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Abstract

Mechanosensory hair cells (HCs) and surrounding supporting cells (SCs) in the mouse cochlea are important for hearing and
are derived from the same prosensory progenitors. Notch1 signaling plays dual but contrasting and age-dependent roles in
mouse cochlear development: early lateral induction and subsequent lateral inhibition. However, it has been difficult to
directly visualize mouse cochlear cells experiencing various levels of Notch1 activity at single cell resolution. Here, we
characterized two knock-in mouse lines, Notch1Cre (Low)/+ and Notch1Cre (High)/+, with different Cre recombinase activities, that
can detect Notch1 receptor proteolysis or Notch1 activity at high and low thresholds, respectively. Using both lines together
with a highly sensitive Cre reporter line, we showed that Notch1 activity is nearly undetectable during lateral induction but
increases to medium and high levels during lateral inhibition. Furthermore, we found that within the neonatal organ of
Corti, the vast majority of cells that experience Notch1 activity were SCs not HCs, suggesting that HCs kept undetectable
Notch1 activity during the entire lineage development. Furthermore, among SC subtypes, ,85–99% of Deiters’ and outer
pillar cells but only ,19–38% of inner pillar cells experience medium and high levels of Notch1 activity. Our results
demonstrate that Notch1 activity is highly heterogeneous: 1) between lateral induction and inhibition; 2) between HC and
SC lineages; 3) among different SC subtypes; 4) among different cells within each SC subtype. Such heterogeneity should
elucidate how the development of the cochclear sensory epithelium is precisely controlled and how HC regeneration can be
best achieved in postnatal cochleae.
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Introduction

Sound detection in the mammalian inner ear is mediated via

mechanosensory hair cells (HCs) in the sensory epithelium of the

cochlea, also referred to as the organ of Corti [1–4]. The organ of

Corti contains three rows of outer hair cells (OHCs) and one row

of inner hair cells (IHCs), which are surrounded by different types

of supporting cells (SCs): inner pillar cells (IPCs), outer pillar cells

(OPCs) and Deiters’ cells (DCs) [1]. As demonstrated by linage

tracing in the mouse cochlea [5–7], HCs and SCs are derived from

the same prosensory progenitor cells. In mouse cochlear develop-

ment, the period between embryonic day (E) 11 and E14 is defined

as the early prosensory phase [8–10], when the lateral induction

effects of Notch signaling specify prosensory progenitors [8,11–

17]. The period between E14 and perinatal ages is the lateral

inhibition phase, when prosensory progenitors undergo differen-

tiation and Notch signaling promotes SC’s, but antagonizes HC’s,

fate commitment and differentiation [18,19].

It remains unknown how Notch signaling evokes such dual but

contrasting effects in the development of the inner ear and how

cochlear cells sense and respond appropriately to Notch signaling

at different developmental stages. Interestingly, Notch signaling

also elicits similar contrasting responses in the development of the

central nervous system [20] and the pancreas [21] and, in these

tissues, Notch signaling influences cells in a level-dependent

manner, where low levels of Notch promote cell proliferation and

high levels induce quiescence and cell differentiation. Therefore,

we hypothesize that Notch activity is relatively low during lateral

induction and increases during lateral inhibition in the developing

organ of Corti.

While Notch1 is the primary, active Notch receptor during

mouse inner ear development [17], it has been challenging to

visualize Notch1 activity levels at single cell resolution. Different

levels of Notch1 activity have been inferred by the expression

levels of downstream target genes (e.g., Jagged1 and Hes family

genes) [22–24], or their recapitulation in reporter mice (Hes5-
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GFP) [25], but these methods have limitations [26]. For example,

Jagged1 and Hey2 also respond to input from Wnt signaling

[24,27] and fibroblast growth factor (FGF) signaling [28]. To

overcome such limitations and to visualize Notch1 signaling more

directly, we utilized a genetic lineage tracing approach involving

Notch1Cre (Low)/+ and Notch1Cre (High)/+ mouse strains [26,29].

