
ARTICLE

Diversity of meso-scale architecture in human and
non-human connectomes
Richard F. Betzel1, John D. Medaglia2,3 & Danielle S. Bassett 1,3,4

Brain function is reflected in connectome community structure. The dominant view is that

communities are assortative and segregated from one another, supporting specialized

information processing. However, this view precludes the possibility of non-assortative

communities whose complex inter-community interactions could engender a richer functional

repertoire. We use weighted stochastic blockmodels to uncover the meso-scale architecture

of Drosophila, mouse, rat, macaque, and human connectomes. We find that most commu-

nities are assortative, though others form core-periphery and disassortative structures, which

better recapitulate observed patterns of functional connectivity and gene co-expression in

human and mouse connectomes compared to standard community detection techniques. We

define measures for quantifying the diversity of communities in which brain regions parti-

cipate, showing that this measure is peaked in control and subcortical systems in humans,

and that inter-individual differences are correlated with cognitive performance. Our report

paints a more diverse portrait of connectome communities and demonstrates their cognitive

relevance.
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Cognitive processes are thought to emerge from the coor-
dinated activity of distributed networks of neural
elements, from small-scale neuronal populations to large-

scale brain areas1,2. This coordination is facilitated by the brain’s
network of physical, hard-wired connections—its connectome3.
Accordingly, the range of cognitive processes in which a neural
element participates as well as its computational capacity depends
critically on its connectivity profile, i.e., its set of outgoing and
incoming connections along which it transmits information to
and receives information from other brain areas4.

While individual neural elements are thought to perform local
operations, their organization into motifs, circuits, and clusters
engenders a richer, more diverse functional repertoire5. In par-
ticular, the connectome’s communities—which collectively
comprise its so-called meso-scale structure—have attracted a
great deal of attention (see ref. 6 for a recent review). Here, we
define the meso-scale as the level between that of individual nodes
and the network as a whole. At that scale, a network’s nodes can
be grouped into clusters called “communities”, which are usually
assumed to be assortative, meaning that nodes preferentially
connect to nodes with similar attributes, namely membership to
the same community7. The resulting communities are internally
dense and externally sparse, and are oftentimes described as
“nearly decomposable”, segregated, and autonomous8.

The assortative community model has informed our current
understanding of brain network function, perpetuating a stylized
view of the brain in which segregated (i.e., assortative) commu-
nities engage in specialized information processing while a small
number of highly connected hubs integrate information across
communities9. This view is supported by cross-species analyses

uncovering analogous structure in both human and non-human
connectome data10–12, suggesting that assortative communities
may be an evolutionarily conserved architectural feature.

While this perspective has proven useful, it has a number of
drawbacks, of which we focus on two. First, it makes the strong
assumption that connectome meso-scale architecture is strictly
assortative (Fig. 1a). This assumption stems in part from the
algorithms used to detect communities, the most popular of
which seek internally dense and externally sparse sub-networks7.
As a result, these algorithms are incapable of detecting non-
assortative structure, such as core-periphery (Fig. 1b) and
disassortative (Fig. 1c) communities or mixtures of different
community types (Fig. 1d), all of which are evident in real-world
socio-technical and biological networks13. Moreover, modularity
maximization and related techniques may overlook important
and functionally relevant characteristics of neural circuits, which
exhibit non-assortative, cell type-specific wiring diagrams14,15. It
is unclear, then, whether the assortative communities uncovered
using these algorithms represent an accurate picture of con-
nectome meso-scale structure or whether they reflect the
assumptions and limitations of the algorithms themselves.

Second, this view implies that the connectome’s meso-scale
structure is rigidly uni-functional. That is, networks with assor-
tative communities are well-poised for specialized, segregated
information processing, but are not suited for integrative func-
tion. Higher order cognitive processes, for example, are thought
to emerge through integration of information originating in dif-
ferent brain systems16, an integration that is thought to occur via
the interaction of communities with one another. We hypothe-
size, then, that in order to produce complex thought and adaptive
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Fig. 1 Community structure types. Networks can exhibit different types of meso-scale structure. a Assortative communities are sub-networks whose
internal density of connections exceeds their external density. b Disassortative (multi-partite) communities are sub-networks where connections are made
preferentially between communities so that communities’ external densities exceed their internal densities. c Core-periphery organization consists of a
central core that is connected to the rest of the network and then peripheral nodes that connect to the core but not to one another. d These meso-scale
structures can be present simultaneously in the same network. For example, communities I–II interact assortatively, III–IV interact disassortatively, while
I–III interact as a core and periphery
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behavior, the brain’s underlying meso-scale architecture must
deviate (even if only slightly) from the strictly assortative model.

In this report, we address these hypotheses by using a flexible
community detection method, the weighted stochastic blockmo-
del (WSBM), to uncover the meso-scale architecture of both
human and non-human connectome data17,18. We show that, in
addition to assortative communities described in previous
reports, connectomes show evidence of non-assortative structure,
including subsets of communities that interact disassortatively
and others that form cores and peripheries. Next, we define a
node-level diversity index that quantifies the extent to which
individual neural elements participate in communities of all
classes. We show that in humans, this index is peaked in regions
associated with cognitive control and in sub-cortical areas, sug-
gesting that traditionally defined cortico-subcortical circuits that
support cognitive control are positioned to participate in a wide
range of meso-scale processes. Finally, we show that diversity of
connections in these same systems predicts individual differences
in performance on two cognitive control tasks: namely, the
Stroop19 and Navon20 tasks.

Results
The weighted stochastic blockmodel and connectome data sets.
We fit the WSBM to group-representative human connectome
data. The WSBM assumes that a network’s nodes can be parti-
tioned into K communities and that the weight and probability of
a connection forming between two nodes are governed by para-
meterized generative processes. Critically, these processes depend
only on the communities to which those nodes are assigned.
Using the WSBM to uncover a network’s community structure
involves inferring both the parameters of these processes and
the nodes’ community assignments that maximize the log-
evidence that the WSBM generated the observed network (see
Methods for details on connectome reconstruction and the
WSBM). The resulting communities, therefore, reflect similarities
in nodes’ connectivity profiles and are not constrained to be
assortative, meaning the WSBM is capable of detecting dis-
assortative and core-periphery structure.

As a point of comparison, we also obtained partitions using
modularity maximization (Qmax)7, a widely used community
detection technique popular in network neuroscience6. Unlike the
WSBM, Qmax is designed to detect only assortative community
structure. As both Qmax and the WSBM algorithms are non-
deterministic—i.e., repeated runs of the algorithm usually result
in slightly different solutions—we varied the number of
communities from K = 2 to K = 10 and repeated both algorithms
250 times for each K (throughout this section we show that our
results are robust over this range but focus, at times, on an
intermediate number of communities, namely K = 5).

In this section we report results using empirical human
connectome data. To ensure that our results are not biased by a
specific network reconstruction technique, we repeated all
analyses using non-human data sets including mouse, rat,
macaque, and Drosophila inter-areal connectomes (Supplemen-
tary Note 1; Supplementary Figs. 1–8). In addition, we repeated a
subset of analyses using the network of neuron-to-neuron
chemical synapses in the C. elegans connectome (Supplementary
Note 2; Supplementary Figs. 9 and 10). We also present several
confirmatory analyses that include demonstrating the conver-
gence of the WSBM algorithm (in Supplementary Note 3 and
Supplementary Figs. 11 and 12), a comparison of empirical
networks to randomly rewired human connectome data (Supple-
mentary Note 4; Supplementary Figs. 13–15), and evidence that
reported results do not trivially depend on node definition
(Supplementary Note 4; Supplementary Figs. 16 and 17).

