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Abstract: Background: Gastrointestinal (GI) health is an important aspect of general health.
Gastrointestinal symptoms are of specific importance for the elderly, an increasing group globally.
Hence, promoting the elderly’s health and especially gastrointestinal health is important.
Gut microbiota can influence gastrointestinal health by modulation of the immune system and
the gut–brain axis. Diverse gut microbiota have been shown to be beneficial; however, for the
elderly, the gut microbiota is often less diverse. Nutrition and physical activity, in particular,
are two components that have been suggested to influence composition or diversity. Materials and
Methods: In this study, we compared gut microbiota between two groups of elderly individuals:
community-dwelling older adults and physically active senior orienteering athletes, where the latter
group has less gastrointestinal symptoms and a reported better well-being. With this approach,
we explored if certain gut microbiota were related to healthy ageing. The participant data and faecal
samples were collected from these two groups and the microbiota was whole-genome sequenced and
taxonomically classified with MetaPhlAn. Results: The physically active senior orienteers had a more
homogeneous microbiota within the group and a higher abundance of Faecalibacterium prausnitzii
compared to the community-dwelling older adults. Faecalibacterium prausnitzii has previously
shown to have beneficial properties. Senior orienteers also had a lower abundance of Parasutterella
excrementihominis and Bilophila unclassified, which have been associated with impaired GI health.
We could not observe any difference between the groups in terms of Shannon diversity index.
Interestingly, a subgroup of community-dwelling older adults showed an atypical microbiota profile
as well as the parameters for gastrointestinal symptoms and well-being closer to senior orienteers.
Conclusions: Our results suggest specific composition characteristics of healthy microbiota in
the elderly, and show that certain components of nutrition as well as psychological distress are not as
tightly connected with composition or diversity variation in faecal microbiota samples.
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1. Introduction

During the last decade, longevity has increased among the elderly population, resulting in a global
ageing phenomenon that is having a major impact on healthcare systems worldwide. This has led to
an increased awareness of the importance of promoting healthy ageing and quality of life throughout
an individual’s lifespan. To promote and initiate healthy ageing, it is important to understand and
reveal the underlying mechanisms.

The gastrointestinal (GI) tract is an essential part of the human body and physiological system
through which health and well-being might be promoted [1]. A well-functioning GI tract has previously
been identified as crucial for subjective health and well-being among older adults [2]. GI symptoms are
common among community-dwelling older adults (i.e., older adults residing in their own household)
in Sweden, and as many as 65% experience one or several gut symptoms that correlate with increased
psychological distress, including anxiety and depression [3]. On the contrary, physically active seniors
engaged in orienteering (a sport involving finding specific locations using a map and a compass)
have previously been identified as a potential model of healthy ageing [4], as they display the three
main components of successful ageing—physical endurance, cognitive skills, and social interaction [5].
Indeed, our previous data show fewer GI symptoms among senior orienteers and a better overall
health compared to community-dwelling older adults [4,6]. This indicates that gut health may reveal
important factors of well-being in the elderly, especially its association with various factors that
are known to influence gut microbiota during the entire lifespan. The microbial composition of an
individual depends on factors such as age, diet, geography, environmental exposure, and many others,
as shown in Figure 1 [7–10].
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The human GI tract is a complex ecosystem where the gut microbiome interplays with host
cells and dietary-derived components, both of which have been implicated in playing a major role in
health and disease [1]. A diverse gut microbiome has been related to several essential mechanisms
for both a well-functioning GI tract as well as well-being, including modulating the immune system,
maintaining an intact intestinal barrier, and being a part of the regulation of the gut-brain axis [11,12],
where a decreased diversity has been linked to both GI and psychiatric disorders [13]. Ageing has been
associated with a loss of diversity of the gut microbiome; specifically, bacteria belonging to the phyla
Firmicutes and Actinobacteria decrease, whereas Proteobacteria increase in abundance [14]. These changes
could be due to nutritional deficiencies such as lower intakes of specific nutrients, e.g., dietary fibres
and proteins, that are important for maintaining the immune and GI functions [15]. Recent evidence
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further indicates that physical activity, independent of diet, could induce positive alterations of the
gut microbiome composition [16,17]. However, the relationship between physical activity and gut
microbiota across the life course has not been entirely elucidated. It is also less known to what extent
microbiome composition and diversity are influenced by certain factors when other factors change at
the same time, especially in a diverse population such as the elderly. For example, it is still not clear
which specific influence could be attributed to nutrition components or psychological factors such as
distress or anxiety.

