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Abstract: Keratin-made biomaterials, including feathers, are considered a protein-rich
bioresource due to their intrinsic properties, including biocompatibility, biodegradability,
mechanical resistance, and biological abundance. Beta-keratin exists as an insoluble stringy
protein due to the high presence of disulfide cross-links, and as a result, it is mechanically
stable and resistant to enzymatic digestion. Because of this, it is not easily decomposed, and
this has made the application of feathers difficult. In this study, after dissolving feathers
in NaOH, sodium sulfide, and 2-Mercaptoethanol (2-ME), the relative molecular mass of
beta-keratin was calculated. Thin-layer chromatography was also used to display proteins
with lower molecular weights. The antioxidant activities of the samples were evaluated by
Fe-chelating and free radical scavenging tests with 2,2-diphenyl-1-picrylhydrazyl (DPPH).
To investigate the effect of blocking thiol groups on the antioxidant activity of dissolved
keratin, iodoacetamide and H2O2 were used. According to the three methods—(A) sodium
hydroxide, (B) sodium sulfide, and (C) urea and 2-ME—used to extract and dissolve the
feathers, method C caused the least change in the chemical structure of keratin molecules.
Method A destroyed the primary structure of keratin and drastically reduced its molecular
mass, but method B caused a drastic increase in the molecular mass from 9.6 kDa to higher
masses, due to intermolecular bonds. For the keratin molecules dissolved by method C,
the Fe-chelating activity was 93.18% and free radical scavenging was 77.45%. Blocking
the thiol group with iodoacetamide initially reduced the free radical scavenging activity
with DPPH by 42%, but blocking it with H2O2 did not affect this activity. Also, blocking
of the thiol group did not initially affect Fe-chelating activity and free radical scavenging
activity. After a kinetic study of the activities, an interesting observation was that both
blocking agents had negative effects on radical scavenging activity, but had positive effects
on Fe-chelating activity. This indicates the complexity of the role of disulfide bonds in
keratin’s antioxidant behavior types. According to the observed antioxidant activities, it
can be expected that beta-keratin extracted from chicken feathers is a suitable candidate for
application in industrial, pharmaceutical, and health applications.

Keywords: feather keratin; dissolution; thiol-blocking; antioxidant activity; radical scav-
enging; Fe-chelating

1. Introduction
Bioactive peptides (BPs) are obtained from natural sources, and include small amino

acid fragments that can cause physical and chemical changes in the body’s natural pro-
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cesses [1]. These physicochemical effects are related to their amino acid composition,
sequence, and molecular weight [2,3]. The presence of hydrophobic amino acids enhances
the radical removal activity and augments the antioxidant activity of peptides, giving
them great potential for a wide range of applications [4]. On the other hand, bioactive
peptides have fewer side effects and immunogenicity than large protein-based biopharma-
ceutical drugs [5]. There are many reports indicating that peptides obtained from protein
hydrolysis may show bioactive activity [6–9]. Currently, more than 4400 different BPs are
reported in the BIOPEP-UWM database, which documents their antimicrobial, antioxidant,
anti-inflammatory, and other bioactivities [10,11].

Free radicals exert detrimental effects on both food and biological systems through
the process of oxidation. Specifically, they can diminish the quality of food and impair cell
membrane function by impacting membrane lipids [12,13]. Additionally, free radicals have
been associated with the development of diabetes, coronary heart disease [14], arteriosclero-
sis [15], high blood pressure, cancer [16], Alzheimer’s [17], Parkinson’s [18], DNA damage,
and aging [19]. On the other hand, antioxidant substances can promote the healing of both
infectious and non-infectious wounds by mitigating the harm inflicted by free radicals [20].
Given that certain antioxidants can enhance immune system function [21], there is currently
a growing demand for natural antioxidants, due to their long-term immunogenicity and a
decrease in the consumption of synthetic antioxidants [22]. Researchers have demonstrated
that several hydrolyzed proteins derived from both plant and animal sources exhibit an-
tioxidant activity by effectively eliminating free radicals, donating electrons, or chelating
metal ions [23–25].

