
AdvAnces in cognitive Psychologyreview Article

http://www.ac-psych.org2010 • volume 6 • 103-115103

The what and why of perceptual 
asymmetries in the visual 
domain
A. K. M. Rezaul Karim1 and Haruyuki Kojima2

1 department of Psychology, University of dhaka,  Bangladesh
2 graduate school of human and socio-environment studies, Kanazawa University, Japan

visual perception,          asym-

metry, within-visual field, 

between-visual field, 

primary why, critical why, 

neural mechanisms, 

hemispheric specialization, 

visual experience

Perceptual asymmetry is one of the most important characteristics of our visual functioning. we 
carefully reviewed the scientific literature in order to examine such asymmetries, separating them 
into two major categories: within-visual field asymmetries and between-visual field asymmetries. 
we explain these asymmetries in terms of perceptual aspects or tasks, the what of the asymmetries; 
and in terms of underlying mechanisms, the why of the asymmetries. the within-visual field asym-
metries are fundamental to orientation, motion direction, and spatial frequency processing. the 
between-visual field asymmetries have been reported for a wide range of perceptual phenom-
ena. the foveal dominance over the periphery, in particular, has been prominent for visual acuity, 
contrast sensitivity, and colour discrimination. this also holds true for object or face recognition 
and reading performance. the upper-lower visual field asymmetries in favour of the lower have 
been demonstrated for temporal and contrast sensitivities, visual acuity, spatial resolution, orienta-
tion, hue and motion processing. in contrast, the upper field advantages have been seen in visual 
search, apparent size, and object recognition tasks. the left-right visual field asymmetries include 
the left field dominance in spatial (e.g., orientation) processing and the right field dominance in 
non-spatial (e.g., temporal) processing. the left field is also better at low spatial frequency or global 
and coordinate spatial processing, whereas the right field is better at high spatial frequency or local 
and categorical spatial processing. All these asymmetries have inborn neural/physiological origins, 
the primary why, but can be also susceptible to visual experience, the critical why (promotes or 
blocks the asymmetries by altering neural functions).
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INTRODUCTION

Visual perception is the process of interpreting and organizing visual 

information. It involves our ability to recognize and identify the dis-

tinguishing features of visual images such as shape, size, orientation, 

position, colour, etc. We have very powerful vision and visual percep-

tion, with many surprising properties. One of the most prominent 

properties is the perceptual variability or asymmetry resulting from the 

brain’s preferential responses to some visual stimuli and/or to stimuli 

at some specific retinal location. For example, vertical stimuli are per-

ceived and represented better than oblique stimuli (e.g., Campbell, 

Kulikowski, & Levinson, 1966; Furmanski & Engel, 2000; Mitchell, 

Freeman, & Westheimer, 1967), sensitivity to foveal stimuli is stronger 

than to peripheral stimuli (e.g., Duncan & Boynton, 2003; Hansen, 

Pracejus, & Gegenfurtner, 2009; Virsu & Rovamo, 1979), etc. Over 

the last few decades, researchers have identified dozens of phenom-

ena exhibiting perceptual asymmetries that may not be apparent in 

our conscious awareness while we are accomplishing everyday tasks. 

Yet we still do not have an account that gives a comprehensive global 
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picture of perceptual asymmetries and their emergence. This review is, 

therefore, an in-depth analysis of the perceptual asymmetries in visual 

psychophysics and visual neurology that have been documented thus 

far. 

A careful look at previous research in these two areas indicates 

that, while some information is processed quickly or efficiently, some 

information may be delayed or processed less efficiently within the 

same location of the visual field. On the contrary, when information 

in a particular visual field location, say, central, is efficiently processed 

it may be poorly processed in the opposite location (here, peripheral). 

Thus, perceptual asymmetries in the visual domain can be separated 

into two major categories: within-visual field (WVF) asymmetries and 

between-visual field (BVF) asymmetries. In this review, we term the 

perceptual aspects or tasks in which asymmetries appear the what of 

the asymmetries and the underlying mechanisms the why of the asym-

metries. The why of perceptual asymmetries can be further divided 

into the primary why and the critical why. The primary why refers to the 

physiological mechanisms or neural organizations we are born with. 