In the present study, we investigated the gut microbiota profile in senior orienteering athletes,
as a proposed model of healthy ageing, in relation to GI symptoms and macronutrient intake and
compared it to the gut microbiota composition of community-dwelling older adults, representing the
general older adult population, to identify possible patterns specifically related to healthy ageing.

2. Materials and Methods

2.1. Study Participants, Data Collection, and Ethics

Samples were available from two previously established cohorts: community-dwelling older
adults (hereafter referred to as older adults), representing a cross-section of the general older adult
population [3,18] (n = 70) and physically active senior orienteers (hereafter referred to as senior
orienteers) as a model of healthy ageing [6] (n = 28). All participants were ≥65 years of age;
the inclusion and exclusion criteria are presented in Table 1. The study received approval from the
Regional Ethics Board in Uppsala, Sweden (dnr: 2012/309, 2013/037, 2015/357) and was conducted in
accordance with the Declaration of Helsinki.

Table 1. Inclusion and exclusion criteria.

Older Adults Senior Orienteering Athletes

Inclusion criteria

Informed consent signed by the study
participant

Age ≥ 65 years
Mentally and physically fit to complete
questionnaires during the study period

Informed consent signed by the study participant
Age ≥ 65 years

Mentally and physically fit to complete
questionnaires during the study period

Actively performing and competing in orienteering

Exclusion criteria

Any known gastrointestinal disease,
malignancies, and ischemia
Inflammatory bowel disease

Participation in another clinical trial in the past
three months

Any known gastrointestinal disease, malignancies,
and ischemia

Inflammatory bowel disease
Participation in another clinical trial in the past

three months

2.2. Gastrointestinal Symptoms, Psychological Distress, and Physical Activity

Data regarding GI symptoms, psychological distress, and physical activity were available from
the two previously established cohorts for all orienteers and a subset of older adults (n = 54) [3,6].
GI symptoms and psychological distress were assessed through the following validated questionnaires:
the Gastrointestinal Symptom Rating Scale (GSRS) [19] and the Hospital Anxiety and Depression
Scale (HADS) [20]. Briefly, the GSRS comprises 15 questions assessing five GI symptoms (i.e., reflux,
abdominal pain, dyspepsia, diarrhoea, and constipation) that are scored from 1 to 7 depending
on their severity. A total score is then calculated as the average from the five symptom scores.
The HADS includes 14 questions and is divided into two subscales assessing anxiety and depression
(7 questions/scale) together giving an estimation of psychological distress. The Frändin–Grimby
Activity Scale (FGAS) [21], a 6-point scale with fixed response alternatives, was used to assess the level
of physical activity.
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2.3. Macronutrient Intake

The nutrient intake was estimated by a validated semi-quantitative Food Frequency Questionnaire
(FFQ) [22] asking for dietary intake during the past year. The questionnaire has previously been
described and used in an elderly population [3]. Raw data were available from the previously
established cohorts [3,18] and were further analysed according to a standard procedure to assess
the following macronutrients: fibre, protein, saturated fat, unsaturated fat, and carbohydrates as
well as estimated added sugar. Briefly, participants estimated their intake of 66 food items from
0–8 (0 = never, 8 = 4 or more times a day). To facilitate inter-individual comparisons, the intake per
day was expressed as energy percentage (E%) and the intake of fibre was expressed as gram per
megajoule (MJ) energy intake.

