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Abstract: The developing brain is highly sensitive to environmental disturbances, and adverse
exposures can act through oxidative stress. Given that oxidative stress susceptibility is determined
partly by genetics, multiple studies have employed genetic scores to explore the role of oxidative
stress in human disease. However, traditional approaches to genetic score construction face a range of
challenges, including a lack of interpretability, bias towards the disease outcome, and often overfitting
to the study they were derived on. Here, we develop an alternative strategy by first generating a
genetic pathway function score for oxidative stress (gPFSox) based on the transcriptional activity
levels of the oxidative stress response pathway in brain and other tissue types. Then, in the Barwon
Infant Study (BIS), a population-based birth cohort (n = 1074), we show that a high gPFSox, indicating
reduced ability to counter oxidative stress, is linked to higher autism spectrum disorder risk and
higher parent-reported autistic traits at age 4 years, with AOR values (per 2 additional pro-oxidant
alleles) of 2.10 (95% CI (1.12, 4.11); p = 0.024) and 1.42 (95% CI (1.02, 2.01); p = 0.041), respectively. Past
work in BIS has reported higher prenatal phthalate exposure at 36 weeks of gestation associated with
offspring autism spectrum disorder. In this study, we examine combined effects and show a consistent
pattern of increased neurodevelopmental problems for individuals with both a high gPFSox and
high prenatal phthalate exposure across a range of outcomes, including high gPFSox and high DEHP
levels against autism spectrum disorder (attributable proportion due to interaction 0.89; 95% CI (0.62,
1.16); p < 0.0001). The results highlight the utility of this novel functional genetic score and add to the
growing evidence implicating gestational phthalate exposure in adverse neurodevelopment.

Keywords: oxidative stress; biological pathway; genetic score; neurodevelopment; cognition; autism;
ASD; attention-deficit hyperactivity disorder; ADHD; plastics; phthalates
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1. Introduction

Disorders of child neurodevelopment have increased over recent decades. Since the
2000s, for instance, the prevalence of autism spectrum disorder (ASD) has risen from 6.7 in
1000 [1] to 17.2 in 1000 in the United States [2], with a global estimate of 1–2.5% [3]. Reported
prevalence rates of developmental delay in childhood have also risen [4,5]. The increases
may partly reflect heightened awareness, improved detection, and changes in diagnostic
criteria [6]. However, given the sensitivity of the developing brain to environmental
disturbances [7], there is growing concern around the role of prenatal chemical exposures,
including exposure to manufactured plastic chemicals [8–10].

Phthalates are one chemical class of concern [11,12]. They are a ubiquitous environmen-
tal contaminant [13] and can pass through the placental barrier and affect the developing
fetus [14]. We have previously reported that the majority of pregnant women in our lo-
cation harbor phthalate chemicals [15]. These chemicals appear to derive from ingested
food (plastic food packaging, tinned food, and high-fat milk) and inhaled (air freshener
and aerosols) and absorbed sources (hair treatment and cleaning chemicals) [15]. This is
consistent with previous reports [16–21], which have highlighted plastic food packaging in
particular as a major phthalate source.

Epidemiological studies have overall reported a positive association between prenatal
phthalate exposure and adverse neurodevelopment [22], as described in recent systematic
reviews [23–26], although not all findings have been consistent. There is some evidence for
a possible adverse effect on child cognitive development, with maternal urinary phthalate
metabolites linked to lower cognition [23,26]. Prenatal phthalate exposure is also associated
in some studies with increased ASD symptomology and diagnosis risk [27–31], including
in our location [31]. We have suggested that disparities may, in part, be attributable to
differing susceptibility to toxicants, due to genetics and concomitant oxidant exposures [31].
In the Barwon Infant Study cohort, we reported that an infant’s genetic vulnerability to
oxidative stress, an imbalance between the production and detoxification of reactive oxygen
species (ROS) [32], may interplay with maternal phthalate exposure to increase the risk of
adverse neurodevelopment [31].

In other studies of human cohorts and preclinical animal and cell culture models,
phthalates have been linked to elevated oxidative stress [33–35]. A consequent impact on
neurodevelopment is plausible as the brain’s high oxygen requirements make it especially
susceptible to the damaging effects of ROS. Excess ROS can impair neurodevelopment
by suppressing neuronal proliferation and migration, synapse formation, and long-term
potentiation, and by activating inflammatory and apoptotic pathways in the brain [36].
Indeed, genome-wide association studies (GWAS) and other genomic analyses of ASD
routinely identify genes implicated in oxidative stress [37–40].

Given that the ability of an individual to respond effectively to oxidative stress is
determined in part by genetic makeup, several studies of ROS-related disorders have used
polygenic risk scores (PRSs) to quantify genetic predisposition to oxidative stress [41,42]. A
PRS is computed by summing the number of single-nucleotide polymorphisms (SNPs) an
individual carries that show association with the trait or disease of interest, with each SNP
often weighted by its GWAS effect size [43,44].