The critical why, on the other hand, refers to the experiential or learn-

ing factor that interacts with the primary why and thereby changes the 

organizational and functional features of cortical neurons. However, 

for ease of comprehension the what and the primary why of the asym-

metries are explained together, and followed by an explanation of the 

critical why.  

THE  WHAT  AND  PRIMARY  WHY                  
OF  THE  wITHIN-vIsUAl  FIElD           
AsYMMETRIEs

Asymmetry in orientation 
processing 
Visual perception exhibits many examples of anisotropic behaviour, 

where the percept’s relationship to the stimulus changes with the orien-

tation of the stimulus. Specifically, psychophysical studies have shown 

that performance is better at the cardinal than the oblique orientation 

in contrast sensitivity (Campbell & Kulikowski, 1966; Mitchell et al., 

1967), stereoacuity (Mustillo, Francis, Oross, Fox, & Orban, 1988), 

grating acuity (Berkley, Kitterle, & Watkins, 1975; Campbell et al., 

1966), and vernier acuity (Corwin, Moskowitz-Cook, & Green, 1977; 

Saarinen & Levi, 1995; Westheimer & Beard, 1998). This fact, often 

referred to as the oblique effect (Appelle, 1972), is most prominent in 

central vision (e.g., Berkley et al., 1975; Mansfield, 1974). 

The oblique effect is functionally important as V1 (primary visual 

cortex/striate cortex) neurons are organized into orientation columns 

(Hubel & Wiesel, 1968, 1974a). This has also been confirmed in later 

single-neuron electrophysiological (DeValois, Yund, & Hepler, 1982; 

Li, Peterson, & Freeman, 2003), optical imaging (Coppola, White, 

Fitzpatrick, & Purves, 1998), and fMRI (Furmanski & Engel, 2000) 

studies. For example, an fMRI study has demonstrated that grating 

acuity is finer for cardinal (horizontal and vertical) than for oblique 

stimuli (Furmanski & Engel). This study also reveals a corresponding 

asymmetry in neural populations in V1, that is neural responses in V1 

are greater for cardinal than oblique stimuli. 

In addition to the oblique effect, scientists have demonstrated 

“horizontal-vertical” asymmetry in a variety of visual tasks. For exam-

ple, our contrast sensitivity and spatial resolution are better along the 

horizontal mid-line of the visual field than along the vertical mid-line 

(Carrasco, Talgar, & Cameron, 2001; Rijsdijk, Kroon, & van der Wildt, 

1980). This is consistent with the fact that within the cardinal more 

cells are devoted to horizontal than vertical orientation (Li et al., 2003). 

Thus, the orientation asymmetries have a primarily physiological or 

neural basis. 

Very recently Karim and Kojima (2010, in press) have demon-

strated that, within a specific orientation performance in vernier offset 

detection may vary as a function of vernier configuration (spatial ar-

rangement of light bars). In one study, they have claimed that vernier 

offset detection at the cardinal orientation depends on the relative po-

sition of the vernier features (Karim & Kojima, 2010). Specifically, for 

a pair of horizontal light bars (vernier features) arranged side-by-side 

with a large gap between them observers were, on average, better at 

discriminating a vertical offset if the right-hand bar was below the left-

hand bar than vice versa. Similarly, for a pair of vertically oriented light 

bars, one above the other, the horizontal offset detection was better if 

the lower bar was on the left of the upper bar rather than on its right. 

In another study, they have shown that this effect can be generalized to 

the oblique orientation (Karim & Kojima, in press). They concluded 

that these asymmetries might be due to neural preference or selectiv-

ity for one particular vernier configuration rather than another and 

that such preference possibly developed through early experience or 

through evolution (Karim & Kojima, in press).

Asymmetry in motion processing 
Meridian-dependent effects (oblique effects) have also been found in 

our perception of moving objects (e.g., Coletta, Segu, & Tiana, 1993; 

Loffler & Orbach, 2001; Matthews & Qian, 1999). In general, psycho-

physical studies have concentrated on the anisotropy of the precision 

in motion direction discrimination. In contrast to motion detection 

thresholds, which have been found to be isotropic (e.g., Raymond, 

1994; Van de Grind, Koenderink, Van Doorn, Milders, & Voerman, 

1993), motion discrimination thresholds depend on the absolute direc-

tion of motion. This meridian-dependent anisotropy for direction of 

motion discrimination has been reported for random dots (e.g., Ball 

& Sekuler, 1982; Gros, Blake, & Hiris, 1998) as well as for translating 

plaids composed of a couple of gratings (Heeley & Buchanan-Smith, 

1992). These anisotropies have been observed either in foveal vision or 

in a visual space at specific eccentricity (i.e., within a specific location 

in the visual field).