Due to the growing utilization of animal by-products, numerous researchers have com-
menced investigating animal peptides as a potential source of natural antioxidants [26–28].
Efforts are being made globally to enhance the utilization of biological products. Given
the constraints posed by limited natural resources, particular emphasis has been placed on
utilizing industrial by-products as renewable resources. One such example of a by-product
from poultry farms is chicken feathers, which are widely accessible and economically
viable, constituting over 10% of the bird’s total weight [29]. Chicken feathers consist of
90% keratin, and contain significant quantities of amino acids, such as glycine, alanine,
serine, cysteine, arginine, phenylalanine, and valine. Consequently, utilizing keratin-rich
waste materials can be an efficient method for acquiring bioactive peptides [30]. In 2014,
Fontoura and colleagues successfully conducted enzymatic digestion of the proteins in
chicken feathers, and subsequently investigated their antioxidant and antihypertensive
properties [31]. In 2015, Sundaram and colleagues dissolved chicken feathers using sodium
hydroxide (NaOH), and then ethanol and glutaraldehyde, to generate keratin nanoparticles
possessing antioxidant and antimicrobial characteristics [32].

In this study, an attempt was made to solubilize keratin, while preserving the integrity
of its molecular structure. This approach not only reduces costs and processes, but also
results in a well-defined and pure keratin solution, thereby minimizing the risk of side
effects such as immune system stimulation caused by unknown compounds. The resulting
keratin solution does not contain diverse peptides of unknown length or ambiguous
compounds, and the number of components in this solution is limited to the natural
components present in the full structure. Furthermore, we clearly demonstrate in this study
that the intact keratin molecule has significant antioxidant properties (both free radical
scavenging and Fe-chelating), and that the effects of chemical agents, including various
chemical solvents or biological agents, such as microbial degradation and the action of
proteolytic enzymes, should be avoided in order to maintain these intrinsic antioxidant
activities at their maximum initial value. Additionally, attempts were made to block the
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thiol groups present in the keratin structure to prevent the formation of disulfide bonds
and ensure that the keratin molecule did not revert to an insoluble state.

2. Results
2.1. Feather Dissolution

The results of feather dissolution showed that in all three methods (NaOH, Na2S, and
urea with 2-ME), the feather was dissolved well (Figure 1). Also, the solutions after chemical
treatment in all three methods were clear, and no turbidity was observed. Considering
that after dialysis, small peptides and amino acids resulting from hydrolysis or chemical
breakdown are removed from the solution, it was expected that only chemical molecules
that are the size of keratin or larger would remain in the solution.
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2.2. Characterization of Three Dialysates

The results of gel electrophoresis and thin-layer chromatography were compared
for samples obtained from all three methods, in order to choose the best method for
future experiments. To ensure the integrity of the beta-keratin protein structure during the
dissolving process, the resulting polypeptide composition was checked using the Tricine
SDS-PAGE method (Figure 2), after dissolving the feather through the three methods
mentioned above. Figure 2A shows the results of the beta-keratin solution prepared with
urea and 2-ME. Three separate bands were observed in the gel, with the lowest band having
the highest concentration, indicating beta-keratin, and two bands with higher molecular
mass and lower concentration, suggesting the presence of other proteins in the feather
structure. The presence of specific and separate bands in the gel can be attributed to the
performance of urea and 2-ME, as this method does not break peptide bonds. However,
the sample resulting from dissolving the feather with sodium sulfide solution (Figure 2A)
showed a smear instead of specific bands in the gel. Both the smear and the bold band were
shifted towards higher molecular masses than the beta-keratin band, indicating non-specific
chemical cross-linking between beta-keratin molecules, caused by sodium sulfide. On the
other hand, dissolving beta-keratin with NaOH resulted in the opposite outcome compared
to the previous methods. The sample dissolved in NaOH did not show any distinct bands
in the gel (Figure 2A), indicating the creation of amino acids and small peptides due to the
action of NaOH, most of which were removed from the gel during dialysis. Even if they
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did not pass through the dialysis tube, they were rejected due to the small size of the gel
electrophoresis pores, resulting in no bands being observed in the gel.
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Figure 2. Electrophoretic pattern (A) and thin-layer chromatogram (B) of solution of keratin solubi-
lized by sodium hydroxide (NaOH), sodium sulfide (Na2S), and urea and 2-ME. In Tricine SDS-PAGE,
gel was stained using AgNO3. Chromatogram was stained using ninhydrin.