However, standard approaches to genetic score construction, including for oxidative
stress, face a range of challenges. A key limitation is that the SNPs employed in PRSs
rarely map to functionally coherent gene sets, making such scores difficult to interpret
mechanistically [45]. Further, some oxidative-stress-related PRSs encode a disease outcome
as well as oxidative stress, creating a bias towards this outcome that strengthens associations
but obscures the impact of oxidative stress, per se, on the disease. For instance, we
have previously published on a genetic score for oxidative stress derived from SNPs in
genes relevant to oxidant balance that were further filtered based on association with
adverse neurodevelopment [31]. Moreover, these challenges are frequently compounded
by overfitting due to scores being both generated and evaluated on the same study [46,47].
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Here, we present an alternative approach using a genetic pathway function score for
oxidative stress (gPFSox), constructed independently of our study cohort, and capturing
transcriptional activity of the oxidative stress response pathway. This biologically moti-
vated, disease-agnostic score has the potential to be more interpretable and applicable to a
wider range of brain and other disorders than existing PRSs. By encoding activity at the
pathway level, it can help elucidate how the mechanism of ROS production and elimination
impinges on neurodevelopment.

In this study, we aim (i) to examine the association between this gPFSox score and
key neurodevelopmental outcomes relating to cognition and attention-deficit hyperactivity
disorder at 2 years of age and autism at ages 2 and 4 years in a large population-based
cohort, and (ii) to investigate the interplay between gPFSox and prenatal phthalate exposure
in adverse neurodevelopment. We discuss how the findings compare to our past use of a
disease-based genetic score for the same study [31].

2. Materials and Methods
2.1. Study Cohort

The Barwon Infant Study (BIS) is a birth cohort from Victoria, Australia, consisting of
1074 mother-infant pairs and aimed at investigating early-life causes of non-communicable
diseases [48]. Women were recruited between 15 and 28 weeks of completed pregnancy
from 2010 to 2013 but later excluded if their child was born before 32 weeks or diagnosed
with a congenital disorder or serious illness. As described elsewhere, extensive biological,
clinical, and questionnaire measures were collected prenatally, at birth, and in intervals
up to age 4 years [48]. The study was approved by the Barwon Health Human Research
Ethics Committee (HREC 10/24) and written informed consent was obtained from the
participating families.

2.2. Phthalate Measurement

Phthalate metabolite levels were measured in 842 pregnant women using a sin-
gle spot urine specimen collected at 36 weeks of gestation. High-performance liquid
chromatography–tandem mass spectroscopy with direct injection was performed by the
Queensland Alliance for Environmental Health Science (QAEHS). QAEHS procedures are
detailed elsewhere [49]. For monoethyl phthalate (MEP), monoisobutyl phthalate (MiBP),
mono-n-butyl phthalate (MnBP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and
mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), repeated spot specimens taken in the third
trimester had intra-class correlation coefficients over 0.4 in one or both of two previous
studies [50,51]. This suggests that single spot tests can capture third-trimester exposure to
phthalates with reasonable reliability.

2.3. Child Neurodevelopmental Outcomes

At age 2–3 years, the child’s caregiver completed the Child Behavior Checklist for Ages
1.5–5. The DSM-5-oriented autism spectrum problems (CBCL-ASP) and attention-deficit
hyperactivity disorder (CBCL-ADHD) subscales were derived by summing responses
to 12 behavioral statements (0: not true; 1: somewhat true; 2: very true) [52]. A scaled
T-score of 50 represents the median in the normative sample, so a binary variable was
created whereby children with a T-score above 50 were classified as having “above-median
CBCL autism spectrum problems”. For CBCL-ADHD, a binary variable was created
whereby for children with a T-score above 65, the threshold for “borderline or clinical
ADHD symptoms” [53] was classified as having “high-CBCL attention-deficit hyperactivity
problems”. At age 2–3 years, the Bayley Scales of Infant and Toddler Development 3rd
edition (BAYLEY-III) cognitive scale was administered, and the raw scores were used in
analyses [54]. At age 4 years, parents reported if their child had doctor-diagnosed autism
spectrum disorder (ASD) or any ASD traits.
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2.4. Genotyping

DNA samples were extracted from cord and 12-month whole blood using the QIAamp
96 DNA QIAcube HT kit (QIAGEN, Hilden, Germany) according to manufacturer’s instruc-
tions and stored at −80 ◦C. Whole-genome genotyping was performed with an Illumina
Global Screening Array (Illumina, San Diego, CA, USA). Imputation was completed using
the Sanger Imputation Server (Wellcome Sanger Institute, Hinxton, UK) based on the
Haplotype Reference Consortium reference panel [55,56]. Infants were excluded for quality
control if initial genotyping was unsuccessful at more than 5% of SNPs, and SNPs were
dropped if (i) genotyping failed across more than 5% of infants, (ii) minor allele frequency
was less than 0.01 or differed by more than 0.2 from the reference population, or (iii) the
SNPs were not in Hardy–Weinberg equilibrium [31].

