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A B S T R A C T   

Interaction simulation for co-culture systems is important for optimizing culture conditions and improving 
yields. For industrial production, the environment significantly affects the spatial–temporal microbial in-
teractions. However, the current research on polymicrobial interactions mainly focuses on interaction patterns 
among strains, and neglects the environment influence. Based on the resource competition relationship between 
two strains, this research set up the modules of cellular physicochemical properties, nutrient uptake and 
metabolite release, cellular survival, cell swimming and substrate diffusion, and investigated the spa-
tial–temporal strain–environment interactions through module coupling and data mining. Furthermore, in an 
Escherichia coli–Saccharomyces cerevisiae consortium, the total net reproduction rate decreased as glucose was 
consumed. E. coli gradually dominated favorable positions due to its higher glucose utilization capacity, reaching 
100 % abundance with a competitive strength of 0.86 for glucose. Conversely, S. cerevisiae decreased to 0 % 
abundance with a competitive strength of 0.14. The simulation results of environment influence on strain 
competitiveness showed that inoculation ratio and dissolved oxygen strongly influenced strain competitiveness. 
Specifically, strain competitiveness increased with higher inoculation ratio, whereas E. coli competitiveness 
increased as dissolved oxygen increased, in contrast to S. cerevisiae. On the other hand, substrate diffusion 
condition, micronutrients and toxins had minimal influence on strain competitiveness. This method offers a 
straightforward procedure without featured downscaling and provides novel insights into polymicrobial inter-
action simulation.   

1. Introduction 

The rapid advances in bioinformatics technology provide a conve-
nient platform for simulating microbial systems. Co-culture systems, as 
opposed to mono-cultures, can improve the substrate utilization effi-
ciency by co-utilizing complex substrates, relieve metabolic stress by 
dividing metabolic tasks, and realize efficient production by effectively 
exploiting the diverse intracellular environment [1]. Moreover, the 
co-culture systems have been widely used in biosynthesis of complex 
and value-added products. For example, in the co-culture systems of 
E. coli and S. cerevisiae, the production of genistein have reached 100 
mg/L which was 294 times higher than that of genistein produced by a 
mono-culture of S. cerevisiae (0.34 mg/L) [2]. In addition, Hal et al. 
obtained 36 mg/L resveratrol in a purely de novo fashion through the 

co-culture of E. coli and S. cerevisiae, eliminating the need for expensive 
inducers or precursors and significantly reducing costs compared to 
previous mono-culture system [3]. 

Simulation of microbial interactions for co-culture systems can pro-
vide reasonable strategies for optimizing strain ratios and culture con-
ditions, enabling the full utilization of metabolic division and resource 
exchange among different strains to improve overall production. The 
complexity and non-uniform distribution of environmental variables in 
industrial production however significantly impact the accuracy of 
simulating spatial–temporal microbial interactions. Traditional simula-
tion algorithms primarily focus on interactions among strains in co- 
culture systems, while insufficient attention is paid to environmental 
variables. As a result, these algorithms may not provide sufficient ac-
curacy for industrial production processes such as fermenters and large- 
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scale bioreactors. 
Among the traditional simulation algorithms for strain interactions, 

Joint-FBA [4,5], OptCom [5,6], SteadyCom [5,7] and cFBA [5,8] are 
based on the hypothesis of "overall optimization" [5]. This hypothesis 
assumes that the metabolic processes of strains ultimately reach 
maximum biomass production, thereby achieving low computational 
cost [5]. The Joint-FBA algorithm simulates public metabolite exchange 
among strains through exchange compartment and substrate concen-
tration change [1,4]. Based on this exchange, Joint-FBA couples the 
intracellular fluxes for a mono strain and the objective function for 
maximizing overall biomass production to simulate polymicrobial fluxes 
[1,4]. To improve the simulation accuracy of the Joint-FBA algorithm, 
OptCom, SteadyCom and cFBA algorithms were developed. Among 
these algorithms, OptCom is capable of simulating the fitness between 
individual and community levels through the use of multi-level simu-
lation and multi-objective optimization [1,6]. SteadyCom and cFBA 
define the objective function by measuring the properties of poly-
microbial networks, thereby enabling the simulation of co-culture con-
sortia containing more strains than Joint-FBA and OptCom [1,7]. 
However, these algorithms suffer from the disadvantage of "forced 
altruism", which results in unstable solutions in the state of strain 
competition for resources [1,5]. 

In order to eliminate the drawbacks of "forced altruism", Cai et al. 
proposed the NECom algorithm. NECom is based on the hypothesis of 
"Nash equilibrium", which assumes that a mono strain adjusts its own 
metabolic strategy according to the strategies of other strains to maxi-
mize growth rate and save shadow price [1,9]. NECom reflects the 
driving force on the community resulting from the metabolic goals of 
individual strains in the state of strain competition [1,9], but the algo-
rithm is unable to simulate cases that do not reach a steady state of "Nash 
equilibrium". 

The aforementioned hypothesis-based algorithms have made signif-
icant progress in achieving genome-scale simulation of polymicrobial 
metabolism while maintaining low computational costs. However, these 
algorithms rarely consider the influence of environmental variables on 
strain interactions, and their simplifying hypothesis impose significant 
limitations. 

In addition, the algorithms that can simulate the environment in-
fluence on interactions, such as dFBA [10], closely dependent on a large 
amount of experimental data. For example, the parameters associated 
with the maximum and minimum substrate uptake rates, as well as the 
undissociated substrate constant, should be estimated through the dy-
namic parameter estimation approach [11]. Moreover, batch-specific 
parameters associated with substrate uptake kinetics should be esti-
mated through the non-linear regression of experimental values for the 
undissociated substrate concentration and total substrate concentration 
[11]. Consequently, the experimental cost of dFBA is high, and the 
simulation of spatial–temporal dynamics is not possible. 