2.4. Medications

Medications were self-reported and grouped according to the Anatomical Therapeutic Chemical
(ATC) classification system, controlled by the WHO’s Collaborating Centre for Drug Statistics
Methodology, by a physician (author F.F.), using a national tool [23].

2.5. Next-Generation Sequencing for Determination of the Microbiota Composition

Stool samples were collected according to standard operating procedures [18] and were analysed
using next-generation sequencing (NGS) for assessment of the faecal microbial composition [24].
Total DNA was extracted from faecal samples using a QIAmp DNA stool mini kit according to the
manufacturer’s instructions (Qiagen, Hilden, Germany), coupled with an initial bead-beating step.
The total microbial content was further assessed through whole-genome sequencing (WGS) at SciLifeLab,
(Stockholm, Sweden) using an Illumina HiSeq 2500 device (Illumina, San Diego, CA, USA) with four
samples per lane, yielding approximately 50 million read pairs per sample. Whole-genome sequences
were taxonomically classified using MetaPhlAn v2.0 (Huttenhower Lab, Boston, MA, USA) [25] at
default settings. Relative abundances for the taxomic levels of genera and species were extracted from
the output of MetaPhlAn and further analysed in R (3.6.1, R Core Team, New Zealand) [26].

2.6. Data Analysis

Continuous demographic data were analysed using the Mann–Whitney U test, and categorical
demographic data were analysed using the chi-square test. Relative abundances for microbiota at
genus and species level were calculated and considered for further analysis. Welch’s two-sample t-tests
followed by the Benjamini–Hochberg procedure for multiple testing correction were used to assess the
difference in bacterial abundance between the two groups [27]. Top genera, differentially occurring
in orienteers and general elderly, were selected based on a false discovery rate (FDR) less than 5%.
Given our abundance data and group sizes (orienteers, older adults), we estimated to be able to detect
a 20% difference in abundance, with 80% power and 5% significance level. Species representing the top
predicted genera were considered for further downstream statistical analysis. To estimate if a difference
was consistent after the effect of the covariate was taken into account, we fitted a zero-inflated negative
binomial (ZINB) regression model with each covariate as an explanatory variable [28–30]. The resulting
residuals were considered as corrected bacterial abundances with the effect of the covariate removed.
The differences of these corrected bacterial abundances between groups were tested using a ZINB
model and ANOVA type III sums of squares test for the bacterial abundances. The relative importance
of all covariates was assessed by performing a model comprising all covariates using likelihood-ratio
chi-square statistics [31].

All plots were produced in R (version 3.6.1, R Core Team, New Zealand) [32] using either the
base graphics package or ggplot2 version 3.2.1 [33]. Boxplots were produced with the graphics
package using the notch option, where box encapsulates the first to third quantiles and whiskers are
the minimum of 1.5 interquartile range (IQR) from the box or the min/max value. Boxplot notches
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visualise a non-parametric estimation of the 95% confidence interval of the median calculated as
+/-1.58 IQR/

√
n [34]. ANOVA with type III sums of squares analysis was performed as implemented in

the car package v 3.0-3. Zero-inflated negative binomial regression was performed using the function
zeroinfl within the pscl package v 1.5.5 [35]. FDR values were estimated using the package multtest,
following the approach adopted by Benjamini and Hochberg [36]. Bray-Curtis distances and Shannon
diversity index were calculated from species abundance profiles using the vegan (v2.5-6) package [37].
PCoA analyses were performed with the R package labdsv [38]. Participants outside the 95% confidence
area formed the subset atypical older adults. Student’s t-test was performed to compare average
values between senior orienteers, typical older adults, and the subset of atypical older adults for each
covariate. Taxonomy prediction and statistical analysis were automated using in-house scripts written
in Bash and R (Figure S1) [26].

3. Results

3.1. Demographic Data

All demographic data are presented in Table 2. The degree of anxiety (p = 0.006) and depression
(p = 0.002) were significantly higher among older adults compared to senior orienteers, whereas
physical activity was higher among senior orienteers (p < 0.001).