Electrophysiological studies show that within an orientation col-

umn of the V1, cells share a similar preferred orientation but they have 

diverse physiological properties, one of the most dramatic being direc-

tion selectivity (cf. Gur, Kagan, & Snodderly, 2005; Hubel & Wiesel, 

1968). That is, at any preferred orientation neurons that are direction 

selective in V1 respond more strongly to one direction of motion than 
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to the opposite direction (Pasternak, Schumer, Gizzi, & Movshon, 

1985; Reid, Soodak, & Shapley, 1991). The signal is then dispatched via 

the near extrastriate V2 and V3 to the far extratriate V5/MT (middle 

temporal) for a further analysis (e.g., Albright, 1984; Britten, Shadlen, 

Newsome, & Movshon, 1992). Numerous studies have shown that 

neurons of similar orientation or direction-of-motion selectivity are 

clustered into functional columns in the MT (Albright, Desimone, 

& Gross, 1984; Diogo, Soares, Koulakov, Albright, & Gattass, 2003; 

Malonek, Tootell, & Grinvald, 1994). In addition, a very large pro-

portion of MT neurons are selective for the direction of motion and 

the orientation of moving gratings (Born & Bradley, 2005). Using the 

stimuli of moving gratings, a recent optical imaging study of owl mon-

keys has demonstrated that more of the MT cortical space is devoted to 

representing cardinal than oblique orientation (Xu, Collins, Khaytin, 

Kaas, & Casagrande, 2006), the anisotropy being more prominent 

in central vision (≤ 10°). Furthermore, neural responses to cardinal 

orientation were greater than neural responses to oblique orienta-

tion. It has been claimed that this data explains why there is greater 

sensitivity to motion discrimination when stimuli are moved along 

the cardinal meridians (polar axes), suggesting that the motion ob-

lique effect either originates in the MT or is enhanced at this level 

(Xu et al.). 

Asymmetry in spatial frequency 
processing

The primate V1 is dominated by complex cells that respond preferen-

tially not only to orientation and motion direction but also to the spa-

tial frequency (SF) of the stimuli (DeValois & DeValois, 1988). Human 

psychophysical studies suggest that there is a continuous distribution 

of the SF preference in the visual cortex. For example, observations in 

SF-specific adaptation (Blakemore & Campbell, 1969) and SF discrimi-

nation (Watson & Robson, 1981) tasks provide compelling evidence 

that the visual cortex has multiple processing channels, each tuned 

into one of many different SF ranges (Sachs, Nachmias, & Robson, 

1971; Watson, 1982). In accord with this, electrophysiological stud-

ies have shown that V1 neurons have a wide range of SF preferences 

(DeValois, Albrecht, & Thorell, 1982; Tolhurst & Thompson, 1981) and 

neighbouring neurons are more likely to prefer similar SFs (DeAngelis, 

Ghose, Ohzawa, & Freeman, 1999; Maffei & Fiorentini, 1977; Tolhurst 

& Thompson, 1982). 

SF preference also appears in later stages of visual processing, 

the degree of preference being varied across the visual areas. For 

example, animal studies have shown that SF preference is higher 

in V1 than in extratriate V2 (Foster, Gaska, Nagler, & Pollen, 1985; 

Issa, Trepel, & Stryker, 2000) and V3 (Gegenfurtner, Kiper, & Levitt, 

1997). This fact has also been confirmed in a recent fMRI study 

of humans (Henriksson, Nurminen, Hyvärinen, & Vanni, 2008). 

These studies have demonstrated the SF preference either in central 

vision or in a visual space at specific eccentricity (i.e., within a spe-

cific location of the visual field). However, such preferences are more 

pronounced in the central vision and decrease with eccen-

tricity.