To study the spatial–temporal influence of environmental variables, 
such as substrate concentration, agitation rate, inoculum amount, 
micronutrients, and toxins, on the interactions between two strains, this 
research established five modules based on the resource competition 
relationship. These modules encompass cellular physicochemical prop-
erties, nutrient uptake and metabolite release, cellular survival, cell 
swimming, and substrate diffusion. By coupling these modules and 
conducting data mining, the spatial–temporal interactions between two 
strains and the environment were simulated with a low experimental 
cost. Furthermore, the research explored the spatial–temporal evolution 
of glucose competition levels between strains in a consortium of 
Escherichia coli and Saccharomyces cerevisiae. The simulation took into 
account the influences of high-dimensional environmental and strain 
features on the competition level. Importantly, the simulation steps are 
simplified and do not require feature downscaling. The code for the 
analysis of this research is available at ziyuanzu/STPGMI (github.com). 

2. Methods 

2.1. Symbols and descriptions 

The descriptions of the symbols in the methods are shown in Table 1. 

2.2. Automated method of metabolic networks construction for 
strain–strain consortia 

The kcat values [12,13] extracted by Mao et al. was used for the E. coli 
iML1515 model, and the iMM904.xml metabolic network was down-
loaded from BIGG database (BiGG Models (ucsd.edu)). The AutoPAC-
MEN toolbox moreover automatically extracted the kcat values [14] for 
the S. cerevisiae iMM904 model. As there was no uniprot linkage for the 
enzymes in iMM904.xml to automatically extract molecular mass in-
formation, the relative masses of all enzymes were set to a uniform value 
of 36.8389 based on the median value of E. coli iML1515. 

2.3. Simulation of spatial–temporal interactions between two strains and 
environment 

In this research, five modules were designed based upon modulari-
zation to study the effects of strain metabolism, strain reproduction and 
death, substrate exchange, substrate concentration and agitation con-
dition on the spatial–temporal interactions between strains and the 
environment for strain–strain consortia. The modules consist of the 
cellular physicochemical properties module, the nutrient uptake and 
metabolite release module, the cellular survival module, the cell 
swimming module and the substrate diffusion module. In addition, the 
spatial–temporal interactions between two strains and the environment 
were simulated through module coupling and data mining. This research 
used pyomo platform to perform the simulation of the cellular physi-
cochemical properties module, the nutrient uptake and metabolite 
release module, the cellular survival module, the cell swimming module, 
and the substrate diffusion module. 

2.3.1. Module of cellular physicochemical properties simulation 
A module was designed to simulate the cellular metabolism of 

strain–strain consortia based on cellular physicochemical properties. In 
the module, the program package [13] of Yang et al. simulated the 
intracellular metabolic fluxes by limiting the solution space with the 
FBA [15] and kinetic constraints [13]. The relevant algorithms are 
shown in Eqs. (1)–(5). For choosing among multiple solutions of a 
multi-objective optimization problem, the solutions with the highest 
growth rate would be the candidates. Then, an approximate enzyme cost 
function, a sum of absolute fluxes, was defined to select the candidate 
solutions with the lowest enzyme cost, while the metabolite levels were 
limited to the physiological range. 

The target functions 

maximizevbio (1)  

minimizevtotal (2) 

The FBA constraint 

0 = nfmet = S • v→ (3)  

LB ≤ v→≤ UB  

v→≥ 0 

The kinetic constraints 

ei =
vi • MWi

σnkcat,i
(4)  
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σ •
∑n

i=1
n • ei ≤ e_pooleff (5)  

2.3.2. Module of cellular survival simulation 
The cellular survival module was designed to simulate the repro-

duction rates, as shown in Eqs. (6)–(7), and to simulate the death rates, 
as shown in Eqs. (8)–(10), for the strains in all spatial grids at different 
time points. 

Nstr,rep
x,t = mins(min

(
Ne

s,x,t, Nstr
s, x,t

)
Δt
/

Cyclestr,rep
) (6) 

The reproduction rate at grid j at time point t was calculated from Eq. 
(6), as shown in Eq. (7). 

repstr
x,t = Nstr,rep

x,t

/
Nstr

x,t (7)  

ΔCs,x,t

(
Nstr

x,t − Nstr,de
s,x,t

)
= Ce

s,x,t +Nstr,de
s,x,t Cintr

s,x,t (8) 

The death rate at grid j at time point t was calculated from Eq. (8), as 
shown in Eq. (10). 

destr
s,x,t =

Nstr,de
s,x,t

Nstr
x,t

=
Nstr

x,t • ΔCs,x,t − Ce
s,x,t

Nstr
x,t • (ΔCs,x,t + Cintr

s,x,t)
(9)  

destr
x,t = maxs(destr

s,x,t) (10)  

2.3.3. Module of nutrient uptake and metabolite release simulation 
The nutrient uptake and metabolite release simulation module was 

designed to simulate the interaction between strain metabolism and 
environmental substrate concentrations based on the method of Har-
combe et al. [16]. The effects of the processes of microbial nutrient 
uptake and metabolite release on the environmental substrate concen-
trations are shown in Eqs. (11)–(12), and the effect of environmental 
substrate concentrations on the upper bound of nutrient uptake rates is 
shown in Eq. (13). 

Ce,nume
bio,x,t+Δt = Ce,nume

bio,x,t +Nstr
x,t • vbio,x,t • Δt (11)  

Ce,nume
s,x,t+Δt = Ce,nume

s,x,t + vrel
s,x,t • Nstr

x,t • Δt (12)  

Table 1 
The symbols and descriptions in the methods.  