In both Notch1Cre (Low)/+ and Notch1Cre (High)/+ lines, Notch1

intracellular domain (NICD) was replaced by Cre recombinase

with the nuclear localization signal (NLS), resulting in a null

mutation of Notch1 (Fig. 1A). The differences between the two

lines are mainly two-fold: first, Cre is tagged with 66Myc in the

Notch1Cre (Low)/+ line, while Cre is not tagged with 66Myc in the

Notch1Cre (High)/+ line; second, an extra copy of SV40 polyadenyl-

ation signal is added to the end of the construct in Notch1Cre (High)/+

line, which increase the Notch1/Cre mRNA level by two folds

[29,30]. These improvements make the Cre-mediated lineage

tracing in Notch1Cre (High)/+ line much more sensitive (or of a lower

detecting threshold) than in the Notch1Cre (Low)/+ line. For example,

in lung tissue, only cells having high levels of Notch1 activity can

be traced in the Notch1Cre (Low)/+ line, whereas in the Notch1Cre (High)/

+ line, cells with both high and medium levels of Notch1 activity

can be traced [31]. In addition, when combined with a floxed

Notch1 allele (Notch1Cre (Low)/flox or Notch1Cre (High)/flox), Notch1Cre (High)

achieves very high level of self-excision in embryonic endothelial

cells, causing embryos to die at around E10.5; in contrast, the self-

excision efficiency of Notch1Cre (Low) is so low that the embryos

develop normally and the pups could be born at expected

Mendelian ratios [29]. Last, heterozygous mice of both Notch1Cre

(Low)/+ and Notch1Cre (High)/+ lines are fertile and viable whereas

homozygous mice die at ,E9.5, consistent with two independent

Notch12/2 mouse lines previously characterized [32,33].

Both Notch1Cre (Low)/+ and Notch1Cre (High)/+-mediated lineage

tracing recapitulates Notch1 proteolysis, but at different levels of

sensitivity. When Notch1 activity is sufficiently low, Cre activity

remains undetectable in either mouse line; when Notch1 activity is

high, Cre activity in both lines are activated; and when Notch1

activity is at an intermediate level, the Notch1Cre (High)/+ line exhibits

detectable Cre activity while the Notch1Cre (Low)/+ line does not.

These Cre activities are readily visualized by crossing Notch1Cre/+

mice with floxed-stop reporter lines. Our lineage tracing results

reported here support the hypothesis that Notch1 activity differs

among different cochlear cell types, and between stages of lateral

induction and lateral inhibition. Thus these Notch1Cre/+ lines can be

widely used in other systems to ascertain variable levels of Notch1

activity in vivo.

Results

Characterization of Both Notch1Cre (Low)/+ and Notch1Cre
(High)/+ Alleles in the Mouse Cochlear Development
We first described and characterized the Notch1Cre (Low)/+ and

Notch1Cre (High)/+ lines.

Heterozygous mice of both lines exhibited identical minor

phenotypes of haploinsuffiency in the organs of Corti, thus we

present here data only from the Notch1Cre (Low)/+ mice (Fig. 1A).

Like the control wild-type littermates (Notch1+/+), Notch1Cre (Low)/+

mice had 3 predominant rows of OHCs and 1 row of IHCs at

postnatal day (P) 6 (Fig. 1B and C). However, there were

discontinuous patches distributed along the length of the cochlear

duct in which a 4th row of OHC was observed (white rectangular

area in Fig. 1D). Interestingly, extra Sox2+ SCs were also found in

the same confocal scanning area where ectopic OHCs were

present at P6 (Fig. 1B’–D’; n=3). These extra HCs and SCs

survived at adult ages (Fig. 1E–G). Furthermore, whole-mount

analysis showed that there was no substantial difference in length

of the entire cochlear duct between Notch1+/+ (6050 mm6110 mm)

and Notch1Cre (Low)/+ (6160 mm 6191 mm) mice (n=3 in each

group), which rules out the possibility that the increased density of

HCs or SCs in Notch1Cre (Low)/+ mice are secondary phenotypes

arising from a shortened cochlear duct. Such a phenotype is

consistent with presence of supernumerary SCs in the Hes1/Hes5/

Hey1 or Hes1/Hes5/Hey2 compound mutant mice [22,23] and the

Notch1+/2 mice [34].

