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Abstract

Some species of bacteria respond to antibiotic stresses by altering their transcription pro-

files, in order to produce proteins that provide protection against the antibiotic. Understand-

ing these compensatory mechanisms allows for informed treatment strategies, and could

lead to the development of improved therapeutics. To this end, studies were performed to

determine whether Borrelia burgdorferi, the spirochetal agent of Lyme disease, also exhibits

genetically-encoded responses to the commonly prescribed antibiotics doxycycline and

amoxicillin. After culturing for 24 h in a sublethal concentration of doxycycline, there were

significant increases in a substantial number of transcripts for proteins that are involved with

translation. In contrast, incubation with a sublethal concentration of amoxicillin did not lead

to significant changes in levels of any bacterial transcript. We conclude that B. burgdorferi

has a mechanism(s) that detects translational inhibition by doxycycline, and increases pro-

duction of mRNAs for proteins involved with translation machinery in an attempt to compen-

sate for that stress.

Introduction

Lyme disease (Lyme borreliosis) is caused by infection by the spirochete Borrelia burgdorferi
sensu lato (hereafter referred to as B. burgdorferi, for simplicity). Early manifestations include

an expanding annular rash (erythema migrans) along with fever, body aches, and other “flu-

like” symptoms. If untreated, more significant symptoms may be seen, including arthritis,

meningitis, atrioventricular nodal block, or cardiac arrest [1–3]. This spirochete is sensitive

to many types of antibiotics, and human Lyme disease is frequently treated with either
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doxycycline or amoxicillin [1, 2, 4–6]. Doxycycline inhibits bacterial translation, and amoxicil-

lin inhibits assembly of cell wall peptidoglycan.

Some species of bacteria respond to the presence of antibiotics by modulating their gene

and protein expression levels in efforts to overcome those stresses [7–12]. For examples,

increasing production of efflux pumps or altering the relative expression levels of proteins

involved with cell wall synthesis. Those observations raise the possibility that the Lyme disease

spirochete may possess mechanisms that modify bacterial physiology in response to antibiotic

therapies. Assessment of that possibility could inform prescribed antibiotics and dosages.

Understanding these compensatory mechanisms allows for informed treatment strategies, and

could lead to the development of new and/or improved therapeutics.

Exposing B. burgdorferi to sub-lethal levels of β-lactams may result in the spirochetes pro-

ducing membrane protrusions or acquiring a spherical shape [13–18]. In other bacterial spe-

cies, treatment with low levels of β-lactam antibiotics leads to weakening of the cell wall and

cytoplasmic distortion due to osmotic influx of water [19–22]. However, there is a pervading

hypothesis in the literature and among some physicians that β-lactam-induced “round bodies”

are a genetically-encoded response by B. burgdorferi to avoid antibiotic killing [16–18, 23–34].

To address these points, we cultured B. burgdorferi in concentrations of doxycycline or

amoxicillin that impaired, but did not completely prevent, bacterial replication. Bacteria were

thus metabolically active, so changes could be interpreted as indicative of ongoing responses.

To assess whether any physiological changes were due to genetically encoded processes, rela-

tive levels of mRNAs were compared for each condition.

Material and methods

Effects of antibiotic concentrations on replication of cultured B.

burgdorferi
Strain B31-MI16, an infectious clone of B. burgdorferi type strain B31, was grown at 35˚C to

mid-exponential phase (3 x 107 bacteria/ml) in liquid BSK-II medium [35, 36]. Triplicate ali-

quots of the culture were diluted 1:100 into fresh BSK-II that contained either no antibiotic, or

0.1, 0.2, or 0.4 μg/ml doxycycline or amoxicillin (Sigma). Bacterial numbers in each culture

were then counted using a Petroff-Hauser counting chamber and dark field microscopy, mark-

ing time point 0. All cultures were counted every 24 hours for the first four days and on the

seventh day. Antibiotic susceptibility assays were performed twice.

Photomicrography

Aliquots of bacterial cultures were spread on glass slides, covered with coverslips, then visual-

ized using dark field microscopy with a 40x objective lens. Images were recorded with a C-

mounted Accu-scope Excelis HD camera using Captavision+ software. Bacterial lengths were

determined by comparing their sizes against a reference stage micrometer, using Captavision

+ software. To quantify B. burgdorferi with membrane distortions after incubation for 24 h in

0.2 μg/ml of amoxicillin, bacteria in randomly selected fields were photographed, then assessed

manually for presence of membrane perturbations. Due to variations in numbers of bacteria

per field, 109 control bacteria and 110 amoxicillin-treated bacteria were assessed.