Symbols Descriptions Symbols Descriptions 

i The serial number of a reaction Nstr,rep The number of reproducing strains 
s Refers to a substrate Ne The environmental capacity 
t the time Nstr The number of strains 

x 
A space point on a one-dimensional space 
axis Nstr,de

s The number of the death strains determined by a mono substrate 

j The serial number of a space point Nstr
j1→j2 The number of microorganisms swimming from the j1st grid to the j2nd grid 

l The length of the one-dimensional space Nswim The number of the strains swimming out of a grid 
Δt The time interval between iterations Ngrid The number of spatial grids 
Δx The length of the spatial grid ΔNstr The square of the relative change rate of the strain concentration in a grid 
vbio The biomass yield Vmax,nu The maximum reaction rate of the nutrient uptake reaction (set to a constant value of twenty) 
vtotal The sum of the fluxes KM,nu The Michaelis–Menten constant of the nutrient uptake reaction (set to a constant value of two) 
v→ The flux vector D The diffusion coefficient 
vi The flux of the ith reaction MCe

glc The average glucose concentration available for strains in a grid 
vrel

s The release rate of substrate ths The set threshold 
nfmet The vector of net fluxes of metabolites p The parameter to determine when to stop the iteration 
S The stoichiometric matrix MNstr The average number of the mono strain 
LB and 

UB 
The vector of lower bounds and upper 
bounds of fluxes csstr The competitiveness for resource of a mono strain 

UBnu 
The upper bound of the nutrient uptake 
rates rstr The relative abundance of a mono strain 

ei The enzyme cost of the ith reaction R2 The determination coefficient 

MWi 
The enzyme molecular weight of the ith 
reaction 

y The true value of the sample 

σ The average saturation of all enzymes ŷ The predicted value of the sample 
n The number of reactions y The mean value of the sample 
kcat The turnover number of the enzymes yp The predicted value for the pth sample 
p_pool The intracellular protein ybase The baseline 
e_pool The enzyme content xp,q The qth feature of the pth sample 

e_pooleff The effective enzyme pool variable f(xp,q) 
The SHAP value of xp,q, indicating the contribution of xp,q to the predicted value yp. A positive f(xp,q) 
indicates that the feature has a positive effect on the predicted value; conversely, it has an inverse effect 

f The enzyme proportions in proteins Ch
O The dissolved oxygen concentration in hydrostatic water 

Cintr
s 

The intracellular concentration of a mono 
substrate 

PO The atmospheric pressure 

Ce
s 

The concentration of the substrate in 
environment VFo The volume fraction of oxygen in air 

Ce
bio 

The concentration of biomass in 
environment K The Henry constant of oxygen dissolved in water 

Ce
glc The glucose concentration in a grid dsw The density of water 

ΔCs 
The concentration of the substrate 
consumed by cellular metabolism MWw The molar mass of a water molecule 

Cyclestr,rep The reproduction cycle Cnh
O The dissolved oxygen concentration in none-hydrostatic water 

repstr The strain reproduction rate Dnh The diffusion coefficient in none-hydrostatic water 
destr The strain death rate Dh The diffusion coefficient in hydrostatic water 

destr
s 

The strain death rate determined by a mono 
substrate    
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UBnu,x,t =
Vmax,nu• Ce,nume

s,x,t

Ce,nume
s,x,t + KM,nu

(13)  

2.3.4. Module of substrate diffusion simulation 
The distribution of substrate concentrations can be calculated based 

on Fick’s second law [17] (as shown in Eq. (14)), the substrate diffusion 
module to simulate the substrate concentrations at different time points 
is shown in Eqs. (15)–(20). The module transformed the first-order de-
rivative of substrate concentrations on time scale into the second-order 
derivative on spatial scale. 

∂Ce,dif
s

∂t
= D

∂2Ce,dif
s

∂x2 (14) 

The Eq. (14) was expressed in a differential form for iterative 
calculation, as shown in Eqs. (15)-(17). 

Ce,dif
s, x+Δx,t+Δt − Ce,dif

s, x+Δx,t

Δt
= D

Ce,dif
s, x+2Δx,t − 2Ce,dif

s, x+Δx,t + Ce,dif
s, x,t

Δx2 (0 ≤ x

≤ l − 2Δx)
(15)  

Ce,dif
s, 0,t+Δt − Ce,dif

s, 0,t

Δt
=

Ce,dif
s, Δx,t+Δt − Ce,dif

s, Δx,t

Δt
(16)  

Ce,dif
s, l,t+Δt − Ce,dif

s, l,t

Δt
=

Ce,dif
s, l− Δx,t+Δt − Ce,dif

s,l− Δx,t

Δt
(17) 

According to Eqs. (15)-(17), the substrate concentration Ce,dif
s,t+Δt at the 

next moment was calculated from Ce,dif
s,t at the previous moment, as 

shown in equation Eqs. (18)-(20). 

Ce,dif
s, x+Δx,t+Δt = Ce,dif

s, x+Δx,t + D
Ce,dif

s, x+2Δx,t − 2Ce,dif
s, x+Δx,t +Ce,dif

s, x,t

Δx2 Δt (0≤ x

≤ l − 2Δx)
(18)  

Ce,dif
s, 0,t+Δt = Ce,dif

s, 0,t +Ce,dif
s, Δx,t+Δt − Ce,dif

s, Δx,t (19)  

Ce,dif
s, l,t+Δt = Ce,dif

s, l,t +Ce,dif
s, l− Δx,t+Δt − Ce,dif

s,l− Δx,t (20)  

2.3.5. Module of cell swimming simulation 
The cell swimming module was designed to simulate the random 

swimming of strains to obtain nutrients. When the average nutrient 
concentration in the adjacent grid is greater than that of the current grid, 
the swimming proportion is determined based on the relative difference 
in average concentrations and a set threshold, as shown in Eqs. (21)– 
(26): 