Connectomes support diverse meso-scale architecture. The
human connectome’s ground truth meso-scale structure is
unknown. This motivates studying alternative methods for
uncovering communities and characterizing their similarities and
differences. In this section, we compare communities obtained
using two community detection methods: the WSBM and mod-
ularity maximization (Qmax) (Fig. 2).

We assessed the global dissimilarity of detected partitions using
pairwise variation of information (VI)21 (see Methods for details).
Specifically, we computed pairwise VI among all 250 partitions
detected using Qmax and separately for all partitions detected
using the WSBM. We also computed between-technique VI
among all pairs of Qmax and WSBM partitions. This process was
repeated separately for different values of K, which helped make
the comparison as fair as possible.

This procedure resulted in a sequence of within-technique and
between-technique VI scores as a function of K (Fig. 3a). At each
K we computed one-tailed t tests of whether the mean within-
technique dissimilarity of partitions detected with either the
WSBM or Qmax was smaller than the between-technique
dissimilarity. We observed that from K = 2, …, 9, both the
WBSM and Qmax uncovered partitions that were self-consistent
yet distinct from one another (maximum p< 10−15). This
observation was consistent across the non-human connectome
data as well, confirming that the WSBM and Qmax generate
statistically dissimilar estimates of connectome community
structure (Supplementary Fig. 2).

Next, we wished to confirm that the WSBM uncovered non-
assortative communities, specifically. To test this hypothesis, we
computed for each community r, its size, Nr, and assortativity
score, Ar (Methods). We aggregated all detected communities
and computed the mean assortativity score as a function of
community size, AðNÞ (Fig. 3b). These procedures were
performed separately for the WSBM and Qmax. We compared
these curves using functional data analysis, which is a set of
statistical tools for comparing continuous curves22. Specifically,
we computed the summed pointwise difference in both curves,
which we treated as a test statistic. We found that the observed
statistic was smaller than those obtained under a permutation-
based null model (p< 10−3), confirming that WSBM commu-
nities tend to be less assortative than Qmax (Fig. 3c). Again, these
findings are consistent across connectome data obtained from all
species (Supplementary Fig. 3).

Finally, because the functional roles of brain regions also
depend on local connections to their own and other communities,
we tested whether our understanding of these roles changed when
we considered WSBM communities rather than those uncovered
using Qmax. Specifically, we examined how regional assortativity
scores, a node-level metric analogous to community assortativity,
differed given the WSBM versus Qmax partitions (Methods;
Fig. 3d, e). We found that regional assortativity decreased for
most nodes. Aggregating differences by functional systems23

(Methods), we found that the greatest decrements were
concentrated within visual and somatomotor systems (Fig. 3f).
Interestingly, decreased regional assortativity was also correlated
with node degree (the number of connections a node makes),
with low-degree nodes exhibiting greater decreases compared to
high-degree nodes (r = 0.37, p< 10−4; Fig. 3g). These findings
were, overall, consistent in non-human connectome data sets.
There were, nonetheless, some differences, which are discussed in
Supplementary Note 1 (Supplementary Fig. 4).

In summary, these findings confirm that the weighted
stochastic block model and modularity maximization uncover
communities of fundamentally different nature. Among the most
profound differences is the assortativity of detected communities,
with the WSBM consistently detecting less assortative
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communities (i.e., less segregated and more integrated) than
Qmax. The brain’s meso-scale structure is generally assumed to be
uniformly assortative (i.e., communities are segregated from one
another), a feature thought to support specialized information
processing6. The WSBM challenges this view, detecting less
assortative (and hence increasingly integrated) communities,
suggesting that communities might play a more diverse range of
functional roles. Demonstrating this point empirically, however,
remains a challenge.

Many but not all communities are assortative. In the previous
section, we provided evidence that connectomes exhibit diverse,
non-assortative communities. This finding, however, runs coun-
ter to the dominant narrative surrounding brain network func-
tion, namely that information processing is carried out by
specialized, assortative communities. In addition, assortative
communities are thought to confer many positive attributes to a
network, including separation of dynamic timescales, efficient
spatial embedding, and evolutionary robustness6. An important
question, then, is whether the reduction in assortativity and
increase in community diversity described in the previous section

are driven by a small subset of non-assortative communities (so
that most communities are still assortative) or whether all com-
munities uniformly decrease in assortativity.

To address this question, we uncovered the maximally
assortative set of communities for each WSBM partition, which
comprises the largest set of communities (in terms of the number
of nodes included in those communities) whose minimum
within-community density of connections exceeds its maximum
between-community density (Methods). We then estimated how
frequently, on average, each brain region participated in this set.
We found that as we varied the number of communities from K =
2 to K = 10, the maximally assortative set comprised
75± 13 percent of all nodes (Fig. 4a). In general, the maximally
assortative set was also comprised of low strength, non-rich club
nodes (Fig. 4b, c; see Supplementary Fig. 18 for more details on
nodes’ assignments to the rich club). Breaking down inclusion in
this set by cognitive system, we found that control and subcortical
systems were the least likely to be included in the maximally
assortative set compared to the other systems (Fig. 4d). As in the
previous section, while we find similar results in non-human
connectome data sets, we also note some differences (Supple-
mentary Fig. 5). For instance, the Drosophila data set is unique in
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Fig. 2 Example WSBM and Qmax communities. Human connectome network ordered by community partitions detected using a Qmax and b the WSBM.
Both examples are shown with the number of communities fixed at K= 5. The color of matrix elements for the left sub-panels represents log-transformed
edge weights while the color of matrix elements for the right sub-panels represents the log-transformed mean within-community and between-community
edge weights. Panels c and d depict the spatial distributions of those same partitions
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that the relationship of node strength and the probability of being
assigned to the maximally assortative set exhibits a u-shaped
curve (Supplementary Fig. 5f). The macaque data set exhibits a
similarly shaped curve, and possibly as a consequence of where
we drew the cutoff for rich club assignment or the incompleteness
of the macaque connectome, rich club nodes are actually more
likely to be assigned to the maximally assortative set than non-
rich club nodes (Supplementary Fig. 5o).

In summary, these findings confirm that while the WSBM
tends to detect less assortative communities than Qmax, there
nonetheless exists a backbone of highly assortative communities
that, as a group, exhibit the ubiquitous internally dense, externally
sparse connection density. This collection of communities, which
largely excludes the brain’s highly connected regions, therefore
has the capacity to perform segregated information processing.