Heterogeneity of Notch1 Activity Levels between Lateral
Induction and Inhibition Stages of Cochlear
Development
Notch1 is turned on at the onset of inner ear development, and

the Jagged1 is the major Notch1 ligand in lateral induction stage

[9,11,24,27]. The strength of NICD immunostaining at lateral

induction is much weaker than that of lateral inhibition stage

[35,36]. Because severe phenotypes were observed in cochleae

where Notch1 activity is lost during lateral induction stage [12,13],

we asked whether an alternative way is available to better detect

Notch activities in cochlear cells at lateral induction stage. We

opted to use Cre-mediate lineage tracing which identifies all cells

that have experienced Notch activity at single cell resolution,

irrespective of their temporal and spatial characteristics.

We crossed the Notch1Cre (Low)/+ and Notch1Cre (High)/+ lines with a

highly sensitive Rosa26-CAG-tdTomato loxp/+ reporter line which

would express tdTomato upon floxed STOP excision by Cre

liberated from cell membrane after the mimics of Notch1

proteolysis [37]. Thus tdTomato labels cells that have experienced

Notch activities at any point in their lineage. By E14.5, no

tdTomato+ cell was observed inside the organ of Corti of Notch1Cre

(Low)/+; Rosa26-CAG-tdTomato loxp/+ mice (Fig. 2A–A’). However, a

small number (0.97% 60.3%) of the Sox2+ cells in the cochlear

prosensory regions were tdTomato+ in Notch1Cre (High)/+; Rosa26-

CAG-tdTomato loxp/+ mice (Fig. 2B–B’). Together, consistent with

the NICD immunostaining approach [36], these support that

Notch1 activity is generally undetectable or very low but not

completely absent in the lateral induction period.

Heterogeneity of Notch1 Activities Across Cell Types
during the Lateral Inhibition Stage of Cochlear
Development
We next determined cochlear cell types experiencing Notch1

activity during lateral inhibition stage in two genetic models:

Notch1Cre (High)/+; Rosa26-CAG-tdTomatoloxp/+ and Notch1Cre (Low)/+;

Rosa26-CAG-tdTomatoloxp/+. We analyzed the reporter tdTomato

expression at P6 when cochlear cell fate commitment should be

completed and Notch1 activity should be diminished, as evidenced

by decreased NICD expression during the first postnatal week [36]

and the fact that the cochlear SCs become much less responsive to

Notch1 inactivation as they age [38]. Furthermore, in the cochleae

of Notch1Cre (Low)/+;Rosa26-EYFPloxp/+ at E14.5, E16.5, E18.5, P2,

and P6, very few EYFP+ SCs began to appear at E18.5 and the

number of EYFP+ SCs continuously increased between E18.5 and

P6, but stopped further increase after P6 (data not shown). Thus,

by P6, all cells experiencing different levels of Notch1 activity

during both lateral induction and inhibition in development

should be labeled.

In control Rosa26-CAG-tdTomatoloxp/+ mice (n=3), tdTomato

expression was never observed (Fig. 3A). In Notch1Cre (Low)/+;

Rosa26-CAG-tdTomatoloxp/+mice at P6 (n=4), inside the organ of

Corti, many tdTomato+ cells were observed (Fig. 3B–B’’ and D).

For each SC subtype, 19.0% 63.1% of IPCs, 85.7% 63.4% of

Heterogeneity of Notch Pathway in Mouse Cochlea
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OPCs and 93.0% 61.0% of DCs were tdTomato+. In contrast,

only 0.13% 60.06% of HCs were tdTomato+ (Fig. 3B’ and D).

In Notch1Cre (High)/+; Rosa26-CAG-tdTomatoloxp/+ at P6 (n=4),

similar observations with higher percentages were found (Fig. 3C–

C’’). Approximately 38.4% 65.8% of IPCs, 99.4% 60.4% of

OPCs, and 99.8% 60.2% of DCs were tdTomato+. Again, only
3.5% 60.9% of total HCs were tdTomato+ (Fig. 3C’ and D).