2.5. Genetic Pathway Function Score for Oxidative Stress

To capture each participant’s genetic predisposition to oxidative stress, a genetic
pathway function score (gPFSox) was generated as follows (Figure 1a). First, a minimal
pathway for the human oxidative stress response was constructed, consisting of 4 pro-
oxidant and 8 antioxidant genes acting in opposing directions (Figure 1b) [57–60].
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Figure 1. (a) Method used to construct a genetic pathway function score for oxidative stress (gPFSox).
(b) Oxidative-stress pathway encoded using gPFSox. Included are 4 genes involved in the production
of ROS (red) and 8 genes involved in the response to ROS (blue). NOX4, NAD(P)H oxidase 4; XDH,
xanthine dehydrogenase; NFIX, nuclear factor I X; CYP1A1, cytochrome P450 family 1 subfamily
A member 1; MAPK10, mitogen-activated protein kinase 10; NFKB1, nuclear factor kappa B sub-
unit 1; SP1, specificity protein 1; CAT, catalase; GPX1, glutathione peroxidase 1; SOD1, superoxide
dismutase 1; SOD2, superoxide dismutase 2; ROS, reactive oxygen species; SNP, single-nucleotide
polymorphism; eQTL, expression quantitative trait loci.

Single-nucleotide genetic polymorphisms (SNPs) linked to the activity of these genes
were then identified using the Genotype-Tissue Expression (GTEx) database [61,62]. GTEx
provides information on SNPs associated with tissue-specific expression of query genes
by leveraging genotyping and RNA sequencing data across 54 tissue types from nearly
1000 individuals. For each oxidative stress gene, the SNP most strongly associated with its
expression in any tissue type was chosen. These SNPs showed generally consistent effects
across multiple tissue types, including the brain. The influence of each SNP on oxidative
stress was then deduced from two factors: (1) whether the SNP up- or down-regulates
expression of its target gene, and (2) whether the target gene elevates or reduces oxidative
stress (Table 1). For instance, a pro-oxidant SNP might up-regulate expression of a pro-
oxidant gene or down-regulate expression of an antioxidant gene. Finally, a score was
created for each BIS participant reflecting the number of pro-oxidant alleles they carry for
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the oxidative stress response pathway and hence the pathway’s cumulative imbalance, at
the transcriptional level, towards oxidative stress. Thus, if the p SNPs are ordered such
that SNPs 1, . . . , ppro are pro-oxidant and SNPs ppro + 1, . . . , p are antioxidant, the score is
computed as:

gPFSox
i =

1
2

ppro

∑
j=1

Cj +
p

∑
j=ppro+1

(
2− Cj

)
where gPFSi

ox is the score for individual i, j is the current SNP out of p = 12 total SNPs
across the pathway (one for each gene), and C is the allele count for SNP j (0, 1 or 2). Thus,
for each SNP, the count of pro-oxidant alleles at that locus is added; for a pro-oxidant SNP,
this is simply the number of effect alleles present, while for an antioxidant SNP it becomes
2 minus the number of effect alleles. For convenience, the score is then divided by 2 to
range from 0 to 12 units, the number of genes in the pathway, rather than 0 to 24 units, the
number of alleles for the 12 corresponding SNPs.

Table 1. Single-nucleotide polymorphisms (SNPs) used to create a genetic pathway function score
for oxidative stress response (gPFSox). SNPs were identified using the GTEx database as expression
quantitative trait loci (eQTLs) for genes within this pathway.

Gene eQTL SNP Effect of SNP on Gene
Expression

Inferred Effect of SNP on
Oxidative Stress

Pro-oxidant genes XDH rs45498201 increase pro-oxidant
NOX4 rs10830296 reduction antioxidant
NFIX rs149677133 reduction antioxidant

CYP1A1 rs2470890 increase pro-oxidant
Antioxidant genes MAPK10 rs80320648 reduce pro-oxidant

NFKB1 rs28573147 increase antioxidant
SP1 rs35437931 increase antioxidant
FOS rs79713290 increase antioxidant
CAT rs12793666 increase antioxidant

GPX1 rs17650792 reduction pro-oxidant
SOD1 rs4998557 increase antioxidant
SOD2 rs5746105 increase antioxidant

Note: The score for each participant was computed as the (unweighted) sum of pro-oxidant alleles they carry
across all 12 SNPs.

2.6. Statistical Analysis

Phthalate metabolite measurements were corrected for processing batch, urine dilution,
and time of day for spot sample collection [31]. To estimate the biological dose delivered to
the fetus, phthalate daily intakes were calculated accounting for maternal prenatal weight,
average daily urine volume, fractional excretion of the compound, and compound-to-
metabolite molecular weight ratio [31]. The metabolites MEHHP, MEOHP, and mono-(2-
ethyl-5-carboxypentyl) phthalate (MECPP) were used to calculate di-(2-ethylhexyl) phtha-
late (DEHP) daily intake; MEP for diethyl phthalate (DEP); MiBP for diisobutyl phthalate
(DiBP); and MnBP for di-n-butyl phthalate (DnBP). DiBP and DnBP daily intakes were
summed to make a DBPs daily intake measure and were not considered individually in the
following analyses. DEHP, DEP, DiBP, and DnBP daily intakes were summed to make a
composite phthalate daily intake measure (Σ phthalates).

Multiple linear regression was used to test for association between gPFSox and Bayley-
III cognition, a continuous measure of cognitive ability. For binary outcomes, multiple
logistic regression was used; these were high-CBCL attention-deficit hyperactivity prob-
lems, above-median CBCL autism spectrum problems, ASD diagnosis, and ASD traits.