Table 2. Participant characteristics.

Parameter Community-Dwelling Older Adults
n = 70

Senior Orienteering Athletes
n = 28 p-Value

Sex
Median n (%)

Female
Male

33 (47%)
37 (53%)

12 (43%)
16 (57%) 0.701

Age
Median (IQR) 72 (69–76) 68.5 (67–72) 0.034

Smoking
n (%) 1 (1%) 0 (0%) 0.537

Physical activity
Median (IQR) 3.5 (3–4) 4 (4–5) <0.001 *

Polypharmacy
n (%) 8 (12%) 2 (7%) 0.487

Number of medications
Median (IQR) 2 (1–4) 1 (0–2) 0.016

GI symptoms
Median (IQR)

Indigestion
Constipation

Abdominal pain
Diarrhoea

Reflux

2.0 (1.3–3.1)
1.3 (1.0–3.3)
1.3 (1.0–2.0)
1.0 (1.0–3.3)
1.0 (1.0–1.5)

1.5 (1.3–1.9)
1.3 (1.0–1.6)
1.0 (1.0–1.7)
1.3 (1.0–1.7)
1.0 (1.0–1.0)

0.011
0.569
0.009
0.497
0.043

Total GI symptoms 1.8 (1.1–2.5) 1.3 (1.1–1.5) 0.021

Depression
Median (IQR) 2 (1–4) 0 (0–1) 0.002 *

Anxiety
Median (IQR) 2 (0.5–5.5) 0.5 (0–2.8) 0.006 *

* Retained significant difference after multiple testing corrections. Physical activity, GI symptoms, and psychological
distress (depression and anxiety) are all measured with questionnaires, see the Materials and Methods section for a
more detailed description of each questionnaire. Interquartile range (IQR) is presented within parentheses where
applicable. GI = gastrointestinal.
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3.2. Microbiota Composition

Faecal microbiota profiles of the two established cohorts of older individuals (senior orienteers and
older adults) were analysed on both genera and species levels from shotgun metagenomic sequences.
Faecalibacterium was on average the most prominent genus and a total of 111 genera were found in
at least one sample (Figure 2, Supplementary Table S1). Three of these genera showed significantly
different proportions between senior orienteers and older adults (Figure 3A). These three genera are
represented by four species that were used for further analysis. Of these four species, Faecalibacterium
prausnitzii and Bilophila unclassified were the most abundant (Figure 3B).

To investigate whether differences of microbiota composition were due to confounding factors,
twelve covariates were included in the analyses, i.e., five macronutrients (carbohydrates, protein,
unsaturated fat, saturated fat, and fibre), two parameters assessing psychological distress (anxiety and
depression), three parameters assessing medicines associated with dynamic changes in the microbiota
(antibiotics during the previous six months, acetylsalicylic acid, and any medicine affecting the
GI tract), sex, and age (Figures 4–6). Several covariates were significantly different between the groups.
The senior orienteers had a significantly higher intake of carbohydrates and a lower intake of saturated
fat in their diet compared to older adults (p = 0.006 and p = 0.038, nominal p-values). Older adults
reported a higher level of depression and anxiety (Table 1). One species was significantly increased
in senior orienteers after correcting for all covariates, namely Faecalibacterium prausnitzii. Bilophila
unclassified was significantly different for 8/15 covariates or combinations of covariates, and Bilophila
wadsworthia as significantly different for 5/15 covariates or combinations of covariates (more abundant
in older adults; see Figure 5).
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Figure 4. Comparison of covariates. Boxplots of covariates stratified for older adults and senior
orienteers, including descriptive p-values from Welch’s t-test. (A) Macronutrients measured by energy
percentage (E%). (B) Fibre measured by grams per megajoule (MJ). (C) Hospital Anxiety and Depression
Scale (HADS) score. (D) Bar plot for medication covariates for older adults and senior orienteers,
including descriptive p-values from chi-square test.
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Figure 5. Significance of difference between older adults and senior orienteers after correction for
macronutrients, psychological distress, and medication variables. Corrected bacterial composition
values were compared between groups for each species and false discovery rates (FDRs) calculated.
The dots represent negative log10 p-values belonging to respective species, where blue denotes
significance and red denotes non-significance, with a significance threshold at FDR <5%. A Results for
models with a single macronutrient variable and with all macronutrient variables in a multi-variable
model. B Results for models with single medication variables and with all variables in a multi-variable
model. C Results for models regarding anxiety and depression separately with single Hospital Anxiety
and Depression Scale (HADS) variables and with both HADS variables in a multi-variable model.
D Results for models with sex and age.
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3.3. Ecological Diversity and Homogeneity