THE  WHAT  AND  PRIMARY  WHY  
OF  THE  bETwEEN-vIsUAl  FIElD                        
AsYMMETRIEs

Foveal versus peripheral 
asymmetries

Perceptual capacity depends on where stimuli are located in the visual 

field. Something we see out of the corner of our eye is blurred until 

we turn our eyes to look directly at it. This is partly due to the sparse 

distribution of cones in the periphery and partly due to the neural 

structures of the visual cortices. That is, the density of the receptors 

in our visual system decreases as distance from the fovea increases 

(e.g., Curcio, Sloan, Kalina, & Hendrickson, 1990; Curcio, Sloan, 

Packer, Hendrickson, & Kalina, 1987). This lack of uniformity carries 

through to lateral geniculate nucleus (Connolly & Van Essen, 1984) 

and into visual cortices in both human (e.g., Anstis, 1998; Qiu et al., 

2006; Sjöstrand, Olsson, Popovic, & Conradi, 1999) and non-human 

primates (e.g., Hubel & Wiesel, 1974b; Maunsell & Van Essen, 1987; 

Van Essen, Newsome, & Maunsell, 1984). Consequently, visual acu-

ity (DeValois & DeValois, 1988; Duncan & Boynton, 2003), contrast 

sensitivity (Virsu & Rovamo, 1979), and colour detection/discrimina-

tion (e.g., Hansen et al., 2009; Mullen, 1991; Mullen & Kingdom, 1996; 

Newton & Eskew, 2003) fall significantly towards the periphery. Many 

other visual functions such as object and face identification (Rousselet, 

Thorpe, & Fabre-Thorpe, 2004), stereopsis and reading are also essen-

tially limited to the central visual field (Battista, Kalloniatis, & Metha, 

2005; Zegarra-Moran & Geiger 1993). Consequently, the visual cortex’s 

early selective response towards stimuli such as faces declines dramati-

cally if presented a few degrees away from the fovea or central fixation 

(Eimer, 2000; Jeffreys, Tukmachi, & Rockley, 1992). 

Upper versus lower visual field 
asymmetries

Visual performance degrades in the periphery of the visual field, but 

not proportionately in the lower and upper fields. Typically, the lower 

visual field supports better performance than the upper visual field, 

even at the same eccentricity (Danckert & Goodale, 2001; Levine & 

McAnany, 2005; McAnany & Levine, 2007). Psychophysical stud-

ies have demonstrated the dominance of the lower field in temporal 

and contrast sensitivities (Skrandies, 1987), visual acuity (Skrandies, 

1987), spatial resolution (Rezec & Dobkins, 2004), and in hue (Levine 

& McAnany, 2005) and motion (Edwards & Badcock, 1993; Lakha 

& Humphreys, 2005; Levine & McAnany, 2005; Raymond, 1994) 

processing. This phenomenon is known as the vertical meridian asym-

metry, which becomes more pronounced with eccentricity (Carrasco 

et al., 2001) and with increased spatial frequency. It is barely present 

for low spatial-frequency Gabor stimuli, and gradually becomes more 

pronounced for intermediate and high spatial frequencies (Carrasco et 

al., 2001; Liu, Heeger, & Carrasco, 2006; Skrandies, 1987). Many stud-

ies have also reported that the lower field advantages may be restricted 

to the vertical meridian (polar axis that runs from above the observer’s 
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line of sight, through the fixation point, and to below the observer’s line 

of sight) and may not be observed in non-meridian locations (Carrasco 

et al., 2001; Liu et al., 2006; Talgar & Carrasco, 2002). 