Thus, the absolute percentage differences of tdTomato+cells
between Notch1Cre (High)/+; Rosa26-CAG-tdTomatoloxp/+ and Notch1Cre

(Low)/+; Rosa26-CAG-tdTomatoloxp/+ line are 19.4%, 13.7%, 6.8%

and 3.37% for IPCs, OPCs, DCs and HCs, respectively. To

highlight the difference, we normalized the percentage to each

other and found that the percentages of tdTomato+cells in

Notch1Cre (Low)/+; Rosa26-CAG-tdTomatoloxp/+ are 49.5%, 86.2%,

93.0% and 3.7% of those of Notch1Cre (High)/+; Rosa26-CAG-

tdTomatoloxp/+ for IPCs, OPCs, DCs and HCs, respectively. Taken

together, the data strongly suggest heterogeneous Notch1 activity

among various cell types within the organ of Corti at lateral

inhibition stage and a distinct difference in the sensitivity of the

two Notch1Cre/+ mouse lines to different levels of Notch activity.

In Notch1Cre (High)/+; Rosa26-CAG-tdTomatoloxp/+ and Notch1Cre

(Low)/+; Rosa26-CAG-tdTomatoloxp/+ mice, the percentages of tdTo-

mato+ cells at P6 were similar to those analyzed at P21 (data not

shown) and tdTomato expression was also found in cells in the

spiral ganglion region, greater epithelial ridge (GER) cells, inner

phalangeal cells (IPhs), Hensen’s cells, Claudius cells and the vessel

Figure 1. Characterization of the Notch1Cre (Low)/+ mouse line. (A) Schematic illustration of Notch1Cre/+ mice. The NICD was replaced by 66Myc–
tagged Cre recombinase. The blue arrow represents the cleavage site. (B–D’) Comparison between cochleae from Notch1Cre/+ mice and control mice
(Notch1+/+). (B, B’) Myosin-VI+ OHCs (three rows; red) and IHCs (one row; red) sit above Sox2+ SCs (green) in a control (Notch1+/+) cochlea at P6. (C, C’)
In most regions across the entire cochlea, Notch1Cre (Low)/+ mice is indistinguishable from controls. (D, D’) An extra row of DCs always appear
underneath the fourth row of OHCs (white dotted rectangular area) in Notch1Cre (Low)/+ cochleae. Although extra DCs and OHCs are frequently
observed, each of them spans only a short stretch. The Sox2+ cells outside the dotted line (B’, C’, and D’) are Hensen cells (h). (E–G) Morphology of
HCs at P30 in control (E) and Notch1Cre (Low)/+ mice (F–G). The distance between OHCs and IHCs is extended. The extra row of OHCs (arrow in G) in
Notch1Cre (Low)/+ mice survive and align well with surrounding HCs. D1–D4: three or four rows of Deiters’ cell; OPC: outer pillar cell; IPC: inner pillar cell;
IPH: inner phalangeal cell; h: Hensen’s cell. ECD: extracellular domain; TM: transmembrane domain; NICD: Notch1 intracellular domain. Bars: 20 mm.
Bar in (B) also applies to C–D’. Bar in (E) also applies to (F).
doi:10.1371/journal.pone.0064903.g001
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endothelial cells underneath the basilar membrane (Fig. 3B and

C); however these are beyond the focus of our current study.

Discussion

Our in vivo lineage tracing results reported here demonstrate

that, during mouse cochlear development, Notch1 activity is

heterogeneous in four aspects: 1) between lateral induction and

inhibition stages; 2) between HC and SC lineages; 3) among

different SC subtypes; and 4) among different cells within each SC

subtype.

The genetic approach of Notch1Cre/+ -mediated lineage tracing is

reliable to reflect the Notch activity that cells experienced during

development. In support, in a previous study, retinoic acid (RA)

response-element (RARE)-driven Cre mice (RARE-Cre+) are used

to trace cells experiencing different levels of RA activity. In RARE-

Cre+; Rosa26-lacZloxp/+ mice, the posterior but not anterior otocyst

cells are X-gal+ [39]. These findings are consistent with the fact

that a lower level and brief RA signaling activity is present at the

anterior side of the otocyst, while a higher and longer-lasting RA

activity at the posterior end [40].