The results of thin-layer chromatography (TLC) confirmed the findings of gel elec-
trophoresis. As shown in Figure 2B, the sample dissolved in urea and 2-ME produced a
specific spot on the chromatography paper (Figure 2B), while the samples dissolved in
sodium sulfide and NaOH did not create specific spots, and appeared as smears (Figure 2B).
The results of TLC and gel electrophoresis were consistent for the sample dissolved in
sodium sulfide, with no bands observed in gel electrophoresis, but a smear seen in TLC.
This can be attributed to the ability of TLC to detect amino acids and peptides with low
molecular weight. Based on the results of Tricine-SDS-PAGE and TLC, the keratin solution
obtained by dissolving the feather with urea and 2-ME was chosen for further steps.

2.3. Biochemical Characterization of Feather Keratin

To determine the molecular mass of the dissolved beta-keratin protein, Tricine-SDS-
PAGE electrophoresis was conducted (as shown in Figure 2), and a standard diagram for
molecular mass determination was created. According to the equation of the standard
curve, the molecular mass of the keratin protein was determined to be 9.62 kDa, while
the observed impurity molecular masses were 24.21 and 63.15 kDa. Therefore, it can be
concluded that keratin protein naturally exists as a peptide with a molecular weight of
9.6 kDa. Previous research has also reported that chicken feather proteins are in the form of
peptides [28]. Analysis of protein bands in the electrophoresis gels revealed that 86.51% of
the protein was beta-keratin, while the remaining 13.48% consisted of impurities with a
higher molecular mass (Figure 3A,B). However, it should be noted that these calculations
were based on dialyzed samples, and some small peptides may have been removed from
the keratin solution during dialysis. Consequently, the actual percentage of beta-keratin is
expected to be higher than the aforementioned value.
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The sequence of Gallus gallus (Chicken) feather keratin was obtained from Uniprot
with the code P20308. This protein has 98 amino acids, with a calculated molecular mass
of 10.4 kDa. As shown in the sequence of chicken feather keratin in Figure 3C, chicken
feather keratin contains the amino acids glycine, proline, phenylalanine, leucine, isoleucine,
alanine, valine, and methionine, which are considered hydrophobic amino acids; these are
equivalent to 51.02% of the keratin sequence.

Determining the concentration of beta-keratin protein in solution is essential for
various biochemical calculations. To determine the protein concentration, a standard curve
was constructed using Bradford’s method. The concentration of the beta-keratin protein
solution was then calculated using the equation derived from the standard curve. The
concentration of the beta-keratin solution was found to be 2.76 ± 0.65 mg/mL. Soluble
keratin has a free radical scavenging activity of 93.59% and an Fe-chelating activity of
93.17%.

2.4. Effect of Blocking Agents on Antioxidant Activity

In this study, after the disulfide bonds were broken by urea and 2-ME, the free thiol
groups were blocked by iodoacetamide and H2O2 (Figure 4).
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feathers, keratin solution and blocked keratin solution by both iodoacetamide and H2O2 methods.

2.5. Radical Scavenging Activity

According to Figure 5A, it was observed that the addition of H2O2 to the keratin
solution did not result in a significant alteration in the rate of free radical inhibition.
However, the inclusion of iodoacetamide led to a reduction of approximately 42% in
inhibitory activity, and negatively impacted the sample’s overall activity.
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2.6. Fe-Chelating Activity

In this study, the antioxidant property was also investigated by measuring the ability to
chelate iron metal. Based on Figure 5B, all three samples showed chelation of a substantial
amount of iron metal, and there were no significant differences. Interestingly, unlike the
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DPPH test, blocking did not reduce the chelating properties. Thus, it appears that the iron
chelating activity is carried out by groups other than the thiol group.