Neurophysiological studies have confirmed the advantages of the 

lower visual field’s sensitivity to contrast patterns (Portin, Vanni, Virsu, 

& Hari, 1999), high contrast checkerboards (Fioretto et al., 1995), non-

attended colour changes (Czigler, Balazs, & Pato, 2004), and motion 

(Kremláček, Kuba, Chlubnová, & Kubová, 2004). In addition, this sort 

of measure has revealed the advantages of the lower hemi-field over the 

upper hemi-field, indicating that the asymmetry is not specific to the 

vertical meridian as opposed to the psychophysical reports described 

above. Specifically, non-human primate studies have shown that the 

cone and ganglion cell densities in the retina are greater for the lower 

than for the upper visual field (Perry & Cowey, 1985). Slightly more 

neural tissue is devoted to the lower than the upper visual field repre-

sentations in LGN (lateral geniculate nucleus; Connolly & Van Essen, 

1984), V1 (Van Essen et al., 1984), and MT (Maunsell & Van Essen, 

1987). Human electrophysiological studies have also indicated func-

tional specialization for the lower and upper visual fields. For example, 

visual 100 ms evoked potential peaks 11 to 12 ms earlier for lower visual 

field stimuli than for upper visual field stimuli (Lehmann & Skrandies, 

1979; Skrandies, 1987). Similarly, MEG response amplitude has been 

reported to be greater for the lower than the upper visual field in hu-

man observers (Portin et al., 1999). All this evidence for processing 

differences and functional effects concerns eccentricities greater than 

around 5° (Portin et al.). Thus, it is unclear whether the processing of 

visual information differs between the lower and upper visual fields 

near the fovea. 

Left versus right visual field 
asymmetries

Perceptual processing in the left and right visual fields depends on 

the spatiality of stimulus. Typically, spatial information is processed 

more precisely in the left visual field and non-spatial information in 

the right visual field (Boulinguez, Ferrois, & Graumer, 2003; Corballis, 

2003; Corballis, Funnell, & Gazzaniga, 2002; Okubo & Nicholls, 2008). 

Specifically, the left visual field is better at simple line orientation, 

vernier offset and size discriminations (Corballis et al., 2002), and the 

right visual field at temporal (Okubo & Nicholls, 2008), linguistic and 

cognitive processing (Corballis, 2003). The superiority of the left visual 

field is explained by the right hemisphere (RH) dominance over the left 

hemisphere (LH) in spatial attention, as demonstrated in studies with 

healthy individuals (Heilman & Van Den Abell, 1979; Sturm, Reul, & 

Willmes, 1989) as well as in unilateral lesion (Mattingley, Bradshaw, 

Nettleton, & Bradshaw, 1994), and neuroimaging studies (Corbetta, 

Miezin, Shulman, & Peterson, 1993). On the other hand, presentation 

of verbal (i.e., non-spatial) stimuli produces left-hemisphere activa-

tion, which triggers a rightward attentional bias and results in a right 

visual field advantage (Cohen, 1982; Kinsbourne, 1970). Furthermore, 

an in-depth analysis of previous research reveals that spatial process-

ing in the left and right visual fields can be different in many ways, as 

illustrated below. 

HigH versus low spatial frequency processing 
Visual analytic skill is critically determined by the stimulus spa-

tial frequency (SF), depending on its location in the visual field. The 

stimuli with low SF are processed more efficiently in the left visual 

field and those with high SF are processed more efficiently in the right 

visual field. This asymmetric processing is directly associated with the 

functional specialization of the RH and LH, which correspond to the 

left and right visual fields, respectively. That is, the RH is dominant for 

low SF processing whereas the LH is dominant for high SF processing. 

Evidence of this hemispheric specificity has been provided by psy-

chophysical and behavioural studies using gratings of different spatial 

frequencies (Christman, Kitterle, & Hellige, 1991; Kitterle, Hellige, & 

Christman, 1992; Kitterle & Selig, 1991) and natural pictures of low 

and high spatial frequencies (Peyrin, Chauvin, Chokron, & Marendaz, 

2003; Peyrin et al., 2006). Recent functional brain imaging studies con-

ducted on healthy participants also support this pattern of functional 

cerebral organization (Peyrin, Baciu, Segebarth, & Marendaz, 2004; 

Peyrin et al., 2005). 

global versus local processing 
As global and local stimuli are typically conveyed by low SF and 

high SF, respectively, global information is processed more efficiently 

in the left visual field and local information in the right visual field (cf. 

Grabowska & Nowicka, 1996; Ivry & Robertson, 1998; Sergent, 1982). 