Preparation of cultures for RNA sequencing

A mid-exponential phase (3 x 107 bacteria/ml) 35˚C culture of B. burgdorferi clone B31-MI16

was used as 1:100 inoculum into 18 separate tubes of 20ml BSK-II broth. Six cultures were

not given any antibiotic, 6 received doxycycline to a final concentration of 0.2 μg/ml, and 6
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cultures received amoxicillin to a final concentration of 0.2 μg/ml. After 3 hours incubation at

35˚C, 3 cultures of each condition were harvested by centrifugation for 15 min at 8200xG at

4˚C, then frozen at -80˚C. The remaining cultures were similarly harvested and frozen after 24

hours incubation at 35˚C. Frozen B. burgdorferi were shipped on dry ice to ACGT Inc.

(https://www.acgtinc.com) for RNA processing and sequencing.

RNA extraction and RNA sequencing (RNA-Seq)

Purification of RNA, preparation of libraries, and sequencing were performed by ACGT Inc.

according to their standard protocols (https://www.acgtinc.com). Briefly, RNA was extracted

from the bacterial pellets by using the Quick RNA-Microprep Kit (Zymo Research). RNA was

evaluated with DeNovix and Nanodrop. An individual library was produced for each culture,

using Zymo-Seq Ribofree Total RNA Library Kits (Zymo Research). Libraries were evaluated

by Qubit and 2100 bioanalyzer to assess quality and quantity before sequencing. Sequencing

was performed on Illumina NextSeq500 PE150. Runs were demultiplexed using bcl2fastq to

obtain raw fastq files. Experimentally triplicated RNA-Seq produces robust data that do not

require accompanying quantitative-reverse transcription PCR analyses [37].

Bioinformatics

Analysis of transcriptome sequencing (RNA-Seq) data were performed in house, essentially

described previously [38–40]. Briefly, adapters were removed from the sequencing reads by

Trimmomatic [41]. The reads were aligned and counted with a transcriptome reference com-

piled from the B. burgdorferi strain B31-MI genome (RefSeq numbers AE000783 to AE000794

and AE001575 to AE001584) by using Salmon v1.5.2 [42]. Reads were normalized and differ-

ential expression analysis was conducted using DEseq2 [43]. Genes were considered to have

significantly different expression at Fold-Change� 2, padj� 0.05, basemean > 20.

Data generated from RNA sequencing analyses were visualized with R v.4.0.1 (https://www.

R-project.org/) using ggplot2 (https://doi.org/10.1007/978-3-319-24277-4) for MA plots, pie

charts, and bar graphs.

Raw RNA-Seq data have been deposited in the NCBI GEO sequence read archive database,

and given accession number GSE197338.

Results and discussion

Study design overview

To determine appropriate sublethal concentrations of antibiotics, an infectious clone of B.

burgdorferi type strain B31 was cultured in liquid BSK-II medium that included various con-

centrations of either doxycycline or amoxicillin. Numbers of bacteria were counted daily over

a course of 7 days, with inclusion of all motile and immobile spirochetes. Counting the number

of organisms enabled determination of the effects of antibiotic treatment on completion of cell

division. Under these culture conditions, this strain was completely inhibited from replicating

by 0.4 μg/ml amoxicillin, while the minimum inhibitory concentration of doxycycline was

greater than 0.4 μg/ml (Fig 1). Consistent with our findings, prior studies determined that

minimum inhibitory and minimum bactericidal concentrations of doxycycline were 0.25–4

and 4–16 μg/ml, respectively, for Lyme disease borreliae [44]. Reported minimum inhibitory

and minimum bactericidal concentrations of amoxicillin were 0.015–0.25 and 0.25–0.5 μg/ml,

respectively [44]. In our investigations, concentrations of 0.2 μg/ml doxycycline and amoxicil-

lin were found to substantially inhibit, but not eliminate, B. burgdorferi duplication (Fig 1).
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Those concentrations were designated “sublethal”, and were subsequently tested for their

effects on cell morphology and gene expression in B. burgdorferi.
Cultures were then grown to mid-exponential phase (approximately 3 x 107 bacteria / ml),

diluted 1:100 into aliquots of fresh media, then either no antibiotic, or 0.2 μg/ml of either doxy-

cycline or amoxicillin were added. Cultures were incubated at 35˚C for either 3 or 24 hours

prior to phenotype analysis. Longer time points were not examined, due to the increased possi-

bility that substantial numbers of bacteria would die and their decaying RNA obscure results.

To assess the effects of antibiotics on total gene expression, we took an unbiased approach

using RNA sequencing (RNA-Seq). Effects of the antibiotics on bacterial morphologies were

assessed by darkfield microscopy.

Under the sublethal concentrations of antibiotics used in our studies, bacteria continued to

move, elongate, and divide, indicating that the spirochetes were metabolically active (Fig 1 and

discussion below). These conditions allowed us to differentiate biological responses to antibi-

otics from experimental artefacts from dead and/or dying bacteria. On the other hand, two

previous transcriptomic analyses of B. burgdorferi cultivated in antibiotics used concentrations

of 50 μg/ml doxycycline [45, 46] or 50 μg/ml amoxicillin [45] for 5 days before RNA analyses.