Functional relevance of the WSBM. It is generally agreed upon
that structural connectivity in the brain determines the partners
that any given region can “talk to”, and therefore constrains
communication patterns among brain regions, shaping the cor-
relation pattern of ongoing neural activity, i.e., the functional
network organization. We reasoned that if two brain regions
receive input from the same set of brain regions and deliver
output to the same set of regions, then their activity over time
should be correlated, i.e., those regions would appear functionally
connected to one another. This set of assumptions has a long
tradition in the network neuroscience community. In the past,
before it was common to empirically estimate FC as the corre-
lation of neural activity, measures of similarity between brain
regions’ connectivity profiles (e.g., matching index) have been
used as a stand-in ref.24.
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Though via different mechanisms, both the WSBM and Qmax

produce communities composed of brain regions with similar
patterns of incoming and outgoing connections and so we would
expect the resulting communities to be internally dense in terms
of functional connectivity. In the case of Qmax, this similarity is
entirely incidental—nodes get grouped into internally dense,
mutually connected clusters, inflating their similarity. The
WSBM, on the other hand, explicitly defines communities as
clusters of nodes whose connections were generated by the same
statistical process; by definition, pairs of nodes in the same
community will have similar connectivity patterns even if they,
themselves, are not directly connected.

Because the similarity of regions’ structural connectivity is
associated with strong functional connectivity, we expect that two
nodes in the same community should be more strongly
functionally connected to one another than two nodes in
different communities, irrespective of which technique was used
to define the communities. However, the WSBM and Qmax

represent vastly different hypotheses about how brain networks
function. An assortative brain is aligned with the hypothesis that
communities function and process information relatively inde-
pendently from one another, while a brain that allows for some
non-assortative communities implies that function arises not
solely from contributions of independent communities, but from
the interactions between communities. Whereas past work has
emphasized the assortative model of brain function, in which
integration is performed by a few outlying nodes whose
connections span community boundaries, the non-assortative
model holds that integration is fundamentally a community-level
action performed by clusters of brain areas with similar (non-
assortative) connectivity profiles.

We can compare these two hypotheses of brain function with
cross-validation methods using empirical functional connectivity
as metadata25,26. We reasoned that if functional connectivity
emerges from interactions among brain regions in independent,
autonomous clusters, then its organization will be closely aligned
to the communities detected using Qmax. On the other hand, if
functional connectivity is the result of non-assortative, integrated
clusters, then the WSBM communities will more closely resemble
the brain’s functional connectivity. To compare communities
with functional connectivity, we classified every functional
connection as “within-community” or “between-community”.
We calculated the mean weight of all connections assigned to
each class and finally the difference between those values. This
measure—the difference between mean within-community and

between-community functional connections—serves as a mea-
sure with which we can evaluate the performance of the two
algorithms.

We found that over a range K = 2, …, 10, the WSBM
consistently uncovered communities whose internal FC density
exceeded their between-community density (Fig. 5a). Moreover,
the difference of within-community and between-community FC
density was greater using the WSBM communities than using
Qmax communities (t tests, p< 0.01; Fig. 5b), suggesting that the
WSBM communities capture functional relationships among
brain regions. We also report consistent findings when we apply
the same methodology to correlated gene expression patterns for
the mouse connectome (Supplementary Fig. 8). These findings
show that WSBM communities are more closely aligned with
human FC than Qmax communities, informing our understanding
of the role played by non-assortative communities in shaping the
correlation structure of correlated neural activity.

Although the results of this section suggest that the WSBM is
closely aligned with human FC, we report several caveats. First,
our analysis assumes a close relationship between FC and the
underlying structure. While structure constrains FC, the mapping
between the two is imperfect and fluctuates over shorter
timescales27 and can vary when different measures of FC are
used. The use of a Pearson correlation, for example, induces
transitive functional connections by placing statistical bounds on
correlations among triplets of nodes28. This implies that the
correlation values are not independent, which may influence our
estimates of mean within-community and between-community
FC magnitudes.

Community morphospace reveals rules for between-
community interactions. To this point we have shown that the
WSBM uncovers rich, non-assortative meso-scale structure and
that, compared to Qmax, these communities are more functionally
and genetically segregated in human and mouse connectomes,
respectively. In this section, we seek a fundamental understanding
of the exact nature of that mesoscale architecture, and therefore
ask the question: “How do interactions among pairs of commu-
nities combine to generate assortative and non-assortative
meso-scale architecture?” To address this question, we focus our
analysis onto the interactions among pairs (dyads) of commu-
nities. Community dyads represent the building blocks of a net-
work’s meso-scale structure, and can be combined in different
configurations and proportions to engender larger, more complex
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functional circuits. We investigate community interactions using
a theoretical morphospace analysis29, a technique recently
adapted to the study of complex networks30.

A morphospace is a hyperspace whose axes are features of a
particular class of organism or system. In the case of complex
networks, axes usually are defined to be topological properties of
a network, e.g., efficiency, wiring cost, modularity, or the
parameters of generative network models. Once the axes are
defined, any observed network can be represented in the
morphospace as a point whose location is defined by that
network’s particular combination of features. In general,
morphospaces are not uniformly populated. Evolutionary and
functional constraints render some regions more favorable (and
hence more densely populated) than others, and by studying the
density of points throughout the morphospace one can better
understand how those constraints influence the structure of a
network.

Here, rather than constructing a morphospace of networks, we
construct a three-dimensional community morphospace,
allowing us to investigate how interactions among pairs of
communities combine to generate assortative and non-assortative
meso-scale architecture. In this morphospace, each point
represents a pair of communities, {r, s}, and the axes are defined
to be their respective within-community and between-
community connection densities, ωrr, ωss, and ωrs (Fig. 6a).
These features can be used to classify the interaction of r and s
into one of three canonical community interaction motifs:
assortative, core-periphery, and disassortative (Methods for
details) (Fig. 6b).

We compared morphospaces constructed based on commu-
nities detected using the WSBM and Qmax, and computed the
relative proportion of each motif type (Fig. 6c, d). Across
K = 2, …, 10, we found that Qmax partitions resulted in, almost
exclusively, assortative interactions among communities (Fig. 6e).

The WSBM also favored assortative interactions, but included a
significant number of core-periphery and disassortative interac-
tions. Again using functional data analysis, we compared the
relative proportion of each motif by performing a pointwise
subtraction and then summation of each motif’s relative
proportion as a function of K and aggregated the motif-specific
scores to generate a statistic (Fig. 6e). This statistic measured the
absolute difference in relative motif proportion as the number of
communities varied from K = 2 to K = 10. We compared this
statistic against a null distribution generated by randomly and
uniformly permuting nodes’ community assignments and
recalculating motif proportions. We found that the observed
difference exceeded what would be expected by chance (p = 0.029;
1000 permutations), indicating that the relative proportion of
community motifs discovered using the WSBM was different
than Qmax and could be largely explained by increased diversity of
motif types using the WSBM. Again, these findings were largely
replicated in non-human connectome data, though the relative
proportions of motif types was variable (Supplementary Fig. 6).
While the incompleteness of the non-human connectome data
sets make cross-species comparisons difficult, these differences
raise the prospect that the meso-scale structure of different
organisms features nuanced, organism-specific motifs.

Community motifs identify a class of diversely connected
nodes. Community motifs represent interactions among pairs of
communities. We mapped motifs back to the level of individual
brain regions by computing a motif participation index for each
brain region, which measured the fraction of times the commu-
nity that region was assigned to participated in each motif.
Importantly, for the core-periphery motif, we distinguished
between the “core” community and the “periphery” community.
In addition, we also computed a diversity index: an entropy over
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Fig. 6 A rich community morphospace. a A community motif is constructed on the average connection weight over blocks of the connectivity matrix. Here,
we show blocks within and between two communities, labeled r and s. b Given within-community and between-community connection densities, it is
possible to classify each pair of communities into one of three motifs: assortative, disassortative, or core-periphery. c, d All pairs of communities placed in a
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disassortative communities and so points on the red curves in D and E are not equal to zero
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the motif participation distribution (Methods: "Diversity index").
A region that participated largely in one motif type had lower
diversity than a region that participated equally in all motif types.