For example, reaction time to a global target is faster than to a local 

target when stimuli are presented in the left visual field, and vice versa 

when they are presented in the right visual field (Hübner, 1997; Kimchi 

& Merhav, 1991; Sergent, 1982). This global versus local processing 

asymmetry has been confirmed in neuropsychological (lesion) studies 

(e.g., Delis, Robertson, & Efron, 1986; Hickok, Kirk, & Bellugi, 1998; 

Lamb, Robertson, & Knight, 1989), and in other behavioural studies 

with healthy humans (e.g., Blanca, Zalabardo, Gari-Criado, & Siles, 

1994; Hübner, 1998; Versace & Tiberghien, 1988; Yovel, Yovel, & Levy, 

2001). 

In line with this, neuroimaging studies have shown that global and 

local perception is mediated by separate subsystems in the RH and 

LH, respectively. For example, ERPs (event-related potentials) to com-

pound stimuli presented at the central fixation induce a larger occipito-

teporal negativity (Heinze, Johannes, Münte, & Magun, 1994; Schatz & 

Erlandson, 2003) or target-specific difference waves (Han, Liu, Yund, 

& Woods, 2000; Proverbio, Minniti, & Zani, 1998) over the RH in glo-

bal stimulus condition, but over the LH in local stimulus condition. 

Similarly, PET and fMRI studies have shown increased regional cere-

bral blood flow or hemodynamic responses in the right lateral occipital 

cortex when attending to the global structure of compound stimuli, 

but in the left occipital cortex when attending to the composing local 

elements (Fink et al., 1996; Han et al., 2002; Martinez et al., 1997). 

coordinate versus categorical processing
 Visual processing depends on how the stimulus elements are spa-

tially related in the visual display. Kosslyn (1987) theorized that the 

visual system uses two types of spatial relations: coordinate relations 
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and categorical relations. Coordinate relations specify precise spatial 

locations of objects or object parts in terms of metric units and give 

exact distances. Categorical relations, in contrast, assign a spatial con-

figuration or a range of positions to an equivalence class (e.g., above/

below, left/right, inside of/outside of) without defining the exact metric 

properties. In the last couple of decades, scientists have reported visual 

field asymmetry in processing these kinds of dual spatial relations. In 

particular, categorical spatial processing is better in the right visual 

field and coordinate spatial processing is better in the left visual field 

(Hellige & Michimata, 1989; Kosslyn et al., 1989). For example, Hellige 

and Michimata (1989) had participants judge if a dot was above or be-

low a line (a categorical task) or judge if the dot was within 2 cm of the 

line (a coordinate task). A right visual field advantage was present for 

the categorical task and a left visual field advantage was present for the 

coordinate task. Kosslyn (1987) has attributed this kind of fact directly 

to the functional specialization of the two hemispheres. He proposed 

that the LH is preferentially associated with the between-item categori-

cal processing (e.g., one item is “above” or “below” the other, a discrete 

judgment) and the RH is preferentially associated with the between-

item coordinate processing (e.g., one item is “near” to or “far” from the 

other, an analog judgment). These distinct types of spatial processing 

may also occur for the relative positions of parts or features of a single 

stimulus item (Slotnick & Moo, 2006). 

Kosslyn’s model, that there are two types of spatial representations 

each with a specific lateralization pattern, has received some sup-

port in different lines of behavioural research (Banich & Federmeier, 

1999; Laeng & Peters, 1995; Michimata, 1997; Niebauer, 2001; Okubo 

& Michimata, 2002; Rybash & Hoyer, 1992; Wilkinson & Donnelly, 

1999). However, some attempts to replicate the findings have failed 

(Bruyer, Scailquin, & Coibion, 1997; Sergent, 1991a, 1991b), though 

no studies have yet found the reverse pattern of hemispheric dissocia-

tion. Procedural differences might explain this failure of replication. 

For example, a study conducted by Bruyer et al. (1997) suggests that 

the hemispheric dissociation for categorical and coordinate process-

ing is highly unstable and sensitive to subtle methodological factors, 

which could preclude its general application. In that study, Kosslyn’s 

hypothesized dissociation was observed in the manual requirement 

but not in the oral response requirement, in the feedback but not in the 

no-feedback condition, and in younger but not in elderly observers. 

Kosslyn’s hypothesis should, therefore, be carefully tested employing 

similar stimuli and procedures so that a firm conclusion about the 

existence of hemispheric dissociation for coordinate and categorical 

processing can be arrived at. 