In our two Notch1Cre/+ models (Notch1Cre (High)/+ and Notch1Cre

(Low)/+), the readout of tdTomato reporter expression is primarily

dependent on the dosage of Cre activity within each individual cell

which is proportional to the level of Notch1 signaling each cell is

experiencing. The recombinase Cre level/activity in Notch1Cre

(High)/+ was reported to be much higher than in Notch1Cre (Low)/+

[29,31]. We therefore defined that: 1) those cells without

tdTomato expression in either Notch1Cre (High)/+; Rosa26-CAG-

tdTomatoloxp/+ or Notch1Cre (low)/+; Rosa26-CAG-tdTomatoloxp/+ were

cells with low to undetectable Notch1 activities; 2) those cells with

tdTomato expression in Notch1Cre (High)/+; Rosa26-CAG-tdTomatoloxp/

+ but not in Notch1Cre (low)/+; Rosa26-CAG-tdTomatoloxp/+ were those

with medium Notch1 activities; and 3) those cells with tdTomato

expression in both Notch1Cre (low)/+; Rosa26-CAG-tdTomatoloxp/+ and

Notch1Cre (High)/+; Rosa26-CAG-tdTomatoloxp/+ experienced high

Notch1 activities. In support, our results demonstrated that

Notch1 activity is generally low except a few cells during lateral

induction (by E14.5); but it dramatically increases to medium and

high levels in many cells by P6 during lateral inhibition. These

results are consistent with NICD immunostaining and other loss-

of-function genetic studies of Notch1 signaling [36,41], and further

validate our Notch1Cre/+ lineage tracing approach. Finally, we

found that Notch1Cre (High)/+; Rosa26-CAG-tdTomatoloxp/+ and

Notch1Cre (low)/+; Rosa26-CAG-tdTomatoloxp/+ cochleae at P21 exhib-

ited similar reporter expression patterns as those at P6; these

results are consistent with previous results that Notch1 levels

decrease with age, such as the down-regulation of Hes5 expression

Figure 2. Notch1Cre/+-mediated reporter expression is difficult to detect in the cochlear prosensory domain at embryonic day (E)
14.5. (A–A’) A single slice of confocal image demonstrating that tdTomato reporter expression (red) was undetectable in Sox2 positive (green)
sensory precursor cells in cochleae of Notch1Cre (low)/+; Rosa26-CAG-tdTomatoloxp/+ mice at E14.5. (A’) is the high magnification image of the
rectangular region in (A) taken in the organ of Corti region. (B–B’) A single slice of confocal image taken in cochleae of Notch1Cre (High)/+; Rosa26-CAG-
tdTomatoloxp/+mice. (B’) is the high magnification image of the rectangular region in (B) taken in the organ of Corti region, showing that a few cells
were Sox2+/tdTomato+ (arrows), whereas the majority were Sox2+ only. Scale bar is 200 mm (A, B), 20 mm (A’, B’).
doi:10.1371/journal.pone.0064903.g002
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in Hes5-EGFP+ transgenic mice [25], the decrease in NICD

staining in older SCs [36], and the declining responsiveness of SCs

to modulations of Notch1 activity [38].

Using this in vivo lineage tracing strategy, we observed several

interesting findings at P6 cochleae during lateral inhibition. First,

96.5% of HCs had low, while only 3.37% had medium and 0.13%

had high levels of Notch1 activities. These HCs with detectable

levels of Notch1 activity might have been, in part, newly converted

from SCs at late embryonic ages, because of the haploinsufficiency

of Notch1 heterozygous alleles (Fig. 1). Alternatively, they may be

original HCs that somehow experienced medium or high Notch1

activities and yet still maintained a HC fate. However, we cannot

yet distinguish between these two explanations and both scenarios

may contribute to the detected Notch1 activity in HCs.

Nonetheless, the Notch1 signaling in neonatal HCs might not

necessarily affect their development, as shown in our recent study

where ectopic expression of NICD increased Sox2 and Prox1

expression in endogenous HCs without detectable hearing

abnormalities [42].