As expected, motif participation was heterogeneous across
brain regions. Core participation, for example, was dominated by
highly connected sub-cortical regions as well as the precuneus,
insula, and frontal cortices. This agrees with our understanding of
those regions as being highly central in the network, with the
capacity to exert influence and regulate information flow across
the brain9. Participation in assortative motifs, on the other hand,
was dominated by middle temporal, lateral occipital, and fusiform
cortices (Fig. 7a). Interestingly, participation was stratified by
node strength (Fig. 7b). Binning brain regions by their strengths,
we found that low-strength bins were composed of nodes that
participated predominantly in assortative and periphery motifs
while high-strength bins included nodes that participated almost
exclusively in core motifs. By quantifying the diversity within
each bin as an entropy, we found that both the low-strength and
high-strength regions were among the least diverse—they
participated in a narrow, well-defined set of motifs. The set of
regions with the most diverse motif participation were those with
above average but never the greatest strength (Fig. 7b). This
finding was also observed in the non-human connectome data
sets (Supplementary Fig. 7).

These results suggest an important functional role for middle-
strength brain regions. While both high-strength and low-
strength regions are highly stereotyped in terms of the range of
motifs in which they participate, middle-strength brain regions
are among the most diverse, participating in all motif types nearly
equally, and hinting at the capacity for enhanced functionality.

This is not to diminish the putative functional roles of high-
strength and low-strength regions, which have the capacity to
readily exert influence and be influenced, respectively, but only to
suggest that middle-strength nodes might have the ability to do
both. Based on these findings, we hypothesized that the diversity
of communities in which a region participates is related to its
functional repertoire, with increased diversity corresponding to a
broader range of functions. We further hypothesized that
polymodal association areas, because they participate in a range
of cognitive processes and require the synthesis of sensory
information, attentional resources, and control mechanisms,
would be among the most diverse.

To test this hypothesis, we computed a region-level diversity
index (Fig. 7c), which we aggregated by functional system. As
expected, the most diverse regions were concentrated within
control and subcortical networks (permutation tests; p = 0.001)
(Fig. 7d), and these results were robust across a range of values for
the number of communities, K (Fig. 7e). The cognitive control
network includes some of the brain’s more recently evolved
cortical structures31, which are thought to play critical roles
across a multitude of executive functions32, while the sub-cortex
contains many nuclei responsible for performing distinct
functional and regulatory roles33,34. Note that because Qmax

uncovers only assortative community motifs, each brain region’s
diversity score is effectively zero. Accordingly, we never assessed
the distribution of diversity scores for the Qmax partitions over
functional systems.

Behavioral relevance of motif diversity. In the previous section,
we demonstrated that the most diverse brain regions, in terms of
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Fig. 7 Regional variation in motif participation highlights diversely connected nodes. a Regional participation in the four community motif types. Note that
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their community motif participation, include control and sub-
cortical regions. We speculated that this diversity might represent
a neuroanatomical, network-level substrate for flexible cognitive
behavior. In this section, we test whether inter-individual differ-
ences in regional diversity can account for behavioral variability.

Specifically, we asked 30 subjects to perform canonical
cognitive control tasks (the Stroop and Navon), which require
the rapid interactions of visual, attentional, and executive control
systems (see Methods for task details). We combined total
accuracy from both tasks to generate a composite accuracy score
for each subject, which measured their performance. We
hypothesized that individuals with greater diversity would
perform better on both tasks than individuals with little diversity,
suggesting that brain networks configured to facilitate integration
across many types of meso-scale organization can more
effectively exert control over processes requiring many complex
representations and discriminative judgments.

To this end, we fit the WSBM to subjects’ connectome data
while varying the number of communities over the range
K = 2, …, 10, classified community motifs, and computed motif
participation scores and diversity indices for each brain region. As
an additional step, we partialed out the effect of subjects’ total
connection weight over the whole brain from the regional
diversity indices. We then computed the Spearman correlation of
total accuracy with the residuals, resulting in a correlation
coefficient for each brain region. In Supplementary Note 5 we
show that we get similar results using different parcellation
schemes (Supplementary Figs. 16 and 17) and without partialing
out total connectome weight (Supplementary Fig. 19).

Interestingly, we found that the strongest correlations (both
positive and negative) were distributed heterogeneously across the
brain (Fig. 8a), but also tended to cluster within a few cognitive
systems. The strongest positive correlations belonged to regions
that were associated with cognitive control (permutation test; p =
0.031) and sub-cortical systems (p = 0.015), while the visual
system was more anti-correlated than expected (p< 10−3; all tests
FDR corrected for multiple comparisons) (Fig. 8b). Moreover,
when the number of detected communities was greater than K =
4, this pattern remained largely unchanged (Fig. 8c). Generally,
these findings posit a link between individual differences in
behavior and regional variation in motif diversity. More
specifically, they also implicate control and subortical systems, a
finding reminiscent of the corticostriatal loops thought to play an
important role in control-oriented behavior35.

Discussion
In this report, we hypothesized that the view of the connectome
as being comprised of segregated communities is one that

overlooks, for methodological convenience and ease of inter-
pretation, competing and equally plausible accounts of its meso-
scale architecture. These alternatives allow for the possibility of
heterogeneous community configurations, including cores and
peripheries and disassortative motifs. Using the WSBM, which
belongs to a class of community detection algorithms sensitive to
both assortative and non-assortative communities, we presented
evidence supporting the existence of such motifs. Moreover, by
cross-validating communities using metadata, we showed that
meso-scale structure uncovered by the WSBM was more closely
aligned with functional connectivity compared to Qmax. We then
observed that the extent to which brain regions participated in
particular classes of motifs varied across the brain, with the
greatest degree of diversity concentrated in control and sub-
cortical systems. This prompted us to formulate the hypothesis
that participating in a diverse set of communities engenders a
broader functional repertoire and flexible cognitive behavior. We
tested this hypothesis using single-subject connectome data and
behavioral scores recorded during cognitive control tasks. We
found that regional diversity within both control and subcortical
systems was predictive of subjects’ task performance, supporting
our hypothesis that structural diversity is relevant for human
behavior.

A central aim of biology is to understand how a system’s form
and function are related. In neuroscience in particular, evidence
across spatial scales points to the critical importance of structural
links between neural elements in predicting the function of a
circuit or motif5. For example, synapse formation dynamics shape
distributed synchronization patterns36, offering a mechanistic
explanation of sequential activity underlying motor gestures and
memory37; evidence from theoretical and computational studies
suggests that neural sequences may be shaped by synaptic con-
straints and network circuitry rather than time constants38. At the
small-scale of neuronal circuits, these studies collectively high-
light topological rules and structural motifs that explain observed
function: from feedforward loops to repressor lattices39. Yet
obtaining similar insights at the large-scale of whole-brain circuits
has proven challenging, in part due to incomplete understanding
of which motifs matter at this scale. Our work directly addresses
this gap by offering novel concepts to define structural motifs in
the meso-scale architecture of connectomes, tools for estimating
these motifs from available data, and a proof-of-concept
demonstration that the diversity of such motifs can be used to
understand individual differences in a cognitive process that
requires computations in large-scale distributed circuits (cogni-
tive control40).