Besides the two categories of perceptual asymmetries, there is 

evidence of top-left lighting prior in 3D shape discrimination task that 

does not fall in either of the categories. Half a century earlier, Gestalt 

psychologist Metzger (1936) noticed that left-lit scenes have greater 

perceptual value than right-lit ones. His observations gave rise to an 

intriguing possibility: The visual system assumes that light is coming 

from the left-above rather than straight-above. Sun and Perona (1998) 

have tested this proposition by asking observers to look for a convex or 

concave object lit from one direction among similar objects lit from the 

opposite direction. In this study, the shaded targets are detected more 

quickly when the illumination position is between 30° and 60° to the 

left of vertical. Both left- and right-handed participants show this ten-

dency, but it is more pronounced among the right-handed. This prefer-

ence also occurs in artists, participants across schools and periods of 

art history, indicating its ecological significance. The top-left lighting 

preference has been supported in a number of studies (e.g., Gerardin, 

de Montalembert, & Mamassian, 2007; Mamassian, Jentzsch, Bacon, 

& Schweinberger, 2003), with the difference that it may not be associ-

ated with handedness (Mamassian & Goutcher, 2001). For example, in 

a recent study of localization of an odd part of the Polo Mint stimulus 

Gerardin et al. (2007) found better performance for the stimuli lit from 

the left than from the right. In another study of shape from shading, 

Mamassian et al. (2003) detected a stronger top-left preference when 

the stimulus is presented foveally rather than para-foveally. These au-

thors have also claimed that the N2 and P1 components in the visual 

occipital and temporal areas might be responsible for the preference 

towards the leftward lighting position, thus indicating a neural basis 

for the phenomenon. However, there is still no evidence that this 

preference can be associated with hemispheric specialization. Hence,               

the phenomenon is unspecified in this review.

vIsUAl EXPERIENCE: THE CRITICAL WHY 
OF PERCEPTUAl AsYMMETRIEs 

As discussed above, the asymmetric processing of visual information 

has either a physiological or a neural basis. One of the most conspicu-

ous functional properties of neurons in the visual cortex is orientation 

selectivity, as more cortical circuitry represents cardinal orientations 

rather than oblique orientations. The development of this feature 

is primarily under endogenous control (e.g., Chapman, Stryker, & 

Bonhoeffer, 1996; Coppola & White, 2004; Wiesel & Hubel, 1974), but 

can also be altered by visual experience, sometimes with dramatic ef-

fects (e.g., Blakemore & Van Sluyters, 1975; Crair, Gillespie, & Stryker, 

1998; Sengpiel, Stawinski, & Bonhoeffer, 1999). Specifically, an early 

electrophysiological study of monkeys (Wiesel & Hubel, 1974) and a 

recent optical imaging study of ferrets (Coppola & White, 2004) have 

demonstrated that overrepresentation of cardinal orientations in the 

visual cortex does not require experience of an anisotropic visual 

environment. Visual experience is not necessary for the initial devel-

opment of cortical orientation maps. Early maps are seen in ferrets’ 

visual cortices before natural eye opening (Chapman et al., 1996), and 

normal orientation maps develop in kittens that have been binocu-

larly deprived for the first three weeks of their lives (Crair et al., 1998). 

However, longer periods of binocular deprivation cause degradation of 

orientation preference maps (Crair et al., 1998), indicating that visual 

experience is necessary for their maintenance. This is consistent with 

prior electrophysiological (Blakemore & Van Sluyters, 1975) and later 

optical imaging results (Sengpiel et al., 1999). The development of ori-

entation selectivity does not require visual experience, but is critically 

dependent on spontaneous neuronal activity (Chapman, Gödecke, & 

Bonhoeffer, 1999; Coppola & White, 2004). Absence of normal visual 
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experience can block spontaneous neural activity and hence orienta-

tion selectivity.