No difference in alpha diversity in terms of Shannon index was observed between the groups
(Supplementary Figure S2). To estimate the beta diversity, principal coordinates analysis (PCoA) with
a Bray–Curtis dissimilarity score was used. In the PCoA, the microbiota profiles of senior orienteers
appear more homogenous than the profiles of older adults (95% confidence ellipse area, 0.2013 for older
adults and 0.1094 for senior orienteers; see Figure 7A). When analysing only the four species that are
significantly different between the groups, the homogeneity difference became even larger (0.1861 for
older adults and 0.0179 for senior orienteers; see Figure 7B). Based on the PCoA with the four selected
species, there appeared to be a subset of individuals, all from the older adult group, that have an
atypical microbiota profile. This atypical participant group (atypical older adults, n = 12) was compared
with orienteers (n = 28) and the rest of the older adults (typical older adults, n = 42) regarding covariates
(Figure 8). Significant differences were observed only between senior orienteers and the majority
group of typical older adults. Protein, saturated fat, carbohydrates, depression, anxiety, and GSRS
variables showed significant differences between these two groups. Interestingly, the atypical group of
older adults seems to be closer to the senior orienteering group than the typical older adults for these
covariates. Confidence intervals of correlation values between F. prausnitzii and fibre showed a trend
towards a weak correlation. A trend for a positive correlation was found between F. prausnitzii and
fibre in the orienteering group although not significant (cor = 0.33, 95% CI = [−0.046, 0.63]). For the
older adults, no such correlation could be seen (cor = −0.062, 95% CI = [−0.36, 0.25] for typical adults
and cor = 0.14, 95% CI = [−0.53, 0.57] for atypical adults) (Figure 9).
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3.3. Ecological Diversity and Homogeneity

No difference in alpha diversity in terms of Shannon index was observed between the groups
(Supplementary Figure S2). To estimate the beta diversity, principal coordinates analysis (PCoA) with
a Bray–Curtis dissimilarity score was used. In the PCoA, the microbiota profiles of senior orienteers
appear more homogenous than the profiles of older adults (95% confidence ellipse area, 0.2013 for older
adults and 0.1094 for senior orienteers; see Figure 7A). When analysing only the four species that are
significantly different between the groups, the homogeneity difference became even larger (0.1861 for
older adults and 0.0179 for senior orienteers; see Figure 7B). Based on the PCoA with the four selected
species, there appeared to be a subset of individuals, all from the older adult group, that have an
atypical microbiota profile. This atypical participant group (atypical older adults, n = 12) was compared
with orienteers (n = 28) and the rest of the older adults (typical older adults, n = 42) regarding covariates
(Figure 8). Significant differences were observed only between senior orienteers and the majority
group of typical older adults. Protein, saturated fat, carbohydrates, depression, anxiety, and GSRS
variables showed significant differences between these two groups. Interestingly, the atypical group of
older adults seems to be closer to the senior orienteering group than the typical older adults for these
covariates. Confidence intervals of correlation values between F. prausnitzii and fibre showed a trend
towards a weak correlation. A trend for a positive correlation was found between F. prausnitzii and
fibre in the orienteering group although not significant (cor = 0.33, 95% CI = [−0.046, 0.63]). For the
older adults, no such correlation could be seen (cor = −0.062, 95% CI = [−0.36, 0.25] for typical adults
and cor = 0.14, 95% CI = [−0.53, 0.57] for atypical adults) (Figure 9).