In seeking large-scale structural motifs, we shifted focus away
from regional and whole-brain organization, and onto the brain’s
meso-scale structure. Meso-scale analysis is a coarse-graining of a
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network, analogous to dimension reduction. While the modest-
sized networks studied here benefit from such an analysis, this
approach may see broader applicability in the future, where
advances in connectome imaging and reconstruction techniques
have resulted in high-dimensional data sets41,42. Making sense of
such data while still respecting its underlying relational
structure—parsimoniously encoded as a network or graph—is a
major computational challenge. To comprehend the organization
of connectome data, especially at the cellular scale, may require
dimension reduction techniques like community detection that
can distill the important organizational principles from those that
are less useful. Modularity maximization and related techniques
may miss out on functionally relevant characteristics of compli-
cated neural circuits, which exhibit non-assortative, cell type-
specific wiring14,15. Our study represents one of the first to
explore the utility of blockmodels in conjunction with structural
connectome data (though others have investigated blockmodels
in the context of functional connectivity43–46). We demonstrate
the potential benefits of this approach, linking blockmodels to
behavior, functional connectivity (in the human), and gene co-
expression (in the mouse). Future studies may extend these
approaches to the study of neurodevelopment or psychiatric
disease and disorders.

Our work refines the widely held view of the brain as being
composed of segregated communities interlinked by integrative
hubs9. While most communities detected using the WSBM
engaged in assortative interactions, others engaged in core-
periphery and disassortative interactions. This diversity of inter-
connection types suggests that the integrative units of the brain
are not necessarily highly connected hubs, but groups of brain
regions with similar connectivity profiles, weight distributions,
and shared functional capacity5. Importantly, these findings were
replicated in non-human connectome data sets, suggesting that
non-assortative meso-scale architecture is not unique to Homo
sapiens and is, likely, not an artifact attributable to a specific
connectome reconstruction technique.

These findings build upon and extend other recent studies
reporting non-assortative structure in connectome data. The
mammalian visual system for instance, exhibits feed-forward like
structure at both the inter-areal47 and cellular levels48. A previous
analysis of C. elegans’ meso-scale structure using mixture models
(a relative of the WSBM) revealed a core-like community com-
posed of highly connected inter-neurons that play critical roles in
mechanosensation and locomotion, highlighting its apparent role
in the control of behavior49. Similarly, mouse, rat, and macaque
connectomes exhibit core-periphery organization, where the core
is composed of associative brain areas and proposed to act as a
“pacemaker”50. Moreover, this type of architecture is consistent
with wiring-cost reduction models, suggesting that core-periphery
structure, like assortative communities, can be efficiently
embedded in three-dimensional space51.

The richness of assortative, disassortative, and core-periphery
interactions alters the picture of possible computations that the
brain can support. Indeed, that picture morphs from a simple
egalitarian description in which each cognitive system acts equally
and independently, into a more varied landscape that could
possibly support top-down52 and bottom-up influence53, hier-
archies of processes47, and repertoire diversity, all canonical
features of neural dynamics observed in empirical studies across
spatial scales and species.

Our analyses uncovered an unexpectedly critical role of the
topological “middle class”—brain regions with above average but
never the greatest strength displayed the most diverse motif
participation. This finding joins a series of recent examples
highlighting the importance of non-hub and non-rich-club brain
regions. Several recent functional studies have demonstrated the

utility of low-strength nodes in explaining individual differences
in fluid intelligence54 and alterations in functional brain
dynamics in psychiatric disease55. Complementary studies of
human and non-human primate structural connectivity suggest
that low-strength nodes have the capacity to drive neural
dynamics into distant target states56. Yet, the role of middle-
strength nodes has not been broadly studied, and their archi-
tectural characteristics are not well understood. Our finding that
middle strength nodes display diverse participation in motifs
suggests enhanced functionality: the capacity to both readily exert
influence on and be influenced by others56. While we provide an
empirical observation of this diversity, and initial evidence sup-
porting its role in cognitive function (see next section), our
understanding could benefit from future work exploring mathe-
matical models of neural dynamics that explicitly account for
these observations.

We demonstrated that individual differences among brain
regions’ diversity was correlated with subjects’ performances on
Stroop and Navon tasks. Moreover, the strongest correlations
were associated with the systems whose diversity was, on average,
the greatest. This finding suggests that diverse motif participation,
which we speculate allows regions to engage in a wider range of
function, represents a neuroanatomical substrate for flexible
cognitive behavior32. This finding corroborates past studies
showing that the brain’s control systems reorganize the flexible
reconfiguration of brain FC in adapting to complex tasks57 and
agrees closely with what is already known about their circuitry;
cortico-subcortical loops are believed to play important roles in
supporting cognitive control processes58. In our work, these
systems are also highlighted as the most diverse in terms of their
motif participation, suggesting that in addition to their traditional
roles in cognitive control, they may also have the capacity to
perform manifold functional roles, including the support of
polysensory integration and association as well as exerting control
over those processes. Future studies can explicitly examine whe-
ther this meso-scale anatomical organization guides functional
network organization such as hierarchies from sensory to asso-
ciation to control regions59.

With the rapid acquisition of large connectomic data sets, it is
becoming increasingly urgent to develop and share computational
tools for studying complex systems. Here, we made several
methodological innovations in the form of novel network-based
metrics, including assortativity scores, community morphospace
analysis and motif classification, and node-level motif participa-
tion and diversity indices. With the exception of the diversity
index, our exploration of these measures was largely theoretical.
Future studies can capitalize on these theoretical advances by
comparing their values in healthy and diseased conditions60,
across the human lifespan61, or as a function of cognitive or
behavioral state62. Moreover, the tools themselves are agnostic to
the exact nature of the network under study, and may therefore
also prove useful in understanding meso-scale organization in
non-neural networked systems.

It is important to note a few methodological limitations of this
study. First, the WSBM requires that the user specify the number
of communities, K, for which there is no agreed upon method63.
Accordingly, we never focused on a particular value of K, but
showed that our results are robust over a reasonable choice of K.
Another limitation, especially with the human connectome data,
is the verisimilitude of the reconstructed network. Diffusion
imaging and tractography algorithms are prone to inaccurate
reconstructions that limit their utility for connectome inference64.
Despite these shortcomings, tractographic reconstructions of fiber
bundles have been incorporated into neurosurgical planning65,
suggesting that the accuracy of tractography should be evaluated
in specific contexts. Moreover, hardware advances and a new
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generation of ensemble66 and global reconstruction67 techni-
ques offer the possibility of improved estimates. In the context of
this discussion, however, it is also important to point out that our
results in the human were all confirmed in the non-human
connectomes as well, which are constructed from inherently
different sorts of empirical data. The reliability of our findings
across Drosophila, mouse, rat, macaque, and human suggest that
they cannot be accounted for by deficiencies in any one data
modality.