2.7. Kinetics Studies
2.7.1. Kinetics of Free Radical Scavenging

After observing the inhibitory action of the keratin solution on free radicals, the
stability of this observed activity was investigated by studying the kinetics of the solution.
Figure 6A reveals that the ability of the keratin solution to remove DPPH free radicals
diminished over time. Furthermore, iodoacetamide was identified as a factor that negatively
affected the performance of the keratin solution, with the best performance observed when
the solution was unblocked.
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2.7.2. Kinetics of Fe-Chelating

Figure 6B shows the high Fe-chelation activity of the samples. This feature is more
stable over time compared to the free radical scavenging activity. As depicted in Figure 6A,
the sample blocked by iodoacetamide continued to exhibit maximum activity even after two
weeks. Hence, blocking had a beneficial impact on the Fe-chelating property of the samples.

2.8. Comparison of Rate of Inactivation

According to Table 1, the use of blocking agents negatively affected the k inactivation
caused by free radical scavenging activity. When thiol groups were blocked with iodoac-
etamide, the k inactivation due to free radical scavenging increased by approximately four
times, and H2O2 increased by about two times.

Table 1. Relative changes in rate of inactivation (Kin) of blocked and non-block thiol-containing
keratin molecules.

Thiol Blocking
Agents

Kin of Free Radical Scavenging
Activity (%)

Kin of Fe-Chelating
Activity (%)

- 0.09 0.024

Iodoacetamide 0.37 0.0002

H2O2 0.19 0.033

Blocking had a positive impact on the rate of Fe-chelating activity loss in the keratin so-
lution. The keratin solution had an inactivation constant of 0.024, and when thiol groups in
the keratin solution were blocked with iodoacetamide, the inactivation constant decreased
to 0.0002. This indicates that the samples blocked with iodoacetamide experienced a slower
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rate of activity loss. When H2O2 was used for blocking, the k inactivation reached 0.033.
Therefore, blocking with H2O2 does not affect the rate of deactivation of chelating activity.

3. Discussion
Beta-keratin is a type of water-insoluble protein, making it difficult to decompose.

Due to the presence of numerous disulfide bonds in its structure, non-ruminant animals
can only decompose it in small amounts. Moreover, beta-keratin is resistant to enzymatic
hydrolysis, posing a challenge for its application. Several scientists have conducted research
in this field. In 1970, Nagai and Nishikawa applied different concentrations of NaOH to
chicken feathers, and analyzed the resulting amino acids [33]. Steiner and colleagues
dissolved chicken feathers using NaOH and H3PO4 [34]. Papadopoulos explained that
varying amounts of NaOH or maxatase enzyme can break the disulfide bonds, leading to
subsequent enzymatic hydrolysis [35]. In 2002, Kim exposed chicken feathers to NaOH and
pepsin enzyme, exploring the time parameters of their effects under different conditions [36].
Additionally, some scientists have investigated the effects of conditions such as high
temperatures and pressure [37,38], as well as acid hydrolysis [39], on the dissolution of
chicken feathers. Moreover, Schrooyen and colleagues used a solution of urea and 2-ME
to restore the links in full keratin [40]. Mokrejs also used urea and 2-ME to dissolve
chicken feathers, but employed SDS to prevent the re-formation of disulfide bonds after
dialysis [41]. Fontoura and colleagues produced feather hydrolysate using KH2PO4, NaCl,
and CaCl2 [31]. Recently, Pakdel and colleagues dissolved chicken feather keratin using
urea and 2-ME [42]. Although various methods have been employed to address the
solvation problem of feathers, each method has its drawbacks: (a) high pressure and
temperature can damage certain amino acids and alter the amino acid composition of the
protein, and (b) acid and alkaline hydrolysis can break the backbone of the polypeptide
chain and disrupt the protein’s primary structure, resulting in a loss of essential amino acids
and changes in others. Consequently, some researchers have turned to milder substances
for dissolving beta-keratin. For this reason, the use of harsh physicochemical methods
to dissolve feather keratin is undesirable, especially because protein bioactivities, such as
antioxidant activity, are highly dependent on the health and integrity of the amino acid
side chains from which proteins are made. Therefore, among the methods used to dissolve
feathers, the method using urea and 2-ME, which cause the least chemical change in the
structure of the keratin molecule, is very suitable.