Those levels are 12 to 100-times greater than the minimum bactericidal concentrations [44].

Neither of those studies examined the physiology of B. burgdorferi during incubation under

those conditions [45, 46].

Doxycycline induced gene expression changes associated with protein

translation

Exposure of B. burgdorferi to 0.2 μg/ml doxycycline led to an initial significant decrease in

expression of 36 genes after three hours compared to control cells without antibiotics (Fold-

Change� 2, padj� 0.05, basemean> 20), while no genes were significantly increased at this

timepoint (Fig 2A; Table 1; S1 Table). Differentially expressed genes (DEGs) included those

involved in protein translation, DNA replication/repair, cell motility, and carbohydrate metabo-

lism, however only a small number of genes (� 7) from each pathway were affected (Fig 2B and

2C). Due to the low number of differentially expressed genes and the diversity of predicted func-

tions, it is possible that these differences reflect nonspecific mRNA turnover differences in the

presence of doxycycline. There are no obvious benefits to reducing levels of those transcripts.

Fig 1. Effects of antibiotics on B. burgdorferi replication rates. (A) Doxycycline was added to freshly inoculated cultures at concentrations of 0.1 μg/

mL, 0.2 μg/mL, and 0.4 μg/ml. (B) Amoxicillin was added to freshly inoculated cultures at concentrations 0.1 μg/mL, 0.2 μg/mL, and 0.4 μg/ml.

Bacterial numbers were determined by microscopical examination with a Petroff-Hauser counting chamber after 1, 2, 3, 4 and 7 days of culture.

https://doi.org/10.1371/journal.pone.0274125.g001
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Fig 2. Doxycycline induced gene expression changes associated with protein translation. (A) Fold change versus

expression strength for all detectable genes after 3 or 24 hours doxycycline treatment compared to untreated controls.

Red (increased) and blue (decreased) dots represent genes with significantly different levels in treated vs. control

bacteria (α = 0.05, log2(fold-change) > 1). Yellow dots represent significantly different expression (α = 0.05) without

meeting our fold-change cutoff for differential expression (“sigNC”). Gray dots represent genes that were not

significantly different between treatment and control bacteria (“NS”). Numbers of significantly upregulated (up) and

downregulated (down) genes are shown as proportions of all detectable genes. (B) Clusters of Orthologous Genes

(COG) pathways displayed as proportion of all detectable genes (“Total”) compared to differentially expressed genes

after 3h or 24h of doxycycline treatment [47]. (C) Stacked bar graph showing the number of increased (red) and

decreased (blue) genes in each COG pathway at 3h and 24h timepoints. Percentage of genes in each pathway that were

differentially expressed is stated within each bar. Note: Unclassified and general function prediction not shown.

https://doi.org/10.1371/journal.pone.0274125.g002
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Table 1. Differentially expressed genes in doxycycline treated B. burgdorferi versus untreated controls.

locus Description COG pathway log2(fold change)a

3h 24h

BB_0691 elongation factor G (fusA) Translation ribosomal structure and biogenesis -1.01 1.52

BB_0786 50S ribosomal protein L25/general stress protein Ctc Translation ribosomal structure and biogenesis -1.04 1.30

BB_0479 50S ribosomal protein L4 (rplD) Translation ribosomal structure and biogenesis -1.08 1.40

BB_0690 neutrophil activating protein A (napA) Replication recombination and repair -1.08 2.02

BB_0055 triosephosphate isomerase (tpiA) Carbohydrate transport and metabolism -1.08 1.38

BB_0328 family 5 extracellular solute-binding protein Unclassified -1.10 NS

BB_0428 hypothetical protein Unclassified -1.10 1.12

BB_0330 peptide ABC transporter substrate-binding protein Unclassified -1.11 NS

BB_J09 outer surface protein D (ospD) Unclassified -1.12 NS

BB_0383 basic membrane protein A (bmpA) Cell motility -1.13 NS

BB_0603 integral outer membrane protein p66 (p66) Unclassified -1.13 NS

BB_0715 cell division protein FtsA (ftsA) Unclassified -1.14 NS

BB_0651 protein translocase subunit YajC Cell motility -1.14 1.57

BB_0034 outer membrane protein P13 Unclassified -1.14 1.77

BB_0387 30S ribosomal protein S12 (rpsL) Translation ribosomal structure and biogenesis -1.15 1.11

BB_A15 outer surface protein A (ospA) Unclassified -1.18 1.33

BB_0337 enolase (eno) Carbohydrate transport and metabolism -1.19 NS

BB_0650 hypothetical protein Unclassified -1.20 1.58

BB_A16 outer surface protein B (ospB) Unclassified -1.20 1.41

BB_0293 flagellar basal body rod protein FlgC (flgC) Cell motility -1.21 1.17

BB_0396 50S ribosomal protein L33 (rpmG) Translation ribosomal structure and biogenesis -1.26 1.91