Second, in contrast to HCs, the SC lineage significantly

increases Notch1 activity during lateral inhibition stage. In

cochleae of Notch1Cre (High)/+; Rosa26-CAG-tdTomatoloxp/+, very few

(, 0.97%) progenitor cells were tdTomato+ by E14.5 (Fig. 2B),

and only , 3.5% of total HCs were tdTomato+ by P6 (Fig. 3C’

and D). These results support that the common progenitor cells

during lateral induction stage must experience low levels of

Notch1 activity, otherwise many HCs would be tdTomato +.

Recently, two reports have shown that Notch1 is not required to

specify or maintain the properties of progenitor cells in the cochlea

[35,43]. One simple explanation might be that the loss of low level

of Notch1 during lateral induction is compensated by other

signaling pathways such as Wnt and Fgf [24,44–46]. However,

during lateral inhibition, medium to high levels of Notch1 activity

cannot be simply compensated, a conjecture that is consistent with

loss-of-function study of Notch activity during late embryonic or

neonatal cochlear development [12,18,28,41].

Third, there appears to be significant heterogeneity of Notch1

activity levels among SCs and even within each of the three

subtypes in the organ of Corti. Among DCs, 0.2%, 6.8%, and

93.0% of the cells experienced low, medium, and high levels of

Notch1 activity, respectively. Similarly, 0.6%, 13.7%, and 85.7%

of OPCs experienced low, medium, and high levels of Notch

activity, respectively. Most surprisingly, for IPCs, 61.6%, 19.4%,

and 19.0% experienced low, medium, and high levels of Notch1

activity, respectively. Consistently, using NICD antibody, its

staining strength in SCs (including IPCs) near the IHCs is much

weaker than that in SCs near the OHCs (i.e. DCs) [36]. Such

extensive heterogeneity has significant implications for our

understanding of sensory epithelium development and regenera-

tion. It may account for the heterogeneous responses of different

SCs to ectopic Atoh1 expression where only ,10% neonatal PCs

and DCs were converted to immature HCs upon ectopic Atoh1

expression [47]. It is possible that SCs with high levels of Notch1

activity would inhibit Atoh1-mediated conversion into HCs; that

Figure 3. Heterogeneity of Notch activities among different cells. (A) Tdtomato expression was absent in control Rosa26-CAG-tdTomatoloxp/+

mice. (B–B’’) Cre-mediated Tdtomato expression in Notch1Cre (low)/+; Rosa26-CAG-tdTomatoloxp/+ mice. Arrow pointed to a tdTomato+ HC (B’). (C–C’’)
Broader Cre-mediated Tdtomato expression in Notch1Cre (High)/+; Rosa26-CAG-tdTomatoloxp/+mice. Two arrows were two tdTomato+ HCs. (D)
Quantification of tdTomato+cells. The percentage of tdTomato+ HCs in ‘‘Low’’ model was too small to see in the graph. The SEM bar (OPC and DC)
was also too small to see in the ‘‘High’’ model. ‘‘Low’’ represents Notch1Cre (low)/+; Rosa26-CAG-tdTomatoloxp/+, while ‘‘High’’ does Notch1Cre (High)/+;
Rosa26-CAG-tdTomatoloxp/+mice. ***p,0.001, **p,0.01. D1-D3: three rows of Deiters’ cell; OPC: outer pillar cell; IPC: inner pillar cell; IPH: inner
phalangeal cell; h: Hensen’s cell. Bars: 200 mm (A, C); 20 mm (B’, C’).
doi:10.1371/journal.pone.0064903.g003
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is, given our observed Notch1 heterogeneity among SCs, 93% of

DCs, 85.7% of OPCs and 19% of IPCs with high Notch1 activities

could not be converted into HCs. Because loss of Notch1 activity

in damaged cochleae promoted conversion of SCs into HCs [48],

simultaneous inactivation of Notch1 and ectopic Atoh1 overex-

pression might be synergistic in vivo. Because of low levels of

Notch1 activity in 61.6% of IPCs and the proximity of IPCs to

Fgf8-expressing IHCs, we speculate that Fgf8/Fgfr3-mediated Fgfr

signaling is also critically important and may collaborate with low

levels of Notch1 to control IPC development [28,49]. Such

interactions might also explain the fact that only IPCs, but not

OPCs and DCs, proliferate when the Sox2 gene is conditionally

deleted at neonatal ages [50]. As Notch1 is also important in

keeping SCs quiescent at perinatal ages [41], we conjecture that

medium or high levels of Notch1 activity can compensate for Sox2

deletion in 99.4% OPCs and 99.8% DCs (and only 38.4% IPCs),

preventing their proliferation.