Interplay with prenatal phthalate exposure was assessed by (i) evaluating the risk
of adverse neurodevelopment associated with top quintile of gPFSox and top quintile of
phthalate levels vs. bottom four quintiles for both and (ii) testing for additive interaction.
We present the attributable proportion (AP), which measures the proportion of the disease
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in the doubly exposed group that is due to the interaction [63] and the relative excess risk
due to interaction (RERI), a measure of interaction on the additive scale for risk ratios [64].

For (i), Ghi or Phi indicated children with values in the top quintile for gPFSox or
phthalates respectively, whereas children classified as Glo or Plo were in the lower 4 quintiles
for gPFSox or phthalates, respectively.

For the cognition outcome, adjustment was made for post-conceptional age at testing,
sex, administering researcher, and experience of researcher in test administration. For
high-CBCL attention-deficit hyperactivity problems, above-median CBCL autism spectrum
problems, ASD diagnosis, and ASD traits, adjustment was made for post-conceptional
age at testing and sex. A p-value threshold of 0.05 was used for statistical significance.
All analyses were conducted in R 4.0.0 (R Foundation for Statistical Computing, Vienna,
Austria) and Stata/SE 16.1 (Stata Statistical Software, College Station, TX, USA).

3. Results

The genetic score for oxidative stress, gPFSox, was normally distributed for BIS chil-
dren, with 20% of children having a value of 8 units or above (Figure 2). Children in
this category were classified as Ghi (i.e., showing greater genetic vulnerability to oxidant
damage due to reduced antioxidant defenses), while those below were classified as Glo.
Of the 842 women with phthalate measurements in the inception cohort, the percentage
with detectable levels of metabolites of DEHP was 100%, for DnBP and DEP was 99%, and
for DiBP was 98%, and these levels varied by more than 1000-fold [31]. For each phthalate
daily intake measure, children in the top quintile (i.e., those with the highest prenatal
exposure levels) were classified as Phi and children in the bottom four quintiles as Plo. At
age two years, 37% of children (55% male) had ASD symptoms classified as above average
according to the CBCL-ASP scale (Table 2). At age four years, 1.4% (11/791) of children
(55% male) were reported to be diagnosed with ASD, most of which were verified (9/11,
82%) in pediatric medical records, while 4.9% (39/791; 62% male) were reported to have
ASD traits (Table 2). A continuous CBCL ASP scale at the age of 2 years predicted later
ASD diagnosis at the age of 4 years with an area under the curve (AUC) score of 0.93 (95%
CI (0.82, 1.00)) [65].
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Table 2. The distribution of key characteristics in the Barwon Infant Study.

Full Cohort
(N = 1074)

Participants with Any Neurodevelopment Data
(N = 868)

N
Mean (SD)

or GM {GSD}
or % [n]

N
Mean (SD)

or GM {GSD}
or % [n]

Genotype
Oxidative stress genetic score 1031 6.8 (1.0) 850 6.8 (1.0)
Phthalate daily intakes (µg/kg
bw/day)
DEP daily intake 847 1.6 {3.8} 756 1.6 {3.8}
DBPs daily intake 847 1.9 {2.0} 756 1.9 {2.0}
DEHP (oxidized) daily intake 847 1.6 {2.1} 756 1.6 {2.1}
Σ phthalate daily intake 847 6.3 {2.2} 756 6.3 {2.2}
DEP daily intake top quintile (≥4.459) 847 20.2% [171] 756 20.8% [157]
DBPs daily intake top quintile
(≥3.362) 847 20.1% [170] 756 20.5% [155]

DEHP (oxidized) daily intake top
quintile (≥2.614) 847 20.1% [170] 756 19.8% [150]

Σ phthalate daily intake top quintile
(≥11.043) 847 20.1% [170] 756 20.4% [154]

Gestational age at maternal urine
collection (weeks) 847 36.3 (0.7) 756 36.3 (0.7)

Demographic and household factors
Maternal age at conception (years) 1074 31.3 (4.8) 868 31.8 (4.5)
Paternal age at conception (years) 1024 33.5 (5.9) 830 33.8 (5.6)
British/European ancestry (all 4
grandparents) 1060 73.0% [774] 861 73.8% [635]

Maternal university-level education 1068 51.3% [548] 865 55.8% [483]
Parental marital status (married) 1071 70.4% [754] 868 74.1% [643]
Older siblings of child living at home
(one or more) 1072 55.0% [590] 865 55.2% [478]

Prenatal, perinatal, and postnatal
factors
Gestational age at birth (weeks) 1074 39.4 (1.5) 868 39.4 (1.5)
Child sex at birth (male) 1074 51.7% [555] 868 52.6% [457]
Child neurodevelopment
Bayley-III Cognitive Scale raw score 678 71.1 (4.1)
Bayley-III Cognitive Scale scaled score 678 10.8 (2.1)
Bayley-III Cognitive Scale raw score
<70 678 34.7% [235]

Child age at Bayley-III assessment
(months) 678 29.4 (1.7)

CBCL autism spectrum problems
(T-score above 50) 676 36.8% [249]

CBCL attention-deficit hyperactivity
problems (T-score above 65) 676 5.2% [35]

Child age at CBCL assessment
(months) 677 29.5 (1.8)

Autism spectrum disorder doctor
diagnosis 791 1.4% [11]