MCe
glc,x = Ce

glc,x

/
Nstr

x (21)  

Nstr
x→x+Δx = min

(

ths,
MCe

glc,x+Δx − MCe
glc,x

MCe
glc,x

)

• Nstr
x (MCe

glc,x− Δx ≤ MCe
glc,x

< MCe
glc,x+Δx, Δx ≤ x ≤ l − Δx；orMCe

glc,x < MCe
glc,x+Δx，0 ≤ x

< Δx)
(22)  

Nstr
x→x− Δx = min

(

ths,
MCe

glc,x− Δx − MCe
glc,x

MCe
glc,x

)

• Nstr
x (MCe

glc,x− Δx > MCe
glc,x

≥ MCe
glc,x+Δx, Δx ≤ x ≤ l − Δx；orMCe

glc,x− Δx > MCe
glc,x，l − Δx

< x ≤ l)
(23)  

Nswim
x = min

(

ths,
MCe

glc,x+Δx + MCe
glc,x− Δx − 2MCe

glc,x

MCe
glc,x

)

• Nstr
x (24)  

Nstr
x→x+Δx =

MCe
glc,x+Δx − MCe

glc,x

MCe
glc,x+Δx + MCe

glc,x− Δx − 2MCe
glc,x

• Nswim
x (MCe

glc,x− Δx > MCe
glc,x

< MCe
glc,x+Δx, Δx ≤ x ≤ l − Δx)

(25)  

Nstr
x→x− Δx =

MCe
glc,x− Δx − MCe

glc,x

MCe
glc,x+Δx + MCe

glc,x− Δx − 2MCe
glc,x

• Nswim
x (MCe

glc,x− Δx > MCe
glc,x

< MCe
glc,x+Δx, Δx ≤ x ≤ l − Δx)

(26)  

2.3.6. Coupling of the modules 
The modules were coupled through the substrate concentration 

distribution and strain concentration distribution. When the two con-
centration distributions at the initial moment were defined, the strain 
interactions could be simulated through iteration over the entire time 
scale. 

Firstly, at each time point, the effect of the swimming strain con-
centrations in the cell swimming simulation module on the strain con-
centration distribution was simulated based on the initial strain 
concentration distribution and initial substrate concentration distribu-
tion at the time point. Then, in the nutrient uptake and metabolite 
release simulation module, the upper bounds of the substrate uptake 
rates were calculated from the substrate concentration so that the 
metabolism fluxes could be simulated by the cellular physicochemical 
properties simulation module. At the same time, in this nutrient uptake 
and metabolite release simulation module, the substrate uptake rate, the 
metabolite release rate and the nutrient requirements of the strains were 
calculated through the simulated fluxes. 

Later, in the cellular survival simulation module, the reproduction 
strain concentration and death strain concentration were calculated 
based on the nutrient requirements and the strain concentration. Next, 
based on the substrate exchange rates, the reproduction strain concen-
tration and the death strain concentration, the effect of the strains on the 
substrate concentration distribution was calculated. Next, in the sub-
strate diffusion simulation module, the effect of substrate diffusion on 
substrate concentration distribution was calculated based on the initial 
substrate concentration distribution of each time point. Thus, the final 
substrate concentration distribution was calculated based on the effect 
of the cell and the substrate diffusion. Lastly, the final strain concen-
tration distributions were calculated based on the effect of strain 
swimming, the reproduction strain concentration and the death strain 
concentration. The calculation of the next time point was started and 
iterated until the end. 

2.3.7. The initial condition of the strain concentrations and substrate 
concentrations 

At the initial time, the strain concentrations were obtained by 
randomly sampling for two strains in each space grid. Furthermore, the 
initial substrate concentrations were set to a dimensionless number in 
each space grid. 

2.3.8. The calculation method for dissolved oxygen concentration 
The dissolved oxygen concentration was calculated by Henry’s law 

[18]. Firstly, for the conditions in hydrostatic water, the dissolved ox-
ygen concentration was calculated by the Henry coefficient, as shown in 
Eq. (27). 

Ch
O = PO ∗ VFo

/
K ∗ dsw

/
MWw (27) 

Then, the dissolved oxygen concentration under non-hydrostatic 
water was calculated by the diffusion coefficient, as shown in Eq. (28). 
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Cnh
O = Ch

O ∗ Dnh/Dh (28)  

2.3.9. Determination condition for the spatial–temporal steady state of 
strain–environment interaction relationships 

The grids were divided in a one-dimensional space. The parameter 
p•Δt was assumed to be the threshold of the sum of the relative change 
rates of strain concentrations in all grids in each iteration relative to the 
previous iteration, as shown in Eqs. (29)–(30). When p is zero for five 
consecutive iterations, the consortium is considered to have reached a 
steady state and the iteration is stopped. 

ΔNstr
j,t =

⎧
⎪⎨

⎪⎩

((Nstr
j,t − Nstr

j,t− 1 )
/

Nstr
j,t− 1 )

2
(t ≥ 1, Nstr

j,t− 1 > 0)

(Nstr
j,t )

2
(t ≥ 1, Nstr

j,t− 1 = 0)

(29)  

∑Ngrid

j=1

∑2

str= 1
ΔNstr

j,t ≤ p • Δt (30)  

2.3.10. Quantification of the competitiveness of a mono strain 
The relative abundance calculation achieved the quantification of a 

mono strain competitiveness for resource in a strain–strain consortium, 
as shown in Eqs. (31)–(33): 

MNstr
t =

∑Ngrid

j=1
Nstr

j, t

/
Ngrid (31)  

rstr
t = MNstr

t

/
∑2

str=1
MNstr

t t ≥ 1 (32)  

csstr = average
(
rstr

t
)
ifMN1

t +MN2
t > 0 (33)  

2.3.11. Data mining approach to strain–environment interactions for 
strain–strain consortia 

The FLAML automated machine learning method [19] was used to 
simulate the influence of various features on the strain–environment 
interaction relationships for strain–strain consortia. The fit of the ma-
chine learning method was assessed by the determination coefficient, as 
shown in Eq. (34). 