Figure 7. Principal coordinates analysis (PCoA) plots. Principal coordinates were estimated using
Bray–Curtis distance on the predicted species. Each dot represents an individual sample, shape depicts
groups, and blue scale codes for the gastrointestinal symptom scores measured with Gastrointestinal
Symptom Rating Scale (GSRS) values. Dotted ellipse indicates 95% confidence region of older adults and
dashed ellipse indicates 95% confidence region of senior orienteers. CEA = 95% confidence ellipse area.
(A) PCoA using all predicted species; (B) PCoA using four selected species that were significantly
different between older adults and senior orienteers.

Figure 7. Principal coordinates analysis (PCoA) plots. Principal coordinates were estimated using
Bray–Curtis distance on the predicted species. Each dot represents an individual sample, shape depicts
groups, and blue scale codes for the gastrointestinal symptom scores measured with Gastrointestinal
Symptom Rating Scale (GSRS) values. Dotted ellipse indicates 95% confidence region of older adults and
dashed ellipse indicates 95% confidence region of senior orienteers. CEA = 95% confidence ellipse area.
(A) PCoA using all predicted species; (B) PCoA using four selected species that were significantly
different between older adults and senior orienteers.
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Atypical older adults are defined as samples outside of the confidence ellipse area in Figure 7.
Statistically significant differences are marked with an asterisk. (A) Macronutrient intake measured
by energy percentage (E%). (B) Fibre measured by grams per megajoule. (C) Anxiety and depression
scores. (D) Mean score of gastrointestinal symptoms. (E) Representation of proportion of subjects
with medications.
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in brackets for respective observed correlations.
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4. Discussion

The present study focused particularly on identifying gut microbiota profiles related to healthy
ageing. Collectively, the novel data of the study show that senior orienteers, used as a model of
healthy ageing, display a significantly different composition of the gut microbiota, with higher levels
of F. prausnitzii, compared to older adults. Notably, these changes were found to be persistent even
after correcting for macronutrient intake, psychological distress, and medical regimen affecting the
GI tract. As a higher abundance of F. prausnitzii is associated with good gastrointestinal health [39],
this result is coherent with our previous studies of the cohorts [4,6]. In addition, we observed more
homogeneous overall compositions of gut microbiota in the senior orienteer cohort.

Senior orienteering athletes have previously been identified as a potential model of healthy
ageing [4], where we have previously shown that signs of depression, anxiety, and gastrointestinal
discomfort are lower in this group compared to older adults [6]. In the present study, assessment of
the macronutrient intake further showed that senior orienteers had a lower intake of saturated fats and
a higher intake of carbohydrates compared to older adults. This result further supports our previous
findings that senior orienteers display several factors associated with health. The dietary intake has
previously been shown to be a major factor influencing the composition of the gut microbiota and,
subsequently, the metabolic output and function of the gut microbiome [40–42].

While a Western-style diet, rich in saturated fat and low in fibre, gives rise to a less diverse gut
microbiota with a metabolic profile likely to be detrimental to health [42,43], the addition of dietary
fibres, fruits, and vegetables is able to shift the composition to a more diverse composition associated
with an increase in bacterial species, including F. prausnitzii [44–46]. F. prausnitzii, recognized as a
marker of a healthy gut [39], is a non-spore forming and strict anaerobe, placed taxonomically within
Clostridium cluster IV [47], which is a member of the Clostridium leptum group [48]. It is also one
of the most important members among the butyrate-producing bacteria in the human colon [49,50].
The function of F. prausnitzii in the gut has been associated with its high capacity to contribute to
the production of the short-chain fatty acid butyrate, the main nutrient for colonocytes known to
display anti-inflammatory properties [51]. A diet high in fibre has previously been associated with an
increased abundance of F. prausnitzii [52,53]. Within the senior orienteering group, we identified a
trend towards a positive correlation between intake of fibres, including dietary fibres, and relative
abundance of F. prausnitzii. As the trend is not visible in community-dwelling older adults, this result
could suggest that fibre intake is linked to higher F. prausnitzii abundance only in a group with a lower
degree of GI problems. However, it is important to note that a limitation of the study is the assessment
of macronutrient intake via an FFQ estimating intake over a year. Therefore, the result may be affected
by recall bias and a dietary diary would have been an excellent complement to estimate the intake
during the days of stool sampling.