Parent-reported autistic traits 791 4.9% [39]
Child age at 4-year review (months) 791 49.9 (3.1)

NB: SD = standard deviation; GM = geometric mean; GSD = geometric standard deviation; bw = body weight;
DEP = diethyl phthalate; DBPs = di-n-butyl phthalate (DnBP) + diisobutyl phthalate (DiBP); DEHP = di-(2-ethyl-
5-oxohexyl) phthalate; Σ phthalates = sum of DEP, DBPs, and DEHP; CBCL = Child Behavior Checklist for Ages
1.5–5.
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3.1. Association between Phthalate Daily Intake and Neurodevelopmental Outcomes

As previously reported [31], prenatal daily intake of DBPs, DEHP, and Σ phthalates
was each associated with an increased likelihood of offspring ASD diagnosis at 4 years
(AOR 1.89, 95% CI (1.01, 3.53), p = 0.05; AOR 1.55, 95% CI (1.06, 2.28), p = 0.03; AOR 1.55,
95% CI (1.00, 2.40), p = 0.05; respectively) and ASD traits at 4 years (AOR 1.44, 95% CI
(1.03, 2.03), p = 0.04; AOR 1.51, 95% CI (1.15, 1.98), p = 0.003; AOR 1.55, 95% CI (1.20, 2.01),
p = 0.0009; respectively) [31]. No associations were found between any phthalate daily
intake levels and cognition at 2–3 years [31].

3.2. Association between gPFSox and Neurodevelopmental Outcomes

Adjusting for age and sex, a higher gPFSox was associated with a greater likelihood
of offspring ASD diagnosis and parent-reported ASD traits (Table 3). Each unit increase
in gPFSox, indicating the presence of two additional pro-oxidant alleles for genes in the
oxidative stress response pathway, was associated with an AOR of 1.42 (95% CI (1.02, 2.01),
p = 0.041) for ASD traits and 2.10 (95% CI (1.12, 4.11), p = 0.024) for ASD diagnosis. The
associations (for log-odds) showed no significant departure from linearity. Associations for
cognition, high-CBCL attention-deficit hyperactivity problems, and above-median CBCL
autism spectrum problems did not reach significance (Table 3).

Table 3. Main effect of genetic pathway function score for oxidative stress response (gPFSox) against
cognitive and ASD outcomes.

Bayley-III Cognition Above-Median CBCL Autism Spectrum Problems ASD Diagnosis ASD Traits

Adj.
Mean Dif-
ference
(95% CI)

p
Value

YES:
Mean
(SD) or
% [n]

NO:
Mean
(SD) or
% [n]

AOR
(95% CI)

p
Value

YES:
Mean
(SD) or
% [n]

NO:
Mean
(SD) or
% [n]

AOR
(95% CI)

p
Value

YES:
Mean
(SD) or
% [n]

NO:
Mean
(SD) or
% [n]

AOR
(95% CI)

p
Value

gPFSox

(Per 2 additional
pro-oxidant alleles)

−0.20
(−0.50,
0.10)

0.197 6.8
(1.0)

6.7
(0.9)

1.10
(0.94,
1.30)

0.250 7.5
(1.2)

6.8
(1.0)

2.10
(1.12,
4.11)

0.024 7.1
(0.9)

6.8
(1.0)

1.42
(1.02,
2.01)

0.041

gPFSox

(Top quintile vs. rest)

−0.49
(−1.31,
0.29)

0.231 17.0%
[41]

14.8%
[62]

1.11
(0.68,
1.71)

0.637 36.4%
[4]

17.7%
[135]

2.56
(0.74,
9.03)

0.140 21.1%
[8]

17.8%
[131]

1.20
(0.54,
2.67)

0.654

Note: There were no associations between the phthalate exposures and gPFSox. AOR = adjusted odds ratio.
For Bayley’s cognition, models were adjusted for post-conceptional age at test, sex, administering researcher,
and experience of researcher in test administration. For above-median CBCL autism spectrum problems, ASD
diagnosis, and ASD traits, models were adjusted for age and sex.

3.3. Interplay between gPFSox and Prenatal Phthalate Exposure against Neurodevelopmental
Outcomes

To assess combined effects, gPFSox and prenatal maternal phthalate levels were each
dichotomized as high (top quintile) vs. low (bottom four quintiles). The reference category
was designated as individuals with both low gPFSox and low phthalate levels, denoted
by GloPlo. A clear pattern emerged (Figure 3, Tables 4 and 5) in which individuals in the
doubly exposed GhiPhi group, but not other combinations, were at significantly higher risk
of adverse neurodevelopment. For instance, for DEP and Bayley’s cognition, the estimated
difference in mean score was 0.00 for the reference category; −1.2, p = 0.266 for GloPhi;
0.09, p = 0.852 for GhiPlo; and −4.04, p < 0.0001 for GhiPhi. For DEHP and ASD diagnoses,
the adjusted odds ratios were 1.00 for the reference category; 0.85, p = 0.884 for GloPhi;
insufficient numbers for GhiPlo; and 7.84, p = 0.019 for GhiPhi. Relative excess risk due to
interaction (RERI) values were not significant, but using the attributable proportion (AP)
metric, there was strong evidence of interactions for multiple phthalates across cognition,
ASD diagnosis, and ASD traits outcomes. For example, the AP for DEHP and ASD
diagnosis was 0.89 (95% CI (0.62, 1.16); p < 0.0001), indicating that the proportion of disease
in the doubly exposed group (GhiPhi) due to interaction was 89%. The results for CBCL
attention-deficit hyperactivity problems showed similar patterns (see Table S1).
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Table 4. Distributions of neurodevelopmental outcomes by genetic pathway function score for
oxidative stress response (gPFSox) and prenatal phthalate level combinations.