BB_0090 V-type ATP synthase subunit K Unclassified -1.29 1.06

BB_0385 basic membrane protein D (bmpD) Cell motility -1.36 NS

BB_A74 outer membrane porin OMS28 (osm28) Cell motility -1.40 NS

BB_0147 flagellin (flaB) Cell motility -1.41 1.22

BB_r05 rna13 gene (16S) Unclassified -1.41 NS

BB_0054 protein-export membrane protein SecG (secG) Cell motility -1.43 1.26

BB_r02 rna8 gene (23S rrlA) Unclassified -1.44 1.18

BB_0243 glycerol-3-phosphate dehydrogenase Unclassified -1.52 NS

BB_0240 glycerol uptake facilitator Carbohydrate transport and metabolism -1.57 NS

BB_0386 30S ribosomal protein S7 (rpsG) Translation ribosomal structure and biogenesis -1.58 NS

BB_0465 hypothetical protein Unclassified -1.64 1.91

BB_r01 rna7 gene = BB r01 Unclassified -1.81 1.38

BB_r04 rna10 gene (23S rrlB) Unclassified -1.97 1.40

BB_0631 hypothetical protein Unclassified -2.03 1.76

BB_0241 glycerol kinase (glpK) Unclassified -2.29 NS

rnaseP rnaseP Unclassified NS 2.42

BB_0188 50S ribosomal protein L20 (rplT) Translation ribosomal structure and biogenesis NS 2.37

BB_P40 hypothetical protein Unclassified NS 2.26

BB_0649 chaperonin GroEL (groL) Posttranslational modification protein turnover chaperones NS 2.25

bsrW bsrW Unclassified NS 2.25

BB_B29 PTS system transporter subunit IIBC Carbohydrate transport and metabolism NS 2.17

BB_0614 hypothetical protein Unclassified NS 2.14

BB_0741 chaperonin GroS (groS) Posttranslational modification protein turnover chaperones NS 2.05

BB_0501 30S ribosomal protein S11 (rpsK) Translation ribosomal structure and biogenesis NS 1.88

BB_0780 50S ribosomal protein L27 (rpmA) Translation ribosomal structure and biogenesis NS 1.82

(Continued)
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Table 1. (Continued)

locus Description COG pathway log2(fold change)a

3h 24h

BB_0445 fructose-bisphosphate aldolase (fbaA) Carbohydrate transport and metabolism NS 1.82

BB_0393 50S ribosomal protein L11 (rplK) Translation ribosomal structure and biogenesis NS 1.79

BB_A62 6.6 kDa lipoprotein (lp6.6) Unclassified NS 1.78

BB_0503 50S ribosomal protein L17 (rplQ) Translation ribosomal structure and biogenesis NS 1.73

BB_0405 hypothetical protein Unclassified NS 1.73

BB_0778 50S ribosomal protein L21 (rplU) Translation ribosomal structure and biogenesis NS 1.72

BB_0482 30S ribosomal protein S19 (rpsS) Translation ribosomal structure and biogenesis NS 1.71

BB_0776 hypothetical protein Unclassified NS 1.69

BB_0559 PTS system glucose-specific transporter subunit IIA Carbohydrate transport and metabolism NS 1.61

BB_O27 protein BdrN (bdrN) Unclassified NS 1.58

BB_0238 hypothetical protein General function prediction only NS 1.58

BB_0057 glyceraldehyde 3-phosphate dehydrogenase (gap) Carbohydrate transport and metabolism NS 1.57

BB_0489 50S ribosomal protein L24 (rplX) Translation ribosomal structure and biogenesis NS 1.55

BB_0113 30S ribosomal protein S18 (rpsR) Translation ribosomal structure and biogenesis NS 1.55

BB_0781 GTPase Obg General function prediction only NS 1.53

BB_0779 hypothetical protein Translation ribosomal structure and biogenesis NS 1.52

BB_0189 50S ribosomal protein L35 (rpmI) Translation ribosomal structure and biogenesis NS 1.52

BB_0488 50S ribosomal protein L14 (rplN) Translation ribosomal structure and biogenesis NS 1.52

BB_0802 ribosome-binding factor A (rbfA) Translation ribosomal structure and biogenesis NS 1.51

BB_0392 50S ribosomal protein L1 (rplA) Translation ribosomal structure and biogenesis NS 1.50

BB_0502 DNA-directed RNA polymerase subunit alpha (rpoA) Transcription NS 1.50

BB_0114 single-stranded DNA-binding protein Replication recombination and repair NS 1.50

BB_0366 aminopeptidase Unclassified NS 1.49

BB_0115 30S ribosomal protein S6 Translation ribosomal structure and biogenesis NS 1.49