In this work, we sought to understand the structural basis for
cognitive computations. We hypothesized that diverse meso-scale
structure allows a network to engage in a wider functional
repertoire, and that inter-subject variability in diversity is pre-
dictive of variation in cognitive performance. To address these
hypotheses, we applied a WSBM to the connectome data acquired
from five different species (Drosophila, mouse, rat, macaque, and
human). We showed that the communities it detects are different
from those commonly discussed in the literature, and that they
provide statistically better explanations of resting state functional
connectivity in the human and gene co-expression in the mouse.
Finally, we showed that a diversity metric derived from those
communities predicts behavioral outcomes in cognitive control
tasks. Collectively, this body of work provides an alternative view
of the structural substrate for computations in large-scale dis-
tributed circuits, and opens up new avenues of inquiry into the
development and evolution of this architecture.

Methods
Connectome data sets. A connectome refers to the complete set of neural ele-
ments and the physical connections that link those elements to one another3. In the
main text we analyze human connectome data. In the supplement, we repeat those
analyses using previously published connectome data representative of five dif-
ferent species: Drosophila, mouse, rat, macaque, and human. In this section, we
offer brief descriptions of the methodologies used to reconstruct human con-
nectome data. More details on the nun-human data sets are provided in Supple-
mentary Note 1.

Human connectome data set. We analyzed both individual and group-repre-
sentative, whole-brain networks generated by combining single-subject data from a
cohort of 30 healthy adult participants. Each participant’s network was recon-
structed from diffusion spectrum images (DSI) in conjunction with state-of-the-art
tractography algorithms to estimate the location and strength of large-scale
interregional white-matter pathways. Details of the acquisition and reconstruction
have been described elsewhere68 but are repeated here for the sake of completeness.

DSI were acquired for a total of 30 subjects along with T1-weighted anatomical
scans. We followed a parallel strategy for data acquisition and construction of
streamline adjacency matrices as in previous work. DSI scans sampled 257
directions using a Q5 half-shell acquisition scheme with a maximum b-value of
5000 and an isotropic voxel size of 2.4 mm and an axial acquisition with the
following parameters: repetition time = 5 s, echo time = 138 ms, 52 slices, field of
view (231, 231, 125 mm). All procedures were approved in a convened review by
the University of Pennsylvania’s Institutional Review Board and were carried out in
accordance with the guidelines of the Institutional Review Board/Human Subjects
Committee, University of Pennsylvania. All participants volunteered with informed
consent in writing prior to data collection.

DSI data were reconstructed in DSI Studio (www.dsi-studio.labsolver.org) using
q-space diffeomorphic reconstruction (QSDR)69. QSDR first reconstructs
diffusion-weighted images in native space and computes the quantitative
anisotropy (QA) in each voxel; the image is then warped to a template QA volume
in Montreal Neurological Institute (MNI) space using the statistical parametric
mapping nonlinear registration algorithm. Once in MNI space, spin density
functions were reconstructed with a mean diffusion distance of 1.25 mm using
three fiber orientations per voxel. Fiber tracking was performed in DSI studio with
an angular cutoff of 55°, step size of 1.0 mm, minimum length of 10 mm, spin
density function smoothing of 0.0, maximum length of 400 mm and a QA
threshold determined by DWI signal in the colony-stimulating factor.
Deterministic fiber tracking using a modified FACT algorithm was performed until
1,000,000 streamlines were reconstructed for each individual.

Anatomical scans were segmented using FreeSurfer59 and parcellated using the
connectome mapping toolkit70. A parcellation scheme including n = 128 regions
was registered to the B0 volume from each subject’s DSI data. The B0 to MNI voxel
mapping was used to map region labels from native space to MNI coordinates. To
extend region labels through the gray-white matter interface, the atlas was dilated
by 4 mm71. Dilation was accomplished by filling non-labeled voxels with the

statistical mode of their neighbors’ labels. In the event of a tie, one of the modes
was arbitrarily selected.

Based on the division of the brain into regions, we constructed for each
individual an undirected and weighted connectivity matrix, A 2 RN ´N , whose edge
weights were equal to the number of streamlines detected between regions i and j
normalized by the geometric mean of their volumes: Aij ¼ Sijffiffiffiffiffiffiffiffiffiffiffi

ViVjð Þp .
Each individual’s resulting network was undirected (i.e., Aij =Aji) with density

and mean node strength of d = 0.58 ± 0.04 and 〈s〉 = 85.49± 11.82, respectively.
These individual-level networks were then aggregated to form a group-
representative network. This procedure can be viewed as a distance-dependent
consistency thresholding of connectome data and the details have been described
elsewhere68. The resulting group-representative network has the same number of
binary connections as the average individual and the same edge length distribution.
This type of non-uniform consistency thresholding has been shown to be superior
to other, more commonly used forms72.

Behavioral tasks. All participants completed a modified local-global perception
task based on classical Navon figures20 and a Stroop task with color-word pairings
that were eligible and ineligible to elicit interference effects19.

For the Navon task, local-global stimuli were comprised of four shapes—a
circle, X, triangle, or square—that were used to build the global and local aspects of
the stimuli. On all trials, the local feature did not match the global feature, ensuring
that subjects could not use information about one scale to infer information about
another scale. Stimuli were presented on a black background in a block design with
three blocks. In the first block type, subjects viewed white local-global stimuli. In
the second block type, subjects viewed green local-global stimuli. In the third block
type, stimuli switched between white and green across trials uniformly at random
with the constraint that 70% of trials included a switch in each block. In all blocks,
subjects were instructed to report only the local features of the stimuli if the
stimulus was white and to report only the global feature of the stimuli if the
stimulus was green. Blocks were administered in a random order. Subjects
responded using their right hand with a four-button box. All subjects were trained
on the task outside the scanner until proficient at reporting responses using a fixed
mapping between the shape and button presses (i.e., index finger = “circle”, middle
finger = “X”, ring finger = “triangle”, pinky finger = “square”). In the scanner, blocks
were administered with 20 trials apiece separated by 20 s fixation periods with a
white crosshair at the center of the screen. Each trial was presented for a fixed
duration of 1900 ms separated by an interstimulus interval of 100 ms during which
a black screen was presented.

For the Stroop task, trials were comprised of words presented one at a time at
the center of the screen printed in one of four colors—red, green, yellow, or blue—
on a gray background. For all trials, subjects responded using their right hand with
a four-button box. All subjects were trained on the task outside the scanner until
proficient at reporting responses using a fixed mapping between the color and
button presses (i.e., index finger = “red”, middle finger = “green”, ring finger
= “yellow”, pinky finger = “blue”). Trials were presented in randomly intermixed
blocks containing trials that were either eligible or ineligible to produce color-word
interference effects. In the scanner, blocks were administered with 20 trials apiece
separated by 20 s fixation periods with a black crosshair at the center of the screen.
Each trial was presented for a fixed duration of 1900 ms separated by an
interstimulus interval of 100 ms during which a gray screen was presented. In the
trials ineligible for interference, the words were selected to not conflict with printed
colors (“far,” “horse,” “deal,” and “plenty”). In the trials eligible for interference (i.e.,
those designed to elicit the classic Stroop effect), the words were selected to
introduce conflict (i.e., printed words were “red,” “green,” “yellow,” and “blue” and
always printed in an incongruent color).