Bayley-III Cognition

Above-Median
CBCL Autism

Spectrum
Problems

ASD Diagnosis ASD Traits

Gene-Phthalate
Subgroup N Mean

(SD) % [n] 1 N % [n] 2 N % [n] 3 N % [n] 4

DEP GloPlo 396 71.4 (3.9) 32.6
[129] 391 36.1

[141] 438 1.4 [6] 438 5.0 [22]

GloPhi 110 71.2 (4.2) 31.8 [35] 111 36.0 [40] 120 0.8 [1] 120 5.0 [6]
GhiPlo 82 71.6 (3.9) 29.3 [24] 82 39.0 [32] 100 2.0 [2] 100 6.0 [6]
GhiPhi 18 67.6 (7.6) 72.2 [13] 13 46.2 [6] 19 0.0 [0] 19 0.0 [0]

DBPs GloPlo 403 71.2 (4.1) 34.0
[137] 398 34.2

[136] 444 1.4 [6] 444 5.0 [22]

GloPhi 103 71.7 (3.3) 26.2 [27] 104 43.3 [45] 114 0.9 [1] 114 5.3 [6]
GhiPlo 74 71.5 (4) 32.4 [24] 73 34.2 [25] 91 1.1 [1] 91 3.3 [3]
GhiPhi 26 69.3 (7) 50.0 [13] 22 59.1 [13] 28 3.6 [1] 28 10.7 [3]

DEHP GloPlo 408 71.1 (3.9) 34.6
[141] 397 35.5

[141] 447 1.3 [6] 447 5.4 [24]

GloPhi 98 72.1 (3.8) 23.5 [23] 105 38.1 [40] 111 0.9 [1] 111 3.6 [4]
GhiPlo 81 71.3 (4.1) 35.8 [29] 75 40.0 [30] 91 0.0 [0] 91 2.2 [2]
GhiPhi 19 69.3 (7.7) 42.1 [8] 20 40.0 [8] 28 7.1 [2] 28 14.3 [4]

Σ phthalates GloPlo 401 71.3 (3.9) 33.7
[135] 397 36.0

[143] 440 1.1 [5] 440 4.3 [19]

GloPhi 105 71.6 (4) 27.6 [29] 105 36.2 [38] 118 1.7 [2] 118 7.6 [9]
GhiPlo 83 71.5 (4.1) 32.5 [27] 82 39.0 [32] 97 0.0 [0] 97 3.1 [3]
GhiPhi 17 68.2 (7.7) 58.8 [10] 13 46.2 [6] 22 9.1 [2] 22 13.6 [3]

1 A raw score below 70 on the Bayley-III Cognitive scale administered at 2 years of age. 2 A T-score above 50
on the CBCL autism spectrum problems (ASP) scale administered at 2 years of age. 3 Parent-reported autism
spectrum disorder (ASD) diagnosis at 4 years of age. 4 Parent-reported autistic traits at 4 years of age. Ghi = top
quintile of gPFSox; Glo = bottom four quintiles of gPFSox; Phi = top quintile of phthalate exposure; Plo = bottom
four quintiles of phthalate exposure; DEP = diethyl phthalate; DBPs = di-n-butyl phthalate (DnBP) + diisobutyl
phthalate (DiBP); DEHP = di-(2-ethyl-5-oxohexyl) phthalate; Σ phthalates = sum of DEP, DBPs, and DEHP.
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Table 5. Interplay on the additive scale between genetic pathway function score for oxidative stress response (gPFSox) and prenatal phthalate levels against
neurodevelopmental outcomes.

G P
Glo Phi Ghi Plo Ghi Phi Additive Interaction

gPFSox Phthalate

Adj Mean
Difference (95% CI) p Value Adj Mean

Difference (95% CI) p Value Adj Mean
Difference (95% CI) p Value AP (95% CI) p Value

Bayley-III
cognition a

DEP −0.12 (−0.93, 0.69) 0.766 0.09 (−0.83, 1.00) 0.852 −4.04 (−5.85,
−2.22) <0.0001 0.82 (0.62, 1.01) <0.0001

DBPs 0.46 (−0.37, 1.30) 0.276 0.04 (−0.91, 1.00) 0.927 −2.19 (−3.72,
−0.66) 0.005 0.71 (0.43, 1.03) <0.0001

DEHP 0.55 (−0.32, 1.42) 0.212 −0.12 (−1.04, 0.80) 0.796 −2.23 (−4.01,
−0.45) 0.014 0.30 (−0.62, 1.16) 0.511

Σ phthalates 0.04 (−0.79, 0.88) 0.922 −0.08 (−1.00, 0.83) 0.856 −3.26 (−5.13,
−1.39) 0.001 0.72 (0.39, 1.10) <0.0001