BB_0805 polyribonucleotide nucleotidyltransferase Translation ribosomal structure and biogenesis NS 1.47

BB_0485 50S ribosomal protein L16 (rplP) Translation ribosomal structure and biogenesis NS 1.46

BB_0695 30S ribosomal protein S16 (rpsP) Translation ribosomal structure and biogenesis NS 1.46

BB_0500 30S ribosomal protein S13 (rpsM) Translation ribosomal structure and biogenesis NS 1.45

BB_0390 50S ribosomal protein L7/L12 (rplL) Translation ribosomal structure and biogenesis NS 1.45

BB_0504 ribonuclease Y General function prediction only NS 1.44

BB_0476 elongation factor Tu (tuf) Translation ribosomal structure and biogenesis NS 1.44

BB_0348 pyruvate kinase (pyk) Carbohydrate transport and metabolism NS 1.43

BB_0699 50S ribosomal protein L19 (rplS) Translation ribosomal structure and biogenesis NS 1.43

BB_0558 phosphoenolpyruvate-protein phosphatase (ptsP) Carbohydrate transport and metabolism NS 1.40

BB_0128 cytidylate kinase (cmk) Nucleotide transport and metabolism NS 1.38

BB_0785 septation protein SpoVG (spoVG) Cell wall membrane biogenesis NS 1.38

BB_0478 50S ribosomal protein L3 (rplC) Translation ribosomal structure and biogenesis NS 1.38

BB_0493 50S ribosomal protein L6 Translation ribosomal structure and biogenesis NS 1.37

BB_0069 aminopeptidase II Unclassified NS 1.37

BB_0394 transcription termination/antitermination factor (nusG) Transcription NS 1.35

BB_0283 flagellar hook protein FlgE (flgE) Cell motility NS 1.34

BB_0494 50S ribosomal protein L18 (rplR) Translation ribosomal structure and biogenesis NS 1.34

BB_0495 30S ribosomal protein S5 (rpsE) Translation ribosomal structure and biogenesis NS 1.34

BB_0229 50S ribosomal protein L31 type B (rpmE) Translation ribosomal structure and biogenesis NS 1.33

BB_0269 ATP-binding protein Unclassified NS 1.33

BB_0112 50S ribosomal protein L9 (rplI) Translation ribosomal structure and biogenesis NS 1.32

(Continued)
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Table 1. (Continued)

locus Description COG pathway log2(fold change)a

3h 24h

BB_0683 3-hydroxy-3-methylglutaryl-CoA synthase Lipid transport and metabolism NS 1.32

BB_0087 L-lactate dehydrogenase Unclassified NS 1.30

BB_0477 30S ribosomal protein S10 (rpsJ) Translation ribosomal structure and biogenesis NS 1.30

BB_0047 hypothetical protein Unclassified NS 1.30

BB_0355 transcription factor Transcription NS 1.30

BB_0277 flagellar motor switch protein FliN (fliN) Cell motility NS 1.29

BB_0481 50S ribosomal protein L2 (rplB) Translation ribosomal structure and biogenesis NS 1.29

BB_0658 23-bisphosphoglycerate-dependent phosphoglycerate mutase Carbohydrate transport and metabolism NS 1.29

BB_0570 chemotaxis response regulator Signal transduction mechanisms NS 1.28

BB_0436 DNA gyrase subunit B (gyrB) Replication recombination and repair NS 1.28

BB_0483 50S ribosomal protein L22 (rplV) Translation ribosomal structure and biogenesis NS 1.27

BB_0056 phosphoglycerate kinase (pgk) Carbohydrate transport and metabolism NS 1.26

BB_0841 arginine deiminase (arcA) Unclassified NS 1.26

BB_0539 hypothetical protein General function prediction only NS 1.26

BB_0694 signal recognition particle protein (ffh) Cell motility NS 1.26

BB_0557 phosphocarrier protein HPr Carbohydrate transport and metabolism NS 1.24

BB_0777 adenine phosphoribosyltransferase (apt) Nucleotide transport and metabolism NS 1.24

BB_0127 30S ribosomal protein S1 Translation ribosomal structure and biogenesis NS 1.24

BB_0122 elongation factor Ts (tsf) Translation ribosomal structure and biogenesis NS 1.22

BB_0789 ATP-dependent zinc metalloprotease FtsH Posttranslational modification protein turnover chaperones NS 1.21

BB_0492 30S ribosomal protein S8 (rpsH) Translation ribosomal structure and biogenesis NS 1.21

BB_0704 acyl carrier protein (acpP) Lipid transport and metabolism NS 1.21

BB_0104 periplasmic serine protease DO Posttranslational modification protein turnover chaperones NS 1.21

BB_0426 nucleoside 2-deoxyribosyltransferase superfamily protein Function unknown NS 1.20