Finally, these two new Notch1Cre/+ lines exhibit Cre activities at

various levels, a valuable tool not only for discriminating levels of

Notch1 activity across cell types, tissues, and developmental stages,

but also for lineage tracing and genetic manipulation of various

genes specifically in cells that experience different levels of Notch1

signaling. In the cochlea, these mouse lines would thus be

invaluable for such manipulations in SCs after E16. In summary,

our results revealed significant heterogeneity of Notch1 signaling

during cochlear development and will have significant implications

in our understanding of the development of the organ of Corti and

potentially for HC regeneration in mammalian cochleae.

Materials and Methods

Mice Strains and Embryonic Age Designation
Notch1Cre (Low)/+ (stock number: 006953) [26] and Rosa26-CAG-

tdTomatoloxp/+ (stock number: 007908) [51] mice were purchased

from The Jackson Laboratory (Bar Harbor, ME). Notch1Cre (High)/+

mice were described in [29–31]. Mice were crossed at 5 pm, and

checked for presence of the vaginal plug at 7 am the next day. If

plugs were present, the morning was designated as E0.5. Notch1Cre

(Low)/+; Rosa26-CAG-tdTomatoloxp/+ mice were bred at St. Jude

Children’s Research Hospital (St. Jude). Notch1Cre (High)/+; Rosa26-

CAG-tdTomatoloxp/+ mice were maintained in the animal facility at

Washington University, and inner ear samples fixed in 4%

paraformaldehyde (PFA) were shipped to and analyzed at St. Jude.

All animal work conducted during the course of this study was

approved by the Institutional Animal Care and Use Committee at

St. Jude and Washington University and performed according to

NIH guidelines.

Histology and Immunofluorescence
Preparation of embryonic, neonatal, and adult-age inner ear

samples have been described previously [52]. All samples were

examined by using a Zeiss LSM 700 confocal microscope. The

following primary antibodies were used: anti-Myosin-VI (rabbit,

1:200, 25–6791, Proteus Bioscience, Ramona, CA), anti-Sox2

(goat, 1:1000, sc-17320, Santa Cruz Biotechnology, Santa Cruz,

CA). The following secondary antibodies were used: goat anti

rabbit Alexa Fluor 568 (1:1000, A11036, Invitrogen), donkey anti

goat Alexa Fluor 568 (1:1000, A11057, Invitrogen), donkey anti

rabbit Alexa Fluor 647 (1:1000, A31573, Invitrogen).

Cell Counting
Embryonic and neonatal cochlear samples were divided into

two parts, whereas adult samples were divided into three parts. We

purposely left a tiny cut in spiral ganglion areas of each turn to

help distinguish the two ends under the confocal microscope. With

the preliminary low-magnification image, we first measured the

length of each turn by drawing a curved line in the middle of

OHCs and IHCs and then added up the length of the three turns.

Confocal Z stac (406oiled lens) scanning was performed at 1 mm
intervals to tdTomato or Myosin-VI or Sox2-expressing cells, with

Hoechst33342 being used to label cell nuclei. This approach was

used to reduce the counting variations among different samples.

For each SC subtype, the percentage of SCs traced by tdTomato

was calculated by normalizing the number of tdTomato+cells with
respect to the total number of SCs (using Sox2 as a marker) in the

same confocal Z stack scanning area.

Statistical Analysis
All data were expressed as mean 6 S.E.M. Each cell type

counting between 2 different genetic models at P6 was compared

using a one-way ANOVA followed by a Student’s t test with a

Bonferroni correction. Statistical analysis was conducted using

GraphPad Prism 5.0 Software.
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