Our findings further show that F. prausnitzii accounts for approximately 18% of the total faecal gut
microbiota in senior orienteers compared to 15% among community-dwelling older adults. This is in
accordance with two previous independent studies showing that 5–15% of the microbiota consists of
F. prausnitzii [39,54]. This observation may indicate that senior orienteers have a higher production of
butyrate. However, butyrate was not assessed in the present study as the level of butyrate in the luminal
content does not reveal whether the elevated levels are due to the gut microbiota composition or a
disturbed uptake of butyrate in the intestinal mucosa. Hence, further studies are needed to elucidate
how the abundance of F. prausnitzii correlates to butyrate production in older adults. Moreover, the high
relative abundance of F. prausnitzii in the present study may be due to geographical location as both
elderly and adult individuals in Sweden have been found to have a high abundance of this particular
species compared to microbiota profiles found in other European countries [55].

Even though a higher relative abundance of F. prausnitzii was observed, we did not observe
an enhanced microbial diversity among senior orienteers. This is in contrast to previous findings
where regular exercise and sustained levels of increased physical activity have been shown to enhance
microbial diversity independent of diet [16,17,56]. Interestingly, a recent report shows that, even though
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regular exercise among older adults is important to maintain a stable gut microbiota, the α-diversity
was not significantly different between older adults performing regular exercise compared to those who
did not [57]. On a family level, a change in relative abundance of several bacterial families was observed,
but not in the Ruminococcaceae family, to which F. prausnitzii belongs. A recent systematic review
further summarizes the field and shows that higher levels of physical activity and cardiorespiratory
fitness are associated with higher faecal concentration of short-chain fatty acids in adults [58]. However,
it was not possible to distinguish whether short-term or medium-/long-term exercise had a more
positive effect on the gut microbiota composition. It is therefore possible that orienteering among
elderly may only have moderate effects on the gut microbiota. It is further important to note that
the level of physical activity is self-reported and does not give an exact indication of how hard the
participants exercised. In addition, the present study is limited by the low number of senior orienteers,
and the absence of significant differences may reflect low statistical power rather than true negative
findings. Hence, more in-depth future studies are needed to thoroughly elucidate the relationship
between physical activity and gut microbiota composition in the elderly.

Moreover, a physically inactive lifestyle together with a diet high in refined carbohydrate and
low in dietary fibre is associated with a depleted microbiome and the elevated risk to develop chronic
diseases [59]. In our study, the bacterial species Parasutterella excrementihominis and Bilophila wadsworthia
were found in a higher relative abundance in community-dwelling older adults. Although little is
known regarding their function, it is intriguing to note that both species have been associated with
decreased intestinal health. Parasutterella excrementihominis belongs to the class Betaproteobacteria
(one of eight classes of Proteobacteria). The relative abundance of Parasutterella excrementihominis has
previously been associated with different host health outcomes such as inflammatory bowel disease,
irritable bowel syndrome, obesity, diabetes, and fatty liver disease [60–63]. Bilophila is a member of
the hydrogen sulphide (H2S)-producing family Desulfovibrionaceae. Bilophila metabolizes sulphated
compounds and produces H2S that can trigger inflammation, exert genotoxic and cytotoxic effects
on epithelial cells, and impair intestinal barrier function [64]. Correlations of sulfidogenic bacteria
to the aetiology of chronic metabolic diseases have recently been shown [65,66]. However, little is
known about the genus Bilophila. Bilophila wadsworthia has been associated with a variety of human
and animal infections [67–70].