BB_0027 hypothetical protein Unclassified NS 1.20

BB_0123 30S ribosomal protein S2 (rpsB) Translation ribosomal structure and biogenesis NS 1.20

BB_B19 outer surface protein C (ospC) Unclassified NS 1.18

BB_0727 phosphofructokinase Carbohydrate transport and metabolism NS 1.18

BB_0697 ribosome maturation factor RimM (rimM) Translation ribosomal structure and biogenesis NS 1.18

BB_B22 guanine/xanthine permease General function prediction only NS 1.17

BB_0061 thioredoxin (trx) Posttranslational modification protein turnover chaperones NS 1.17

BB_0338 30S ribosomal protein S9 (rpsI) Translation ribosomal structure and biogenesis NS 1.17

BB_0499 50S ribosomal protein L36 (rpmJ) Translation ribosomal structure and biogenesis NS 1.16

BB_0121 ribosome recycling factor (frr) Translation ribosomal structure and biogenesis NS 1.16

BB_0744 p83/100 antigen (p83/100) Unclassified NS 1.16

BB_0172 von Willebrand factor type A domain-containing protein Function unknown NS 1.16

BB_0615 30S ribosomal protein S4 (rpsD) Translation ribosomal structure and biogenesis NS 1.15

BB_0391 50S ribosomal protein L10 Translation ribosomal structure and biogenesis NS 1.14

BB_0190 translation initiation factor IF-3 (infC) Translation ribosomal structure and biogenesis NS 1.14

BB_0059 CBS domain-containing protein General function prediction only NS 1.14

BB_0698 tRNA (guanine-N(1)-)-methyltransferase (trmD) Translation ribosomal structure and biogenesis NS 1.13

BB_0435 DNA gyrase subunit A (gyrA) Replication recombination and repair NS 1.13

BB_0735 rare lipoprotein A Cell wall membrane biogenesis NS 1.12

BB_0120 isoprenyl transferase (uppS) Lipid transport and metabolism NS 1.12

BB_0518 chaperone protein DnaK (dnaK) Posttranslational modification protein turnover chaperones NS 1.12

BB_0684 isopentenyl-diphosphate delta-isomerase (fni) Unclassified NS 1.12

(Continued)
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After 24 hours of doxycycline treatment, microscopical examination showed that B. burg-
dorferi were motile and were, therefore, metabolically active. RNA-Seq analyses at that time

point revealed that 151 genes were differentially expressed (143 upregulated, 8 downregulated)

compared to control cells (Fig 2A, Table 1, and S1 Table). Notably, a plurality of differentially

expressed genes (53/151 DEGs; 35%) are involved in protein synthesis, all of which were upre-

gulated in the treatment group (Fig 2B and 2C). These genes account for nearly half (47%) of

all genes annotated as belonging to the translation, ribosomal structure, and biogenesis path-

way (Fig 2C) [47]. These gene expression changes indicate that B. burgdorferi possesses a

genetically-encoded mechanism(s) that attempts to overcome ribosome impairment, which is

focused on enhanced production of mRNAs for components of translation.

The most common mechanism of bacterial resistance to tetracyclines is through efflux

pumps that export the antibiotic from the cell [48]. While B. burgdorferi naturally encodes an

efflux pump, BesCAB [49], levels of besCAB mRNA were not affected by presence of doxycy-

cline (Table 1 and S1 Table). B. burgdorferi does not encode homologues of any known enzyme

Table 1. (Continued)

locus Description COG pathway log2(fold change)a

3h 24h

BB_0487 30S ribosomal protein S17 (rpsQ) Translation ribosomal structure and biogenesis NS 1.11

BB_0231 hypothetical protein Function unknown NS 1.10

BB_0020 diphosphate—fructose-6-phosphate 1-phosphotransferase Carbohydrate transport and metabolism NS 1.10

BB_0339 50S ribosomal protein L13 (rplM) Translation ribosomal structure and biogenesis NS 1.09

BB_0144 glycine/betaine ABC transporter substrate-binding protein Unclassified NS 1.09

BB_0588 MTA/SAH nucleosidase Nucleotide transport and metabolism NS 1.08

BB_0125 hypothetical protein Unclassified NS 1.07

BB_0230 transcription termination factor Rho (rho) Transcription NS 1.06

BB_0497 50S ribosomal protein L15 (rplO) Translation ribosomal structure and biogenesis NS 1.06

BB_0611 ATP-dependent Clp protease proteolytic subunit (clpP) Cell motility NS 1.06

BB_0842 ornithine carbamoyltransferase (argF) Unclassified NS 1.05

BB_0171 hypothetical protein General function prediction only NS 1.04

BB_0533 protein PhnP General function prediction only NS 1.04

BB_0491 30S ribosomal protein S14 (rpsN) Translation ribosomal structure and biogenesis NS 1.03