AOR (95% CI) p value AOR (95% CI) p value AOR (95% CI) p value

Above-median
CBCL autism

spectrum
problems

DEP 1.00 (0.64, 1.55) 0.993 1.13 (0.69, 1.85) 0.615 1.51 (0.50, 4.62) 0.468 0.04 (−1.21, 1.34) 0.952
DBPs 1.47 (0.95, 2.28) 0.086 1.00 (0.59, 1.70) 0.986 2.78 (1.16, 6.69) 0.022 0.43 (−0.17, 1.03) 0.146
DEHP 1.12 (0.72, 1.75) 0.625 1.21 (0.73, 2.01) 0.465 1.21 (0.48, 3.04) 0.682 −0.10 (−1.28, 1.14) 0.874

Σ phthalates 1.01 (0.64, 1.58) 0.977 1.13 (0.70, 1.85) 0.613 1.52 (0.50, 4.63) 0.46 0.28 (−0.61, 1.24) 0.554

ASD diagnosis

DEP 0.69 (0.08, 5.83) 0.729 1.58 (0.31, 8.02) 0.583 — −0.26 (−3.48, 2.91) 0.872
DBPs 0.65 (0.08, 5.49) 0.693 0.82 (0.10, 6.93) 0.854 3.23 (0.37, 28.61) 0.291 0.86 (0.08, 1.62) 0.025
DEHP 0.85 (0.88, 0.10) 0.884 — 7.84 (1.40, 43.98) 0.019 0.89 (0.62, 1.16) <0.0001

Σ phthalates 1.65 (0.31, 8.70) 0.554 — 10.24 (1.76, 59.48) 0.01 0.84 (0.51, 1.17) <0.0001

ASD traits

DEP 1.14 (0.44, 2.90) 0.791 1.30 (0.51, 3.36) 0.582 — −0.44 (−0.24, 1.36) 0.632
DBPs 1.07 (0.42, 2.75) 0.881 0.65 (0.19, 2.26) 0.502 2.77 (0.71, 10.11) 0.122 0.74 (0.21, 1.25) 0.009
DEHP 0.82 (0.27, 2.46) 0.724 0.40 (0.09, 1.76) 0.226 4.01 (1.23, 13.01) 0.021 0.94 (0.66, 1.22) <0.0001

Σ phthalates 2.04 (0.88, 4.70) 0.095 0.75 (0.21, 2.60) 0.645 4.06 (1.06, 15.61) 0.041 0.56 (−0.13, 1.26) 0.114

Note: Each combination of G and P is compared against the reference category GloPlo; “—” indicates insufficient outcome numbers in category. For Bayley’s cognition, models were adjusted for post-conceptional age at test,
sex, administering researcher, and experience of researcher in test administration. For above-median CBCL autism spectrum problems, ASD diagnosis, and ASD traits, models were adjusted for post-conceptional age at
testing and sex. Ghi = top quintile of gPFSox; Glo = bottom four quintiles of gPFSox; Phi = top quintile of phthalate exposure; Plo = bottom four quintiles of phthalate exposure; AP = attributable proportion, or proportion of
disease in doubly exposed group due to interaction; AOR = adjusted odds ratio; DEP = diethyl phthalate; DBPs = di-n-butyl phthalate (DnBP) + diisobutyl phthalate (DiBP); DEHP = di-(2-ethyl-5-oxohexyl) phthalate; Σ
phthalates = sum of DEP, DBPs, and DEHP. a For additive interaction, Bayley’s cognition variable was dichotomized using clinical cutoff of cognition <70 (at least moderate cognitive deficit).
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4. Discussion

In this study, we employed a genetic pathway function score, gPFSox, to capture
genetic predisposition to oxidative stress based on transcriptional activity of the oxidative
stress response pathway in multiple tissue types, including the brain. Using DNA samples
sourced from cord and infant blood, we found that higher genetic scores for oxidative stress
vulnerability were associated with ASD and autistic traits at 4 years of age. Unlike in our
previous work, gene-environment interaction was evident, with children with both higher
phthalate levels and a higher gPFSox (top quintile for both) having excess additive risk for
ASD diagnosis or ASD traits at age 4 years. These findings expand our previous work with
the use here of an externally derived score independent of disease status.

The human brain has high energy demands and is vulnerable to oxidative damage [66].
Although oxidative damage in the adult brain has been well studied [67], the importance of
oxidative stress in adverse brain development is being increasingly recognized. These find-
ings support past work indicating that impaired redox control appears to be an underlying
mechanism for gene–environment interactions in ASD [68,69], as both ASD-associated
genes [37] and environmental risk factors of ASD have been associated with oxidative
stress. Specifically regarding plastic chemicals, DBP metabolites have been associated with
prenatal markers of oxidative stress [70]. Similarly, oxidative stress markers have been
found to mediate the effect of higher DEHP levels on preterm birth [33].

Our findings are consistent with previous genetic studies linking oxidative stress
to ASD etiology [31,39]. However, unlike existing genetic scores for oxidative stress,
this functional, disease-agnostic approach provides clearer evidence that elevated ROS,
independent of other factors, is at play. Evidence for an association with ASD at the genetic
level also suggests that oxidative stress is causally involved rather than merely a byproduct
of disrupted neurodevelopment, and importantly it reduces the likelihood of confounding
by environmental factors.