R2 = 1 −

∑
(y − ŷ)2

∑
(y − y)2 (34) 

The SHAP feature importance analysis [20] was performed to 
analyze the rules extracted by machine learning method. The SHAP 
values are shown in Eq. (35): 

yp = ybase + f
(
xp,1
)
+ f
(
xp,2
)
+ ⋯ + f(xp,q) (35)  

3. Results and discussion 

3.1. Design and characterization of the algorithm simulating the 
spatial–temporal interactions between two strains and environment 

Global simulation of interactions between strains and environment 
in co-culture consortia is important for understanding strain pro-
portions, distribution, and consortia evolution. This, in turn, provides 
reasonable guidance for optimizing production conditions. Currently, 
existing algorithms frequently neglect the influence of environmental 
variables on microbial interactions, which limits the investigation of 
spatial–temporal dynamics and potentially reduce simulation accuracy. 
To enhance the simulation of strain–environment interactions, a com-
bination of module coupling and data mining techniques was used to 
explore the spatial–temporal interactions facilitated by resource 
competition mechanisms. 

The characterizations of the coupled modules are listed in Table 2. 
Importantly, the coupling of the modules provided an in-depth study of 
the impact of cell survival and metabolic demands on the spa-
tial–temporal evolution of resource competition in industrial produc-
tion. Moreover, the computation partition of the modules reduced the 
algorithm redundancy and improved the algorithm readability. 
Furthermore, the data mining of strain–environment interactions pro-
vided insights into the mechanisms of high-dimensional environmental 
features on strain competitiveness for resource. 

3.2. The calculated dissolved oxygen concentration 

In this research, 0.02 cm2/h was considered to be the diffusion co-
efficient in hydrostatic water. The empirical Henry constants of dis-
solved oxygen in 25 ℃, 30 ℃ and 35 ℃ are shown in Table 3. 

For the agitation conditions, the calculated dissolved oxygen con-
centrations at different diffusion and temperature conditions are shown 
in Table 4. 

The calculated dissolved oxygen concentrations were used in the 
upper bounds of oxygen uptake rates for strains. At a same temperature, 
the dissolved oxygen concentration increased with the substrate diffu-
sion coefficient increased. To analyze the effect of a mono feature on the 
strain–strain consortia, the strain competitiveness level at the same 
dissolved oxygen concentration and different substrate diffusion co-
efficients were calculated (see Supplemental_Table S1). Moreover, the 
same dissolved oxygen concentration at different substrate diffusion 

Table 2 
The characterizations of the coupled modules.  

Modules Characterizations 

The cellular physicochemical properties 
module 

Simulate the metabolic fluxes and the concentration of intermediate metabolites in the cells under a steady-state condition based on flux 
balance analysis and enzyme kinetic constraints. 
Calculate the substrate requirements for normal growth and reproduction, as well as the release of intracellular metabolites at death. 

The cellular survival module Simulate the reproduction rate and death rate of strains at any time point based on nutrient and strain concentrations. 
The nutrient uptake and metabolite 

release module 
Calculate the fluxes of substrate exchange reactions between strains and the environment to simulate the nutrient uptake and metabolite 
release processes of strains. 

The substrate diffusion module Simulate the effect of substrate diffusion processes on strain interactions in a concise form of a linear equation. 

The cell swimming module Simulate the feeding behavior of two strains. 
Together with the first four modules, it simulates the resource competition level of strains under specific conditions.  

Table 3 
The empirical Henry constants of dissolved oxygen in 25 ℃, 30 ℃ and 
35 ℃.  

Temperature (℃) Henry constant (E× 10− 6 kPa) 

25 4.44 
30 4.81 
35 5.14  
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coefficients could be maintained by aeration control, temperature con-
trol, and other operations. 

3.3. Spatial–temporal evolutionary patterns of strain–strain consortia 
based on resource competition mechanism 

In order to deeply investigate the influence of cell survival and 
metabolic demands on strain resource competition in industrial pro-
duction, and to accurately predict the dominant strain, the spa-
tial–temporal evolution processes of the strain concentration, relative 
abundance, and glucose consumption in an E. coli–S. cerevisiae con-
sortium [21] were simulated. Furthermore, the simulation of the spa-
tial–temporal evolution was hoping to guide the product biosynthesis 
process of the consortium. Based on the coupling of the five modules, the 
spatial–temporal evolution of strain reproduction, death, and distribu-
tion in resource competition was explored, particularly under conditions 
of initial strain distribution heterogeneity. 

Since E. coli and S. cerevisiae reproduced every 20 and 120 min, 
respectively, the Δt/Cyclebreed of 1/5 and 1/30 was set for E. coli and 
S. cerevisiae respectively in each spatial grid and each iteration (interval 
four minutes). For the simulated physical domain, 60 grids were divided 
in a one dimensional space with 30 cm length. The initial concentrations 
of all common metabolites in the iML1515 and iMM904 models were set 
to a dimensionless number of three hundred. Because there was no 
nutrient supplementation, both strains underwent a decay period after a 
platform period with the concentrations of both strains approximated to 
zero. The substrate diffusion coefficient D in the substrate diffusion 
module was set to 0.02 cm2/h. The initial metabolite concentration was 
set to 300 mM, and the initial strain concentration was a random 
number between 1 mM and 20 mM in each space grid. The spa-
tial–temporal changes of the total strain concentration and the glucose 
concentration, the net increase rate of the total strain concentration, and 
the changes of the average glucose concentration at 35 ℃ are shown in  
Fig. 1. 

