0.00551957 sin (0.4¢) + 0.117339 cos (0.4t),

, . (123)

u(0) = x5 —cyandu (0) = x, — c,0,

where
1

a:§(3cfﬁ+3c§/5+2w§). (124)

The numbers ¢, and ¢, are chosen, so that
(125)
(126)

The error of the approximate analytical solution com-
pared with numerical solution is

maXp<t<150

Xapp (£) = Xruinge-xuta (£)] = 0.00287382. (128)

The approximate solution is

(129)
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where
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cn=cn(f(t),m(t)), sn=sn(f(t),m(t)), dn=dn(f(t),m(t)),

f= —20.1343\/ 1.0182 +0.0137685¢~ *"*7**!*

~5.07916 log<(1 ~0.991023V1.0182 + 0.0137685¢~0-0993331¢ )2>

(130)

+10.1583 log(0.991023\/1.0182 +0.0137685¢~ * P71 1) ~37.4127,

1

m{f) = 147.903¢"9993331 4 o'

Comparison between the approximate analytical solu-
tion and the numerical solution is shown in Figure 10.

Finally, let us compare the accuracy of the obtained
results in comparation with the homotopy perturbation

e—(1/2)t (r+k)

Xppy (£) = >
2K2<r2w2 +(w2 - wé)2>

method (HPM). This method gives the approximate
solution:

(131)

(F(rz(w2 - wg)(e”‘ + 1) - r;c(wz + wé)(em - 1) + 4w§(w§ - wz)(e”c + 1))

—t(r+
+2FK*e2 (

+ ZXOK(etK - 1))),

[ 2 2
K= \r —4w,.

The error of this approximation compared with nu-
merical solution is

MaXg.rc 150 Xpnt (£) = XRuinge-utea (£)] = 0.0136613.  (134)
Comparison between the approximate analytical solu-

tion and the homotopy solution is shown in Figure 11.

7. Analysis and Discussion

We have solved the undamped and constantly forced
Duffing equation exactly. Trigonometric approximant was
also provided. For the damped or forced case, we derived

K)(rw sin (tw) +(w§ - wz)cos(ta))) +<r2w2 +(a)2 - wg)z)(xo(r((r +x)e™  +r— K) - 4w3(et" + 1))

(132)

(133)

approximate analytical solution. As far as we know, the
Dufling equation (1) has not been solved using the tools we
employed in this work. For the damped unforced case,
author in [8] obtained approximate analytical solution using
generalized Jacobian elliptic functions. More exactly, author
considered the following equation:

% +2Bx +ax —ex’ = 0,x(0) = x, andx' (0) = x,.  (135)
The obtained solution in [8] has the form
x(t) = cyexp (—pt)sn(w (t) + ¢, m(t)), (136)

where
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Figure 10: Comparison between the approximate analytical solution and the numerical solution for Example 10.

\/1 - /c0 )csch_1<c0\/§/\l2ﬁ2 —2a>
\2a - 28" —cie

-0.05

-0.10

-0.15 |

w(t):i (\/Za Zﬁ —cos—\/Z(x Zﬁ cose 2/3t>+2(:\/—

o \/20‘ - 2/32 = 6(2)867 2t csch™! (Co\/geﬁ(ft)/\/gﬁz——za)
+

c§£\/(2(,8 ) 2ﬁt/co )+ 1

(137)
coe
m(t) = : . (138)
cés + 2(/52 - oc)ezﬁt
The constants ¢, and ¢, are determined from the initial
conditions as follows:
¢, = sn " (xp/ce,m(0)), (139)
2 o = 2af” + B* - 2aex} — 4fex %y + € xg — 2e%0
Cozig_/a_i¢ B+ B 20w, — 4oy + £ - 206, (140)
e ¢ €

G +0.020+u—u =0,u(0)=0.1andu’ (0) = 0for0<t<150.

This approach is different from the method we used in (141)

this work. Let us compare the solution (136) with the so-
lution we obtained in Example 8: Using formula gives the approximate analytical solution
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Figure 11: Comparison between the approximate analytical solution and the homotopy solution for Example 10.

x(f) = 0.100005e°'°”sn(50.(x/§ ( 1.41767 — \/ 1.9998 + 0.010001e "% )

99.9901¢""1\/1.9998 + 0.010001¢™ "% csc h='(0.0707177¢” ")

—-0.2] 33.4329 — (142)
V1 + 199.96¢"%%
0.010001
+1.55892, "
—0.010001 — 1.9998¢™
x(t) = ¢y exp (—pt)sin (w (1)), (143)

The error of this solution compared with the Run-
ge-Kutta numerical method equals 0.00142148. The error  with
obtained in our method equals 0.00135922. We may try a
simpler ansatz in the form

7\/40( +4p(p-2P) - 3cpe + \/4oc +4p(p—2P) — 3cpee ' + —\/4oc +4p(p—2P) —3cpe + \/4<x +4p(p—2p) - 3ciee” P + 2\Ja+ p(p — 2P)

(cothfl((z\/oc +p(p—-2p) /\/4oc +4p(p—-2p) - 3C(2)8 )) - cothfl((z\/oc +p(p—2p) /\/4¢x +4p(p-2p) - 3cf,se*2’” )))
2p

w(t) =

(144)

The numbers ¢, and p are determined from the system

—8ap + 8ap + 165°p — 24Bp> + 6Bcie — Iciep + 8p° = 0,
2 2 4 22 L2 2 2 2 2 2 . 2 (145)
—4acy + 8fcyp + 3Pcye — 4cyp” — 3cpexy + 4axg + 8Bpxy + 8p Xy + 8pxyx, + 4X; = 0.

Using this ansatz, we obtain the approximate analytical
solution:
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Xiigo (£) = 0.100005¢" 0.00996291¢

sin( 1.56087 + 50.1861 ( \/3.9996 +0.030003¢~ %% 4 1.9999<—c0th 1(

+(3.14134 - 1.5708i)) — 2.00739))

The error of the trigonometric solution (146) compared
with the numerical solution using the Runge-Kutta method
equals 0.00195254, so that the trigonometric solution is good
as well.

8. Conclusions and Future Work

The methods employed here may be useful to study other
nonlinear oscillators of the form

X +28x+ f(x)=F cos wt, x(0) = xyand x' (0) = x,
(147)

where the function f is odd: f (—x) = — f (x). To this end, we
approximate this function on some interval [-A, A] by
means of Chebyshev polynomials in the form

f(x) = px+ qu. (148)

Then, the iv.p. is replaced with the i.v.p.

8(px§ — 28px; + 2p7 X} + 2pKox, + x(z)) - 2(—88/) +4p+4p° — 3qx(2))c§ +(5rxg - 6q)cg —5r¢) = 0.

The number p is a free parameter that is chosen in order
to minimize the residual error
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