Our findings highlight the interplay between genetic susceptibility to oxidative stress
and prenatal phthalate exposure. Individuals in the top quintile for gPFSox and top quintile
for prenatal phthalate exposure, but generally not other combinations, were consistently at
significantly higher risk of adverse neurodevelopment compared to those in the lower four
quintiles for both. For doctor-diagnosed and parent-reported autism outcomes at 4 years,
the combined top-quintile effect was evident for prenatal exposure to the high-molecular-
weight phthalate DEHP and for Σ phthalates, a measure that includes DEHP, suggesting
that DEHP may drive the association with ASD. This possibility is further supported by
metabolomic analyses, with the association between higher prenatal DEHP exposure and
increased ASD symptomology partly mediated through metabolic shifts closely linked
to oxidative stress [71]. Testing for interaction, we found that the majority of the disease
occurring in these doubly exposed groups was attributable to a gene–environment interac-
tion. For example, the attributable proportion for the combined top quintiles of gPFSox and
DEHP against ASD diagnosis due to interaction was more than 80 percent. These results for
combined exposures are intuitively plausible given that the deleterious impact of impaired
ROS processing—as reflected in a high gPFSox—would be accentuated by any additional
sources of ROS, such as phthalate exposure [33]. The results also highlight the risk posed
to one-fifth of the population (i.e., individuals in the top quintile of gPFSox) by phthalates
and likely other common ROS-producing environmental pollutants.

A key strength of this study is the improved interpretability of the genetic score. Here,
gPFSox was derived from SNPs linked to expression levels of genes in the oxidative stress
response pathway—encoding the logic of pro- and antioxidant genes acting in opposing
directions—rather than to a disease or other outcome. This functional approach helps shed
light on how the mechanism of oxidative stress response, including in brain tissue, relates to
child cognition and ASD. Furthermore, gPFSox was constructed independently of the study
cohort, using genotyping and RNA sequencing data from the GTEx consortium [61], thereby
improving its potential to generalize to other study populations. Given that the score is
disease-agnostic, gPFSox could be evaluated against other outcomes beyond early life
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hypothesized to involve oxidative stress, for instance neurodegenerative disorders such as
Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis [72]. Additional
strengths of the study include comprehensive data and a range of neurodevelopmental
outcomes from ages 2 to 4 years [31].

The study has several limitations. The number of doctor-diagnosed ASD cases was
small and only 82% were verified by medical records. The autism problem score at 2 years
was based on parental report, but we have previously demonstrated that this ASP score
had an area under the curve of 0.93 (95% CI (0.82, 1.00)) for verified ASD diagnosis at age
4 years [65].

Here we only studied one environmental factor with possible oxidant action, phthalate
plastic chemicals, but we have shown that other environmental factors such as prenatal
maternal smoking or a lack of fish oil consumption (a putative antioxidant) may also
be relevant [31]. Indeed, interpreted in the context of Mendelian randomization, where
genetic data are used as proxies for environmental exposures, the findings for gPFSox

itself suggest that wider oxidant exposures are important to consider. We plan to assess
the level of agreement between the infant gPFSox and infant urinary oxidative markers
such as 8-isopostane and 8-hydroxydeoxyguanosine [73,74] when these become available.
Overall, our findings indicate that future studies should examine oxidant burden from both
composite environmental and composite genetic factors as comprehensively as possible.
This may provide additional clarity as to the possible adverse role of phthalate chemicals
in neurodevelopment [24].

It is worth noting that gPFSox was constructed from a minimalist pathway of 12 genes,
and several of these genes, such as SP1, exert pleiotropic effects across multiple signaling
pathways. Despite this, by combining these genes in a shared pathway and encoding
their cumulative influence on ROS, we found consistent effects that accord with past work
on phthalates, oxidative stress, and neurodevelopment. However, future iterations could
employ expanded pathways that capture a more comprehensive picture of the complex
mechanisms underlying ROS balance. Moreover, while we aimed to generate a score with
relevance to multiple disorders and therefore selected SNPs with the strongest overall effect
on the expression of each gene, brain-region- or cell-type-specific variants of the score could
be developed to study more localized pathophysiology.

5. Conclusions

A novel genetic pathway function score for oxidative stress (gPFSox), capturing tran-
scriptional activity of the oxidative stress response pathway, has provided a genetic marker
of oxidative stress that associates with adverse neurodevelopmental outcomes. Unlike our
previous score for oxidative stress, gPFSox was constructed independently of our study
cohort and has no a priori links to the neurodevelopmental conditions assessed here, im-
proving its potential to generalize to other populations and to other ROS-related traits
and disorders, as well as providing more robust evidence for the associations described.
We also extended our previous work by using this improved functional genetic score
to demonstrate that prenatal phthalate-induced adverse neurodevelopment will vary by
host genetic oxidative stress vulnerability status. Future work on the causation of these
neurodevelopmental disorders is likely to benefit from examining both environmental and
genetic factors in the context of shared biological mechanisms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11040659/s1, Table S1: Interplay on the additive scale
between the genetic Pathway Function Score for oxidative stress response (gPFSox) and prenatal
phthalate levels against borderline/clinical attention-deficit hyperactivity problems.
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