From Fig. 1a and b, it is observed that the spatial distributions of 
glucose concentrations and strain concentrations tend to be homoge-
neous as the time goes on. These indicate that substrate diffusion process 
and cell swimming process for nutrients play important roles in ho-
mogenizing substrate distribution and strain distribution. The substrate 
diffusion caused the increasingly homogeneous distribution of glucose 
concentrations, and the cell swimming caused the strain concentrations 
gradually to be homogeneous with the glucose concentrations. 

Furthermore, it is observed that starting from the fourth time point, 
the distribution of the total strain concentration closely resembled the 
distribution of glucose concentration at the previous time point. This 
observation indicates that cell swimming plays a significant role in 
driving the competition for glucose between strains. Both strains tend to 
compete for grids with high glucose concentrations while moving away 
from grids with low glucose concentrations. 

From Fig. 1b and c, it can be found that in the first thirteen time 
points when glucose was sufficient, the demand for environment 

nutrients in the cellular physicochemical properties module was satis-
fied, the total strain concentration was rising. The total reproduction 
concentration of Nrep calculated by the cellular survival module was 
more than the total death concentration of Ndeath. As the glucose con-
centration decreased, the total net reproduction rate, rreproduction

t − rdeath
t 

decreased from 10.0 % at the time point two to 3.74 % at the time point 
thirteen. After that the total strain concentration had a decreasing trend, 
with Nreproduction<Ndeath. As glucose almost depleted, the total net 
reproduction rate rreproduction

t − rdeath
t decreased from − 11.3 % at time 

point fourteen to − 66.7 % at time point twenty-seven, after which the 
total strain concentration remained at a very low level. This suggests 
that the strains respond to substrate concentration by reproduction and 
death. 

In order to accurately analyze the competition level for glucose of a 
mono strain and thus reasonably predict the dominant strain, the spa-
tial–temporal changes of relative abundance of rE.coli

j,t and rS.cerevisiae
j,t and 

total relative abundance of rE.coli
t and rS.cerevisiae

t among the spatial grids 
were simulated, as shown in Fig. 2: 

It can be found from Fig. 2a and b that rE.coli
j,t calculated by the cellular 

survival module and the cell swimming module was greater than 
rS.cerevisiae
j,t at most of the spatial grids with high glucose concentration at 

the previous time point. From Fig. 2c, it can be found that rE.coli
t gradually 

increased from 58.6 % to 100 %, and the E. coli competitiveness of csE.coli 

was quantified to be 0.86. On the other hand, rS.cerevisiae
t gradually 

decreased from 41.40 % to 0 %, and the S. cerevisiae competitiveness of 
csS.cerevisiae was 0.14. These indicate that the E. coli competitiveness is 
significantly higher than the S. cerevisiae competitiveness and the E. coli 
become the dominant strain. 

The phenomenon validates the conclusions of Barber et al., who 
experimentally investigated the evolution of an E. coli–S. cerevisiae 
consortium. They found that in the first 420 generations, there were only 
two groups of the two strains coexisting, and the wild E. coli was 
significantly dominant in the remaining fifty-eight groups [21]. The 
reason for this phenomenon may be that the generation time of E. coli is 
only 1/6 of that of S. cerevisiae, and the strong ability to reproduce in-
creases the E. coli competitiveness. Moreover, E. coli is a prokaryotic 
strain, which has a simple cellular structure, flexible metabolic regula-
tion and greater adaptability to environment changes than the eukary-
otic strain of S. cerevisiae. Qualitatively, the simulation method for 
spatial–temporal interactions between these two strains and the envi-
ronment has a reasonable level of accuracy. 

3.4. The influence of industrial production environment on the strain 
competitiveness 

To analyze the impact of the industrial production environment on 
the competitive dynamics between different strains within consortia and 
to offer insights for optimizing the industrial production process, an 
exploration of the influence mechanisms of five key environmental 
factors on strain competitiveness was conducted. Specifically, the po-
tential effects of substrate diffusion, dissolved oxygen concentration, 
inoculation ratio, micronutrient availability, and toxin presence on 
strain competitiveness were investigated. 

The competitive dynamics within strain–strain consortia are signif-
icantly influenced by the industrial production environment, with sub-
strate diffusion and dissolved oxygen concentration being particularly 
affected by operational parameters such as agitation rate, temperature, 
and aeration. The inoculation ratio of strains also critically shapes the 
trajectory of strain abundance, determined by their initial relative pro-
portions. In this study, the intricate relationships between these envi-
ronmental factors and strain competitiveness are examined, with a focus 
on the role of micronutrient uptake in strain performance. Micro-
nutrients are integral to the growth process and are essential for sus-
taining normal metabolic functions in strains. 

Table 4 
The calculated dissolved oxygen concentrations at different diffusion and tem-
perature conditions.  

Temperature 
(℃) 

Diffusion coefficient 
(cm2/h) 

Dissolved oxygen concentration 
(mM) 

25 0.02 2.65 
25 0.06 7.95 
25 0.1 13.25 
30 0.02 2.45 
30 0.06 7.35 
30 0.1 12.25 
35 0.02 2.29 
35 0.06 6.87 
35 0.1 11.45  
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Fig. 1. Heatmaps of spatial–temporal changes of the total strain concentration and the glucose concentration, and scatterplots of the net increase rate of the total 
strain concentration and the change of the average glucose concentration (a– the spatial–temporal changes of the total strain concentration, b– the spatial–temporal 
changes of the glucose concentration, c– the net increase rate of the total strain concentration and the change of the average glucose concentration). 
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Fig. 2. Heatmaps of spatial–temporal changes of the spatial–temporal changes of relative abundance and scatterplots of the total relative abundance among the 
spatial grids for E. coli and S. cerevisiae (a– the spatial–temporal changes of relative abundance for E. coli, b– the spatial–temporal changes of relative abundance for 
S. cerevisiae, c– the total relative abundance among the spatial grids for E. coli and S. cerevisiae). 
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Micronutrients, such as iron, play a crucial role in the growth and 
metabolic processes of strains. Iron, an essential nutrient involved in 
vital pathways including respiration, nitrogen fixation, and DNA 
biosynthesis [22], is predominantly absorbed by strains in the soluble 
Fe2+ form [22]. It has been hypothesized that an increased availability 
of TonB protein for iron uptake may enhance the growth rate of E. coli 
[21]. 