BB_0652 protein translocase subunit SecD (secD) Cell motility NS 1.01

BB_0281 motility protein A (motA) Cell motility NS 1.01

BB_0484 30S ribosomal protein S3 (rpsC) Translation ribosomal structure and biogenesis NS 1.01

BB_0070 hypothetical protein Function unknown NS 1.00

BB_0067 peptidase Unclassified NS 1.00

BB_0460 lipoprotein Unclassified NS -1.01

BB_J46 hypothetical protein Replication recombination and repair NS -1.02

BB_M37 protein BppC (bppC) Unclassified NS -1.04

BB_0546 hypothetical protein Cell wall membrane biogenesis NS -1.06

BB_M14 hypothetical protein Unclassified NS -1.10

BB_F14 hypothetical protein Unclassified NS -1.17

BB_L41 hypothetical protein Unclassified NS -1.40

tmRNA tmRNA Unclassified NS -3.57

Fold changes are expressed as log2. NS = not a significant change
a”NS” denotes not significantly different (α = 0.05; log2(fold change)>1)

https://doi.org/10.1371/journal.pone.0274125.t001
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that could modify doxycycline [50, 51], so that possible mechanism is unlikely to affect survival

in the presence of the antibiotic.

Notably, expression of napA increased after 24h exposure to doxycycline (Table 1). This

transcript encodes a periplasmic protein (also called BicA) that can bind copper and manga-

nese, and associates with cell wall peptidoglycan [52–54]. The predicted sequence of NapA is

similar to the Dps proteins of other bacterial species, which are involved with protecting DNA

from stresses [55], although borrelia NapA lacks the Dps sequences that are involved with

DNA-binding [52]. NapA derives its name from neutrophil attracting protein A, and has been

demonstrated to enhance immune responses [52, 54, 56–58]. It remains to be seen whether

differential expressionof NapA occurs during doxycycline treatment in the context of mamma-

lian infection.

As noted above, two other research groups have published results of RNA-Seq analyses of

B. burgdorferi that were incubated for 5 days in 50 μg/ml doxycycline [45, 46]. The doxycy-

cline concentration used in those studies was many times greater than what we and others

found to inhibit B. burgdorferi replication in culture [44]. Although Feng et al. [45] described

B. burgdorferi that had been incubated in 50 μg/ml doxycycline as “persisters”, those

researchers did not assess the viability of the bacteria that were used for RNA-Seq analysis.

We also point out that the accepted definition of bacterial persistence cannot be applied to

bacteriostatic antibiotics such as doxycycline, since the nature of those antibiotics does not

directly kill bacteria [59]. The high dosages used by Feng at al. and Caskey et al. may explain

why there is very little overlap between their results, despite both using essentially the same

culture conditions [45, 46]. Feng et al. reported significant (> 2-fold) increases of 35 tran-

scripts and decreases of 33 transcripts, encoding a broad range of functions [45]. In contrast,

Caskey et al. [46] noted increases of 20 transcripts, while 40 transcripts were found to be

downregulated. Many of the downregulated transcripts were of various plasmid encoded

outer surface proteins. Of the 20 upregulated transcripts reported by Caskey et al., all but one

came from the Lyme spirochete’s resident cp32 prophages [60]. This is unlike the broad-

ranging transcript groups reported to be upregulated by Feng et al. It is not clear whether the

Caskey et al. results can be interpreted to imply anything about the native prophage’s

responses to doxycycline stress, since the vast majority of prophage genes were not affected.

The increased transcripts encode portal proteins of four different cp32 bacteriophages, and

three different Erp lipoproteins that localize to the bacteria’s outer surface, are not predicted

to be components of the bacteriophage particle, and do not possess functions relevant to sur-

vival in doxycycline [60–64].

Caskey et al. found that some bacteria had survived incubation for 5 days in 50μg/ml doxy-

cycline, and resumed growth when subcultured in fresh medium without antibiotic or injected

into mice [46]. That result is consistent with our observations of continued bacterial motility

when exposed to 0.2 μg/ml doxycycline. As with other bacterial species, tetracyclines are bacte-

riostatic to B. burgdorferi, rather than overtly bactericidal [65].

Amoxicillin resulted in morphological changes, but not changes in gene

expression

Amoxicillin is a β-lactam, which inhibits cell wall production. In contrast to doxycycline, expo-

sure for 3 or 24 hours to 0.2 μg/ml amoxicillin did not result in significant changes to any tran-

script, even without a fold-change cutoff for differential expression designation (Fig 3 and S1

Table). The previous study by Feng et al. [45] reported that 5 days incubation in 50 μg/ml

amoxicillin resulted in their detection of significant increases in 41 mRNAs of a range of func-

tions, but none of which encode proteins involved with cell wall or membrane synthesis or

PLOS ONE B. burgdorferi responses to antibiotics

PLOS ONE | https://doi.org/10.1371/journal.pone.0274125 September 30, 2022 10 / 16

https://doi.org/10.1371/journal.pone.0274125


remodeling. As noted above, Feng et al. did not assess bacterial viability before their RNA-Seq

analyses.