Additional data. The connectome data was accompanied by (1) annotated system
labels, which assigned each node to a single functional system, and (2) a group-
representative functional connectivity (FC) matrix constructed from resting state
scans that were collected concurrently with the behavioral data. See73 for details.
The system labels were taken from23 and included seven cortical systems (dorsal
attention, control, default mode, visual, limbic, somatomotor, and salience net-
works) along with an eighth sub-cortical label. The group-representative resting
state FC network was generated by averaging subject-level resting state FC and by
partialling out the effect of distance. The elements of the resulting matrix quantified
the strength of functional connection between brain regions beyond what would be
expected given their Euclidean distance from one another.

Stochastic blockmodel. The SBM seeks to partition a network’s nodes into K
communities. Let zi ∈ {1, …, K} indicate the community label of node i. Under the
standard blockmodel, the probability that any two nodes, i and j, are connected to
one another depends only on their community labels: pij ¼ θzi ;zj .

To fit the blockmodel to observed data, one needs to estimate the parameters θrs
for all pairs of communities {r, s} ∈ {1, …, K} and the community labels zi.
Assuming that the placement of edges are independent of one another, the
likelihood of a blockmodel having generated a network, A, can be written as:

P Aj θrsf g; zif gð Þ ¼
Y
i;j>i

θ
Aij
zizj 1� θzizj
� �1�Aij : ð1Þ
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Fitting the SBM to an observed network involves selecting the parameters {θrs} and
{zi} so as to maximize this function.

Weighted stochastic blockmodel. The classical SBM is most often applied to
binary networks where edges carry no weights. In order to maximize their utility to
the network neuroscience community (where most networks are weighted), the
SBM needs to be able to efficiently deal with weighted edges. Recently, the binary
SBM was extended to weighted networks as the WSBM17,18.

Equation (1) can be rewritten in the form of an exponential family of
distributions17:

P Aj θrsf g; zif gð Þ / exp
X
ij

T Aij
� � � η θzizj

� � !
: ð2Þ

For the classical (unweighted) SBM, T is the sufficient statistic of the Bernoulli
distribution and η is its function of natural parameters. Different choices of T and
η, however, can allow edges and their weights to be drawn from other distributions.
The WSBM, like the classical SBM, is parameterized by the set of community
assignments, {zi}, and the parameters θzizj . The only difference is that θzizj now
specifies the parameters governing the weight distribution of the edge, zizj.

Here, we follow17, and model edge weights under a normal distribution, whose
sufficient statistics are T = (x, x2, 1) and natural parameters are η = (η/σ2, −1/(2σ2),
−μ2/(2σ2)). Under this distribution, the edge zizj is parameterized by its mean and
variance, θzizj ¼ μzizj ; σ

2
zizj

� �
, and the likelihood is given by:

P Aj zif g; μrsf g; σ2rs
� �� �¼ Q

ij
exp Aij �

μzi zj
σ2zi zj

	

�A2
ij � 1

2σ2zi zj
� 1 � μ

2
zi zj

σ2zi zj


 : ð3Þ

The above form assumes that all possible edges falling between communities are
drawn from a normal distribution. However, most connectomes are sparse, i.e.,
edges where Aij = 0 indicate the absence of a connection. One solution for dealing
with this problem is to model edge weights with an exponential family distribution
and to model the presence or absence of edges by a Bernoulli distribution (akin to
the unweighted SBM)17. Letting Te and ηe represent the edge-existence distribution
and Tw and ηw represent the normal distribution governing edge weights, we can
rewrite the likelihood function for the sparse WSBM as:

log PðAjz; θÞð Þ ¼ α
P
ij2E

Te Aij
� � � ηe θezizj

� �
þ ð1� αÞP

ij
Tw Aij
� � � ηw θwzizj

� �
; ð4Þ

where E is the set of all possible edges, W is the set of weighted edges (W ⊂ E), and
α ∈ [0, 1] is a tuning parameter governing the relative importance of either edge
weight or edge presence (or absence) for inference. Here, we fix α = 0.5, which
balances their relative importance.

For each of the five data sets (connectomes from Drosophila, mouse, rat,
macaque, and human), we maximize the likelihood of this sparse WSBM using a
Variational Bayes technique described in17 and implemented in MATLAB using
code made available at the author’s personal website (http://tuvalu.santafe.edu/
aaronc/wsbm/). We varied the number of communities from K = 2, …, 10 and
repeated the optimization procedure 250 times, each time initializing the algorithm
with a different set of parameters. We explore the convergence of the WSBM across
multiple repetitions and the similarity of detected partitions in Supplementary
Note 3 (Supplementary Figs. 11 and 12).

Blockmodels are flexible and can accommodate various classes of community
structure. In network neuroscience, however, the majority of studies examining the
brain’s community structure have focused on its division into assortative
communities by maximizing a modularity quality function:

Q zif g; γð Þ ¼
X
ij

Aij � γ � Pij
� �

δ zizj
� �

: ð5Þ

Here, Pij is the expected number of connections between nodes i and j under a null
connectivity model and δ(⋅⋅) is the Kronecker delta function and is equal to 1 when
its arguments are the same and 0 otherwise. The variable Q({zi}, γ) is maximized by
choosing community assignments zi that result in modules whose observed internal
density maximally exceeds what would be expected under the null model. The free
parameter, γ, is the structural resolution parameter and can be tuned to uncover
communities of different size. The partition P ¼ zif g that maximizes Q({zi}, γ) is
usually treated as a reasonable estimate of the network’s community structure.
While recent studies have investigated alternative definitions of Pij, we use the
common configuration model: Pij ¼ kikj

2m , where ki ¼
P

j Aij and 2m ¼Pi ki .
Unlike WSBMs, most modularity maximization algorithms (henceforth referred

to as Qmax) do not allow the user to specify the number of detected communities.
In order to extract partitions of the network into exactly K communities, we
proposed a greedy algorithm in which nodes are initialized with random K-
community partition, their assignments switched one at a time, and the new
assignment accepted if the switch results in an increased Q. We repeated this

algorithm 250 times for each K and during each repetition we considered 10,000
random community switches. We fixed γ = 1 throughout.

Statistics for comparing the WSBM with Qmax. Variation of information:
Modularity maximization is designed to uncover assortative communities while
blockmodels are capable, at least in principle, of detecting more general types of
community structure. It is unclear, however, when applied to brain network data
whether the detected communities using either technique will actually differ from
one another. We develop a set of statistics for comparing community structure at
different topological scales ranging from global (whole partition), to mesoscale
(community), to local (individual node).

At the global scale, we compare two partitions, P1 ¼ z1i
� �

and P2 ¼ z2i
� �

,
using the dissimilarity measure variation of information, VI, which yields an
information theoretic distance between two partitions21:

VI P1;P2ð Þ ¼ H P1ð Þ þ H P2ð Þ � 2I P1;P2ð Þ; ð6Þ

where HðPÞ and I P;Qð Þ are the entropy and mutual information. The more
similar two partitions are to one another, the closer their variation of information is
to zero. Two partitions may differ from one another, trivially, if they feature a
different number of communities. Throughout this section and the next and in
order to avoid this issue, we only compare partitions if they feature the same total
number of communities.