Moreover, toxins released by strains can influence metabolic de-
cisions, thereby affecting strain interaction patterns and abundance. It 
was hypothesized by Barber et al. that the E. coli reduced its uptake of 
bacteriocins secreted by S. cerevisiae by altering its own metabolic de-
cisions, thereby enhancing its environmental toxin tolerance and growth 
levels [21]. However, this hypothesis was not supported by experi-
mental data. In this research, the bacteriocin resistance of E. coli was 
analyzed to explore the inference mechanism of environmental toxins on 
strain competitiveness. 

In this research, a comprehensive set of input features was defined to 
assess their impact on strain competitiveness within the consortium, 
which included the substrate diffusion coefficient, dissolved oxygen, the 
inoculation ratio of S. cerevisiae, the upper bound of Fe2+ uptake rates, 
the upper bound of Fe3+ uptake rates, and the bacteriocin resistance. 
The strain competitiveness strengths of csE.coli and csS.cerevisiae were set as 
the output features. The initial metabolite concentration was set to 
300 mM, and the initial strain concentration is a random number be-
tween 1 mM and 20 mM in each space grid. A total of 138 pieces of data 
were simulated through the coupling of the five modules (see 
Supplemental_Table S1). The FLAML automated machine learning 
method mined the influences of the input features on the output fea-
tures. It was found that RandomForestRegressor [23] had performed the 

best simulation and the determination coefficient between the predicted 
and simulated values in the validation set was 0.680, which indicated 
that RandomForestRegressor had extracted some rules. However, these 
rules require further translation into interpretable formats to facilitate a 
deeper understanding. Consequently, the study proceeded to analyze 
feature importance using the SHAP method, which quantified and 
elucidated the influence of each feature on the competitiveness of E. coli 
and S. cerevisiae, as depicted in Fig. 3. 

The feature importance for csE.coli and csS.cerevisiae was found in the 
following order: the inoculation ratio of S. cerevisiae > dissolved oxygen 
> bacteriocin resistance > substrate diffusion coefficient > upper 
bound of Fe2+ uptake rates> upper bound of Fe3+ uptake rates. The 
influence of the environmental features of strain inoculation ratio and 
dissolved oxygen on the strain competitiveness was much larger than the 
influence of the strain metabolic properties. This indicates that the 
environmental features are crucial for the simulation accuracy of the 
strain competitiveness. Based on the range of SHAP values for each 
feature from Fig. 3, inoculation ratio of S. cerevisiae and dissolved oxy-
gen were classified as strong influencing features, while the substrate 
diffusion coefficient, the upper bound of Fe3+ uptake rates, the upper 
bound of Fe2+ uptake rates, and the bacteriocin resistance were classi-
fied as weak influencing features. 

The inoculation ratio of S. cerevisiae (rS.cerevisiae
0 ) was the environ-

mental feature with the greatest influence on the strain competitiveness. 
As rS.cerevisiae

0 increased, csE.coli gradually decreased and csS.cerevisiae gradu-
ally increased. It shows that the optimization of strain inoculation ratio 
is able to significantly regulate the strain competition level in industrial 
production. 

Fig. 3. Distribution of SHAP values for each feature for the competitiveness of the strains (a– E. coli, b– S. cerevisiae).  
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Dissolved oxygen had a positive effect on csE.coli, and had a negative 
effect on csS.cerevisiae. Interestingly, E. coli and S. cerevisiae are facultative 
aerobes, and oxygen can promote both of their growth. The disparity in 
their responses to oxygen levels may be attributed to the differences in 
their metabolic complexity. E. coli, being a prokaryotic organism, pos-
sesses a relatively simpler metabolic pathway, which can make it more 
sensitive to changes in oxygen availability. Consequently, oxygen may 
have a more pronounced effect on the energy production efficiency and 
growth rate of E. coli compared to the eukaryotic S. cerevisiae, which 
exhibits a more stable and complex metabolic profile. These findings 
highlight the significant impact of modulating dissolved oxygen con-
centrations through environmental control strategies, such as agitation, 
temperature, and aeration, on the competitiveness of strains in indus-
trial fermentation processes. 

The substrate diffusion coefficient (D) within the substrate diffusion 
module was identified as a weak influencing feature, yet its effects on 
E. coli (csE.coli) and S. cerevisiae (csS.cerevisiae) were distinct, with a negative 
impact on the former and a positive impact on the latter. This difference 
suggests that, within the operational parameters of industrial bio-
reactors, an increased agitation rate leads to a more uniform distribution 
of substrate concentration, and fewer strains swim due to glucose. 
Therefore, the less S. cerevisiae is affected by E. coli, and the competi-
tiveness of E. coli and S. cerevisiae is weaker and greater, respectively. 