Antioxidant properties depend on the structural properties of peptides or proteins,
including their molecular weight, hydrophobicity, and amino acid sequence [43]. Stud-
ies show that low-molecular-weight peptides show effective antioxidant properties [44].
Therefore, the protein synthesized in this study with a low molecular mass (9.62 kDa)
and a hydrophobicity of 51.02% is suitable, and is expected to have antioxidant proper-
ties, which is confirmed by the findings in Table 1. In this study, the sequence of chicken
feather keratin and its hydrophobic amino acids were investigated, and the hydropho-
bicity of keratin was stated as one of the factors affecting the antioxidant properties of
chicken feather keratin. This finding is in accordance with the study of Pakdel and col-
leagues, who mentioned the hydrophobicity of keratin [42]. It has also been reported in
other studies that the inner surface of each beta-sheet of feather keratin is densely filled
with hydrophobic residues [45]. In addition, in the turns between the two strands of the
beta-sheet of keratin, a highly conserved hydrophobic sequence is found, which includes
leucine/isoleucine-proline-glycine-proline, and causes hydrophobic patches on the surface
of keratin molecules [46].

In the present study, different methods for the dissolution of chicken feathers were
compared, and the antioxidant properties of the dissolved keratins were assessed using
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Fe-chelation and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical inhibition assays. Ad-
ditionally, the effect of agents blocking thiol groups on the antioxidant properties was also
considered. Previous studies have primarily focused on assessing the antioxidant activity
of protein samples obtained through dissolution, with only a few studies investigating the
antioxidant properties of feathers using bacterial and chemical hydrolysis methods.

Alahyaribeik and colleagues (2020) conducted a study on the antioxidant activity of
feathers, and found that feather proteins reduced with sodium sulfite exhibited a high
antioxidant activity [47]. In the same year, Bouhamed and colleagues demonstrated that
acid-hydrolyzed feather protein possessed antioxidant activity [37]. Fountra and colleagues
(2019) confirmed the antioxidant activity of feather hydrolysate using ABTS and TRAP
assays [48]. Fontoura and colleagues (2014) hydrolyzed chicken feathers using bacterial
digestion, and evaluated the biological properties of the resulting proteins and peptides [31].
Sundaram and colleagues (2015) successfully produced nanoparticles from chicken feathers
using chemical methods, and investigated the antioxidant properties of the nanoparticles
during their experiments [32].

Keratin shows antioxidant activity in two ways: firstly, due to the presence of hy-
drophobic amino acids (keratin has 51.02% hydrophobicity), according to the articles
published in this field (mentioned above); and secondly, due to the presence of a disulfide
bond, which, depending on the type of antioxidant activity desired, has a dual effect.

One of the conventional methods to prevent the reversibility of disulfide bonds be-
tween free thiol groups is to neutralize them by creating chemical substitutions. When
2-ME and urea are removed during dialysis, the exposed thiol groups have the potential to
re-form disulfide bonds, leading to the accumulation of protein particles. To address this
issue, it is common to use substances like iodoacetamide, which can block thiol groups. In
a study conducted by Schrooyen and colleagues in 2000, feather dissolution was achieved
using urea and 2-ME, and iodoacetamide was used to block thiol groups and prevent the
re-formation of disulfide bonds [40]. Additionally, hydrogen peroxide can also react with
free thiol groups. In this research, H2O2 was used as an agent to block thiol groups, along
with iodoacetamide. It is possible that the blocking of thiol groups resulted in the creation
of new chemical substitutions in the thiol group, thereby improving chelating activity.

If it is possible to prevent protein accumulation without blocking thiol groups, better
results can be obtained from antioxidant tests. This is because preventing protein clumping
reduces the reduction in keratin’s antioxidant properties. It is important to note that the
thiol group in cysteine is responsible for keratin’s antioxidant properties, and blocking thiol
groups reduces this property.

4. Materials and Methods
DPPH was obtained from Sigma-Aldrich (Louis, MO, USA). All other materials were

purchased from Merck (Darmstadt, Germany), and were of analytical grade. White chicken
feathers were collected from the Sepahan Morgh slaughterhouse in Isfahan city, Iran.
Initially, the feathers were washed using water pressure, and then were washed twice
with detergent. Subsequently, they were rinsed eight times with tap water and three times
with distilled water. The feathers were then dried at 40 ◦C for 48 h in an incubator. The
dried feathers were chopped into small pieces with a maximum size of 1–2 mm to be used
for dissolving.