Community and regional assortativity: While variation of information makes it
possible to assess the similarity of partitions as a whole, we also wanted to assess
which brain regions, systems, and communities differ between techniques. One
dimension along which we expect the techniques to differ is the extent to which the
detected communities are assortative. To quantify this property, we propose
community and regional assortativity scores.

For a community r, we define its assortativity as:

Ar ¼ ωrr �max
s≠r

ωrsð Þ

 �

; ð7Þ

where ωrs ¼ 1
nr �ns

P
i2r;j2s Aij is the weighted density of connections between

communities r and s. For directed networks, we consider both incoming and
outgoing connections, and we replace maxs≠r ωrsð Þ with the greater of maxs≠r ωIn

rs

� �
or maxs≠r ωOut

rs

� �
.

We also calculated an analogous score for individual brain regions. Given
region i's community assignment zi, we calculated its connection density to
community r as air ¼ 1

nr

P
j2r Aij . Then, its regional assortativity score was given by:

ϕi ¼ aizi �max
r≠zi

air : ð8Þ

Again, we modified this equation slightly for directed networks to take into
account both incoming and outgoing connections. We replaced aizi with the lower
of either aInizi or a

Out
izi , and we replaced maxr≠zi air with the greater of either

maxr≠zi a
In
ir or maxr≠zi a

Out
ir .

Under this definition, the assortativity score measures the minimum difference
between the density of connections made between a region and its own
community, and the density of connections made between a region and any other
community. In computing both regional and community assortativity scores, we
excluded singleton communities.

Maximally assortative set. In addition to the metrics described above, we also
sought to identify the largest set of communities uncovered by the WSBM that
exhibited assortative community structure. We termed this set the maximally
assortative set and defined it as the set of k ≤ K communities, {c1, …, ck} such that
mini ωci ;ci

� �
>maxi≠j ωci ;cj

� �
and the total number of nodes in those communities

was maximized.

Rich club estimation. We identified putative rich club nodes by maximizing a
weighted rich club coefficient, ϕw(k), where k is node degree74. Intuitively, a
weighted rich club is composed of highly connected nodes linked to one another by
connections with strong weights. To calculate ϕw (k), we first identify the sub-
network composed only of nodes whose degree is k or greater, the number of
connections among those nodes, Ek, and the total weight of those connections Wk.
We also calculate Wmax

k> ¼PE>k
l¼1 wrank

l , which measures the maximum possible
value that Ek connections could have given the edge weights present in the network.

ϕwðkÞ ¼ W>k

Wmax
k>

: ð9Þ

We compared ϕw (k) for the observed network against the same measure made
over an ensemble of 100 randomized networks with the same degree sequence. For
every possible k, we calculated the fraction of all randomized networks whose rich
club coefficient was in excess of that in the observed network’s. This fraction served
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as a p-value for performing statistical tests and made it possible to identify
statistically significant rich clubs (p < 0.05).

This procedure results in a range of k over which rich clubs are considered
statistically significant. Rather than characterize this entire range, we focused on a
20–80 split of network nodes into rich and non-rich groups. We justify this split on
the grounds that (1) all of the networks we studied exhibited a statistically
significant rich club in this range, making it unnecessary to develop separate
criteria for studying rich clubs across species, and (2) a rich club composed of 20%
of a network’s nodes is exclusive enough to be of interest but not so large as to be
trivial (Supplementary Fig. 18).

Community interaction motifs and morphospace analysis. Uncovering a net-
work’s community structure makes it possible to shift focus away from individual
nodes and edges and onto communities and their aggreate interactions with one
another. Taking such a coarse view of a network can make it possible to more easily
infer the functions of communities and the roles of individual nodes within those
communities.

Here, we study those interactions using a theoretical morphospace analysis29, a
technique recently adapted to the study of complex networks30. A morphospace is a
hyperspace whose axes represent the features of an organism or system. Take, for
example, foraminiferal tests—the shells that form the outer layers of certain aquatic
protists—that can be modeled and fully parameterized using a small number of
morphological traits75. A simple morphospace can be constructed whose axes are
represented by these traits, and any observed test can then be situated within this
space. Oftentimes, there will exist certain regions of space (i.e., particular sets of traits)
that are densely populated and other regions that, by comparison, are not populated
at all. By studying which sets of traits are more common, it becomes possible to
deduce the evolutionary constraints and pressures that drove their emergence.

It is in this same spirit that network morphospaces can be constructed30.
Instead of axes representing an organism’s morphological or physiological traits,
the axes of a network morphospace represent topological properties of a network,
e.g., its efficiency, wiring cost, complexity, etc., or the parameters of network
models.

In this case, we construct a community morphospace. Each point in the
morphospace represents a pair of communities, r and s, and the point’s location is
given by the within-community and between-community connection densities: ωrr,
ωss, and ωrs. Given these values, we can also classify community interactions into
one of three distinct motifs (interaction types):

Mrs ¼

Massortative; if min ωrr ;ωssð Þ > ωrs

Mcore�periphery ; if ωrr > ωrs > ωss

Mcore�periphery ; if ωss > ωrs > ωrr

Mdisassortative; if ωrs > max ωrr ;ωssð Þ:

0
BBB@

From these classifications we were able to associate motifs to individual nodes.
Node i's participation in motif M was calculated as the number of times that the
community to which node i was assigned interacted with any other community to
form a motif of type M. We then normalized these counts by the total number of
motifs (for a K-community partition there are in total K(K − 1)/2 or K(K − 1) total
motifs depending upon whether the network is undirected or directed,
respectively). Importantly, when computing participation in core-periphery motifs,
we distinguished between the core and the periphery, and computed separate
participation scores for each. Finally, from participation types we computed each
node’s diversity index, which measured the entropy of its normalized participation
in each motif type.

Diversity index. A partition of a network into communities induces a set of two-
community motifs based on connection densities. In the previous section we
presented rules for classifying those motifs into one of three classes. For a K-
community partition, community r participates in K − 1 interactions. We can
calculate for each motif class (now differentiating between cores and peripheries,
resulting in four distinct classes), how frequently it appears among community r’s
K − 1 interactions. If we express these frequencies as probabilities, Pa, Pc, Pp, and Pd
(subscripts indicate “assortative”, “core”, “periphery”, and “disassortative” motif
frequencies, respectively), we can then calculate an entropy:

Hr ¼ � Pa log2Pa þ Pc log2Pc þ Pp log2Pp þ Pd log2Pd
� �

: ð10Þ

This entropy is zero if community r participates in only one motif class and is
maximized when r participates in all classes equally. We then assign this score to all
nodes i ∈ r. The resulting vector of length [N × 1] specifies the single-partition diversity
index for each node. We can calculate this vector for all K-community partitions and
estimate mean diversity indices for each node by averaging across partitions.

Note that while we define the diversity index at the level of individual brain
regions (network nodes), it would be straightforward to average node-level
diversity scores to compute a global diversity score that could serve to characterize
the diversity of meso-scale structure in the network as whole. Alternatively, a global
diversity index could be computed straightforwardly as an entropy based on the
complete set of community motif frequencies.

Code Availability. All analysis code is available from the authors upon reasonable
request. MATLAB code for implementing WSBM is available at http://tuvalu.
santafe.edu/~aaronc/wsbm/.

Data availability. All data are available from the authors upon reasonable request.
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