After changing the upper bound of Fe2+ uptake rate of E. coli to 1.2 
times of the original bound, there was a slight enhancement of csE.coli and 
a slight decrease of csS.cerevisiae. This may be due to that the water-soluble 
nature of Fe2+ makes it less energy demand. Thus, the competitiveness is 
enhanced with the increase of the Fe2+ uptake capacity for E. coli. These 
findings imply that the competitiveness of strains can be strategically 
improved by genetically enhancing their Fe2+ uptake capabilities. 
Combined with the influence of Fe3+, it also indicates that strains tend to 
be more competitive and use energy more efficiently when they absorb 
more soluble micronutrients, which provides a strategic direction for the 
optimization of engineered strains in industrial applications. 

The effect directions of the upper bound of Fe3+ uptake rate and the 
bacteriocin resistance for E. coli on strain competitiveness are no clear. 
The reason about the upper bound of Fe3+ uptake rate may be that Fe3+

is extremely difficult to dissolve in water, and the strain metabolisms has 
low requirements for Fe3+. In addition, the effect of bacteriocin resis-
tance for E. coli on strain competitiveness may corroborate the experi-
mental result that no bacteriocins were detected in the E. coli– 
S. cerevisiae consortium of Barber et al. [21]. 

4. Conclusions 

To deeply understand the influence of industrial environment on co- 
culture consortia, the spatial–temporal interaction between strains and 
environment were simulated and data-mined. A novel framework was 
proposed, encompassing cellular physicochemical properties, nutrient 
uptake and metabolite release, cellular survival, cell swimming, and 
substrate diffusion within an E. coli–S. cerevisiae consortium. The results 
showed that the strains responded to substrate concentration changes by 
reproduction and death. As the substrate was consumed, the total net 
reproduction rate of the two strains gradually decreased from 10 % at 
the beginning to − 66.7 %, after which the total strain concentration 
remained at a very low level. The swimming caused the strains to 
continuously compete for the grid with high glucose concentration. The 
total relative abundance of E. coli increased to 100 % and gradually 
occupied most of the spatial grids with high glucose concentration, with 
a strain competitiveness strength of 0.86, while the total relative 
abundance of S. cerevisiae decreased to 0 % with a strain competitiveness 
strength of 0.14. Furthermore, data mining was employed to simulate 
the influence of the industrial production environment on strain 
competitiveness for resource. The results showed that inoculation ratio 
and dissolved oxygen content were strong features influencing the 

competitiveness. As the relative inoculum ratio increased, the strain 
competitiveness increased. As the dissolved oxygen content increased, 
the competitiveness of E. coli gradually increased and the competitive-
ness of S. cerevisiae gradually decreased. On the other hand, the substrate 
diffusion condition, the micronutrients and toxins were weak influ-
encing features. This method provides new ideas for the simulation of 
spatial–temporal interactions and the optimization of production pro-
cesses in industrial environment with two or more strains. 
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co-culture metabolic models reveal the fermentation dynamics, metabolic 
capacities and interplays of cheese starter cultures. Biotechnol Bioeng 2020;118: 
223–37. 

[12] Mao Z, Zhao X, Yang X, Zhang P, Du J, Yuan Q, Ma H. ECMpy, a simplified 
workflow for constructing enzymatic constrained metabolic network model. 
Biomolecules 2022;12:65. 

[13] Yang X, Mao Z, Zhao X, Wang R, Zhang P, Cai J, Xue C, Ma H. Integrating 
thermodynamic and enzymatic constraints into genome-scale metabolic models. 
Metab Eng 2021;67:133–44. 

[14] Bekiaris PS, Klamt S. Automatic construction of metabolic models with enzyme 
constraints. BMC Bioinforma 2020;21:19. 

C. Yang et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.csbj.2024.06.033
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref1
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref1
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref2
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref2
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref3
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref3
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref3
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref4
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref4
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref4
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref5
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref5
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref6
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref6
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref6
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref7
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref7
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref8
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref8
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref8
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref9
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref9
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref10
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref10
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref11
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref11
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref11
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref11
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref12
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref12
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref12
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref13
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref13
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref13
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref14
http://refhub.elsevier.com/S2001-0370(24)00231-9/sbref14


Computational and Structural Biotechnology Journal 23 (2024) 2861–2871

2871

[15] Orth JD, Thiele I, Palsson BO. What is flux balance analysis? Nat Biotechnol 2010; 
28:245–8. 

[16] Harcombe WR, Riehl WJ, Dukovski I, Granger BR, Betts A, Lang AH, Bonilla G, 
Kar A, Leiby N, Mehta P, Marx CJ, Segre D. Metabolic resource allocation in 
individual microbes determines ecosystem interactions and spatial dynamics. Cell 
Rep 2014;7:1104–15. 

[17] Lu Y, Li M. Simultaneous rapid determination of the solubility and diffusion 
coefficients of a poorly water-soluble drug based on a novel UV imaging system. 
J Pharm Sci 2016;105:131–8. 

[18] Qi X, Sun X, Li J, Hu T, Fang J, Zhou L, Yu B, Sun L, Liu W, Cai X, Ding Y, Xie Y, 
Zuo G. Determination of Henry’s law coefficient of oxygen in LAB for JUNO. 
J Instrum 2024;19:P03011. 

[19] Wang C, Wu Q, Weimer M, Zhu E. Flaml: a fast and lightweight automl library. 
Proc 4th Mach Learn Syst Conf 2021:434–47. 

[20] Lundberg S.M., Lee S.-I. (2017) A Unified Approach to Interpreting Model 
Predictions. In: 31st Conference on Neural Information Processing Systems (NIPS 
2017). Long Beach, CA, USA. 

[21] Barber JN, Sezmis AL, Woods LC, Anderson TD, Voss JM, McDonald MJ. The 
evolution of coexistence from competition in experimental co-cultures of 
Escherichia coli and Saccharomyces cerevisiae. ISME J 2021;15:746–61. 
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