4.1. Dissolution of Feathers

Three methods were used for extracting keratin from feather waste. Feathers were
dissolved in each solution, and for each method, the resulting solution after dialysis,
referred to as “dialysate”, was then used for subsequent experiments.
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4.1.1. Dissolution Using Sodium Hydroxide

A solution of sodium hydroxide (10 mL, 3N) was added to two grams of chopped feath-
ers. The resulting solution was then filtered and centrifuged at 10,000× g for 30 min [37,38].
Subsequently, the supernatant was dialyzed (cutoff of 12–15 kDa) against distilled water
for 72 h at 4 ◦C.

4.1.2. Dissolution Using Sodium Sulfide

Chopped feathers weighing 0.5 g were dissolved in 20 mL of 0.5 M sodium sulfide
solution. The resulting protein solution was filtered and centrifuged at 8000× g for 15 min.
The supernatant was then dialyzed against distilled water for 72 h at 4 ◦C, using a dialysis
tube with a molecular weight cutoff (MWCO) of 12–15 kDa [40].

4.1.3. Dissolution Using Urea and 2-Mercaptoethanol

A Tris buffer solution with a concentration of 25 mM (375 mL) and a pH of 8.5 was
prepared. Urea and 2-Mercaptoethanol (2-ME) were added to the solution. Three grams
of chopped feathers were then added to the solution. The resulting protein solution was
filtered using filter paper, and centrifuged at a speed of 10,000× g for 30 min. The liquid
portion above the sediment, known as the supernatant, was separated. The supernatant was
subjected to dialysis against distilled water at a temperature of 4 ◦C for 72 h. Dialysis was
performed using a dialysis tube with a molecular weight cutoff (MWCO) of 12–15 kDa [40].
The dialysate was called “keratin solution”.

4.2. Protein Characterization
4.2.1. Tricine-SDS-PAGE Analysis

Tricine Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Tricine-SDS-
PAGE) was used to determine the molecular mass and purity of keratin dissolved in
urea and 2-ME. This method is often used for peptides and proteins with a low molecular
mass [49]. Electrophoresis was performed in a vertical slab gel unit (Akhtrian (Tehran,
Iran)), with a gel thickness of 1.5 mm, for three gels: separating (16.5%), spacer (10%), and
stacking (4%). For tank buffers, two different buffers were used, including an anode buffer
of pH 8.9, 0.2 M Tris-HCl, and a cathode buffer of 0.1 M Tricine, pH 8.25, 0.1 M Tris, 0.1%
sodium dodecyl sulfate (SDS). Sample volumes of 20 µL were added to wells of the gel,
and electrophoresis was performed at a voltage of 100 V, until the bromophenol blue band
reached the end of the separating gel. After electrophoresis, the gel was placed in the fixing
solution, staining solution, and destaining solution for 1 h, respectively.

4.2.2. Thin-Layer Chromatography (TLC)

Volumes of 10 µL of each dialysate sample and the control sample were placed at 1 cm
intervals on Silicagel F254 paper. Once the stains were completely dried, the TLC paper
was placed in an electrophoresis tank. The solvent used consisted of butanol, acetic acid,
and water in a ratio of 1:1:1.5. When the solvent reached one centimeter from the upper
edge of the chromatography paper, the paper was removed from the tank and placed in
an oven at a temperature of 100 ◦C to dry the solvent. To observe the protein and peptide
spots, ninhydrin solution was sprayed onto the paper. Finally, the chromatography paper
was dried in an oven [38].

4.3. Protein Quantification

The Bradford method was utilized to determine the protein concentration [50]. To
quantify the protein content in the keratin solution, 50 µL of the keratin-containing solu-
tion was mixed with 625 µL of Bradford solution. After a 2 min incubation period, the
absorbance of the sample was measured at a wavelength of 595 nm.
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4.4. Blocking of Free Thiol Groups with Iodoacetamide

To block thiol groups using iodoacetamide, a keratin solution was prepared using
“the urea and 2-ME” method and mixed with iodoacetamide (0.021 M). The mixture was
then placed on a stirrer in a dark environment. Subsequently, the prepared solution was
dialyzed against water for 40 h, at a temperature of 15 ◦C [51].