Another possible environmental factor that can influence gut microbiota is medications [71].
Common drugs, including antibiotics, have been found to alter the gut microbiota composition [72].
Repeated courses of antibiotic treatment may result in the loss of microbial species that may not
be restored [73]. Prescribed medication from medical records would have provided appropriate
data to investigate an accurate list of medications since our data did not include dosage or common
usage. However, the prescribed medications do not include over-the-counter medications, which
comprise several agents affecting the gastrointestinal canal directly (such as proton-pump inhibitors,
laxatives, etc.). As the differences between senior orienteers and older adults are still significant after
diet and medications are taken into account, the distinctive features of the former group are further
accentuated as important for the differences in microbiota.

Moreover, it is important to acknowledge that senior orienteers have a lifestyle represented not
only by a high level of physical activity, but also by an active social life. Loneliness and lack of
contact often increase the risk of depression and anxiety among older adults [74]. In accordance with
previous data, we show that depression and anxiety are significantly lower among senior orienteering
athletes compared to community-dwelling older adults. Depression and anxiety are known to be
associated with an altered gut microbiota composition that is most likely due to changes in the
microbiota–gut–brain axis, the bidirectional relationship between the gut microbiota and brain [75].
One of the major factors influencing this pathway is diet and, among other factors, a change in eating
habits due to increased psychological distress has been proposed to contribute to the alterations of the
gut microbiota associated with depression and anxiety [76]. However, the relationship between diet
and depression and anxiety needs to be further investigated as the results from dietary intervention



Nutrients 2020, 12, 2610 13 of 17

studies are contradictory and the directionality and mechanisms are currently unclear as reviewed by
Bear et al. [75]. In accordance with these observations, a recent systematic review of the field shows
that so far there is no consensus within human studies regarding the question about which bacterial
taxa would be most relevant to depression [77].

This study focused only on a few factors that could possibly have an impact on the gut microbiome.
However, there are many other environmental, behavioural, socio-economic, and health-related
variables that contribute to the gut microbial composition (Figure 1). The scope of this study was
to investigate the difference between senior orienteers and older adults after correcting for a variety
of factors. Many of the factors that were used for correcting the microbiota composition are not
independent, but are different between the two studied groups and, therefore, confounded with each
other. An elaborate analysis of predicted function profiles of proteins, pathways, and metabolite levels
will provide more insight into the functional aspects of healthy ageing, but remains outside the scope
of this study.

In healthy adults, the gut microbiome is a very stable community of microbes composed of highly
adapted microbial species [78,79]. The composition of the gut microbiome has been shown to be shaped
more by environment than by host genetics [80]. Our analyses showed that senior orienteers as a group
had a more homogenous microbiota, which makes individually stable microbiota profiles also more
likely. This is not the case in the older adults’ samples. Individual stability over time has been observed
as a feature that distinguishes the microbiota of healthy individuals compared with individuals with
gastrointestinal disease [81]. Nevertheless, future studies need to validate our findings in a longitudinal
study to verify that the gut microbiota is homogenous and stable among senior orienteers.

5. Conclusions

In conclusion, our data show that senior orienteers can be seen as a model of healthy ageing
also from the perspective of the microbiota. Their faecal microbiota shows a higher abundance of
Faecalibacterium prausnitzii that has been previously associated with positive health benefits, as well
as an active lifestyle. In contrast, the senior orienteers have a lower abundance of Parasutterella
excrementihominis and Bilophila wadsworthia, two species that previously have been associated with
decreased intestinal health. Furthermore, our observation of senior orienteer faecal microbiota being
more homogenous suggests this group of older adults as a model of healthy ageing.
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