The absence of cell wall-directed responses to amoxicillin suggests that B. burgdorferi may

lack a mechanism to assess cell wall integrity. While many bacterial species recycle peptidogly-

can components as they grow in size, B. burgdorferi lacks such an ability, and instead sheds

remnants of cell wall remodeling into the environment [66]. Together, these suggest that B.

burgdorferi transports peptidoglycan components into the periplasm to build its cell wall as it

grows in length, while “assuming” that the cell wall is being assembled correctly.

Examination under the microscope revealed that amoxicillin-treated B. burgdorferi dis-

played evidence of membrane swelling (Fig 4). After 24 h in the antibiotic, microscopical

examination of randomly selected bacteria showed membrane distensions in 49/110 (44.6%)

Fig 3. Amoxicillin did not induce gene expression changes. Fold change versus expression strength for all detectable

genes after 3 or 24 hours amoxicillin treatment compared to untreated controls. No genes were significantly different

between treatment and control groups (α = 0.05), as indicated by gray dots (“NS”).

https://doi.org/10.1371/journal.pone.0274125.g003

Fig 4. Photomicrographs of representative B. burgdorferi from (A) control, or (B, C, and D) amoxicillin-treated

cultures after 24h incubation. All fields are shown at the same relative magnification. Imaged with a 40x objective lens

and darkfield illumination.

https://doi.org/10.1371/journal.pone.0274125.g004
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of amoxicillin-treated spirochetes, as compared to 6/109 (5.5%) of control B. burgdorferi.
Those bacteria were comparable in shape to the so-called “round bodies” or “cysts” that have

previously been described upon treatment of cultured B. burgdorferi with sublethal concentra-

tions of β-lactams [13, 14, 16, 18, 33]. However, our transcriptomic analyses indicate that the

amoxicillin-induced morphological changes were not genetically encoded. Instead, the

observed membrane swellings were probably results of water diffusing into the cytoplasm and

expanding the inner membrane that was no longer constrained by an intact cell wall. Similar

osmotically-induced spheroplasts can be generated in other bacterial species through β-lactam

induced weakening of their cell walls [19–22]. Although β-lactam derived spheroplasts of B.

burgdorferi are evidently not biologically relevant to these bacteria in nature, such experimen-

tally-derived structures can be useful for investigations of membrane functions [21, 22].

Conclusions

In nature, the Lyme disease spirochete exists only within vertebrates or ticks. In those environ-

ments, it is unlikely that B. burgdorferi would routinely encounter molds that produce β-lac-

tam antibiotics and thus would not have been under pressure to evolve escape strategies. The

evident inability of B. burgdorferi to respond to amoxicillin’s inhibition of cell wall synthesis

supports that hypothesis. Our data also suggest that B. burgdorferi does not naturally encounter

other conditions that block peptidoglycan synthesis, and thus has not evolved mechanisms to

respond to such a stress.

In contrast, B. burgdorferi evidently possesses a mechanism(s) that detects the impairment

of translation due to doxycycline, and attempts to overcome that inhibition by increasing

expression of genes involved with translation. Tetracyclines are synthesized in nature by acti-

nomycete bacteria, which are predominantly soil microbes and are therefore unlikely to be

encountered by B. burgdorferi in nature [67]. It remains to be seen whether other methods that

inhibit translation yield similar effects. Nonetheless, the response of B. burgdorferi raises ques-

tions about where these spirochetes encounter translational impairment in their natural tick-

vertebrate infectious cycle. One possibility is in the midgut of an unfed tick, where B. burgdor-
feri is starved for amino acids; accumulation of mRNAs for producing translation-associated

proteins might allow rapid production of those proteins when the tick begins feeding on nutri-

ent-rich blood. Further studies of Lyme disease spirochete physiology during its infectious

cycle can help solve this question.

Taken together, our studies found that B. burgdorferi demonstrates distinct responses to dif-

ferent antibiotics. While it may be that B. burgdorferi within vertebrate tissues activate regula-

tory pathways that are not observed in culture, and thereby adapt to tolerate antibiotics, we

also note that there is no direct evidence to support such hypothetical mechanisms. Impor-

tantly, neither our studies or those of Feng at al. or Caskey et al. [45, 46] directly addressed the

efficacy of doxycycline or amoxycillin for treatment of Lyme disease in humans, as those treat-

ments have been determined empirically. Rather, these insights shed light on the feedback

mechanisms to environmental stresses by B. burgdorferi, and could lead to the development of

novel therapeutic treatments for this important pathogen.

Supporting information

S1 Table. All results for doxycycline after 3h and 24h, and all results for amoxicillin after

3h and 24h.

(XLSX)
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