4.4.1. Blocking of Free Thiol Groups with H2O2

To block thiol groups, a solution of H2O2 (0.11M) was added to the keratin solu-
tion [51].

4.4.2. Measurement of Free Radical Scavenging Activity

To each of the keratin samples (100 µL), 100 µL of methanol and 1 mL of 0.05 mM
DPPH solution were added, and the mixture was incubated on ice in a dark environment
for 90 min. The absorbance of the samples was measured at a wavelength of 517 nm [52].
The activity of removing free radicals was calculated using Formula (1):

Radical scavenging activity = ((Ac − As)/Ac) × 100
Control absorption (methanol) = Ac

Sample absorption = As
(1)

4.5. Measurement of Fe-Chelating Activity

A 1 mL sample of keratin was added to a 17 µL solution of 2 mM FeCl2. The reaction
was initiated by adding 70 µL of ferrozine solution. The mixture was then incubated at
room temperature for 10 min. The absorbance of the samples was measured at a wavelength
of 562 nm. To ensure the accuracy of the test, a positive control of EDTA (20 mg/mL) was
used [53]. The Fe-chelating activity was calculated using Formula (2):

Fe-chelating activity %= ((Ac − As)/Ac) ×100
Ac = absorbance control (EDTA)

As = absorbance of keratin sample
(2)

4.6. Kinetics of Antioxidant Activity

A keratin solution was prepared for daily testing. The required volume was taken
from the solution prepared on the first day. The iron chelation test and DPPH free radical
inhibition test were then performed. These tests were conducted until the activity reached
its lowest value, or until changes ceased. To compare the rate of inactivation of the samples,
the logarithm of the activity percentage was calculated each day. Using these data, a
logarithm diagram was created to show the deactivation percentage against the heating
time. The deactivation rate constant was determined by calculating the slope of the line
obtained from the diagram.

4.7. Bioinformatic Analysis

The Uniprot website was used to study the sequence of chicken feather keratin (P20308)
(https://www.uniprot.org).

4.8. Data Analysis

All experiments were performed three times, and statistical analyses were performed
using Excel 2016 software. To determine the concentration of keratin and the presence of
impurities in the protein solution, the electrophoresis gel was analyzed using gel scanning
software (ImageJ (version 1.53 t)), available at http://rsb.info.nih.gov/ij/ (accessed on 3
March 2025).

https://www.uniprot.org
http://rsb.info.nih.gov/ij/
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5. Conclusions
In the present study, we investigated the proteins and bioactive peptides obtained

from the dissolution of chicken feathers. We found that approximately 86.5% of the pro-
tein composition of the dissolved and dialyzed feathers was beta-keratin, with a relative
molecular mass of 9.6 kDa. In terms of the biological activities that determine the potential
applications of beta-keratin, this protein exhibited a high amount of two different antioxi-
dant bioactivities: Fe-chelating (93.18%) and free radical scavenging (77.45%). Due to the
high protein content of chicken feathers and their observed biological activities, they are a
highly suitable option in the farming industry as a supplement for livestock and poultry
feed. Additionally, we examined the changes in the two antioxidant activities resulting
from the blocking of beta-keratin soluble thiol groups using iodoacetamide (a common
substance used for blocking thiol groups) and H2O2 (an uncommon substance for this
purpose). We found that blocking thiol groups by creating new substitutions and changing
their chemical properties affected the antioxidant activities of the samples.

Comparing the opening and blocking of the disulfide bond of keratin with two differ-
ent methods showed that the disulfide bond definitely has an effect on antioxidant activity,
and is a determining factor. However, depending on the type of antioxidant behavior, it
may have a positive or negative effect. In other words, one antioxidant behavior, radical
scavenging activity, has a negative effect in that by removing the disulfide bond, the antiox-
idant activity decreases. Another antioxidant behavior, Fe-chelating activity, seems to have
a positive effect in that by breaking or blocking the disulfide bond, the antioxidant activity
increases. This indicates the complexity of the role of the disulfide bond in the types of
antioxidant behaviors for keratin.
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