Unlike orientation selectivity, the development of direction selectiv-

ity requires visual experience. Li, Fitzpatrick, and White (2006) investi-

gated the development of direction selectivity in ferrets’ visual cortices 

using optical imaging and electrophysiological techniques. In their 

study, direction selectivity was detected several days after eye open-

ing, this strengthened to adult levels over the following 2 weeks. Visual 

experience was essential for this process, as shown by the absence of 

direction selectivity in dark-reared ferrets. The impairment persisted 

in dark-reared ferrets that were given experience of light after this pe-

riod, despite the recovery of orientation preference. Similarly, a recent 

study has shown that the visually naïve ferrets’ visual cortices exhibited 

a well defined system of orientation columns, but lacked the columnar 

pattern of direction selective responses (Li, Hooser, Mazurek, White, 

& Fitzpatrick, 2008). These results provide strong evidence that visual 

experience increases the magnitude of direction selectivity, but there 

was no change in orientation selectivity after training. The researchers 

concluded that early experience with moving visual stimuli drives the 

rapid emergence of direction selective responses in the visual cortex. 

Thus, visual experience is necessary for the development of direction 

selectivity, as opposed to the development of orientation selectivity. We 

suggest that the development of direction selectivity and orientation 

selectivity are two independent processes of the visual system, the 

former being experience-bound while the latter is not. In addition, 

direction selective cortical neurons may be more susceptible or vulner-

able to early visual experience than orientation selective neurons. 

Visual experience, or learning, also has a crucial role in modifying 

the response properties of higher cortical neurons. Numerous neu-

rophysiological studies provide evidence for after-training enhanced 

stimulus selectivity. In particular, neurons in monkey IT (inferior tem-

poral) cortices show enhanced selectivity after training for novel objects 

(Kobatake, Wang, & Tanaka, 1998; Rolls, 1995), holistic multiple-part 

configurations (Baker, Behrmann, & Olson, 2002), and even physically 

unrelated pairs of shapes  (Messinger, Squire, Zola, & Albright, 2005). 

The time required for response changes in some of these neurons paral-

lel the time required for learning (Messinger, Squire, Zola, & Albright, 

2001), suggesting a strong link between underlying neuronal plasticity 

and behavioural improvement. Furthermore, learning can shape the 

assignment of novel objects into classes (Rosenthal, Fusi, & Hochstein, 

2001). This shaping is done by modulating the selectivity of neurons in 

the inferior temporal and frontal cortex for features crucial for the cat-

egorization process (Freedman, Riesenhuber, Poggio, & Miller, 2006). 

A couple of studies have, however, reported that more PF (prefrontal) 

neurons (Rainer & Miller, 2000) or more V4 neurons (Rainer, Lee, 

& Logothetis, 2004) are selective towards repeated rather than novel 

stimuli at a moderate level of image degradation, and at undegradation 

the effect was reverse or equivalent. This indicates that stimulus selec-

tivity is not a stable property of cortical neurons; rather it is sensitive to 

the context of stimulation. We suggest that response preference varies 

not only across the stimulated areas of the visual cortex, but also within 

a particular area depending on the context of the stimulation. However, 

in order to reach a firm conclusion regarding this trend the hypothesis 

should be experimentally addressed in all other visual areas. 

Psychophysical studies have also shown that visual experience 

modifies visual response. For example, a 3D shape discrimination 

study has demonstrated that the visual system’s prior knowledge or 

assumption about the direction of lighting (i.e., “light-from-above” 

prior) can be modified by visual-haptic training in humans (Adams, 

Graf, & Ernst, 2004). This study has shown that training affects not 

only subsequent shape perception of trained stimuli but also general-

izes to affect the perceived reflectance of novel stimuli. The effect has 

been successfully replicated in a recent study on shape discrimination 

(Champion & Adams, 2007). In addition, Champion and Adams have 

shown that convexity prior in visual search tasks (Langer & Bülthoff, 

2001) can be reduced by training. These findings suggest that cortical 

neurons learn where light-sources are usually located, as well as the 

actual shape of the object, from interactions with the environment, and 

use this information to interpret subsequent visual stimuli. 

In their recent studies Karim and Kojima (2010, in press) have 

shown that vernier acuity improves as a function of training in both 

the cardinal and oblique orientations. In addition, configurational 

asymmetry in vernier acuity reduces more or less with training in the 

cardinal (Karim & Kojima, 2010) but not in the oblique orientation 

(Karim & Kojima, in press). This indicates a cardinal versus oblique 

orientation difference in sensitivity to training. They interpreted this 

fact by the same mechanism of the oblique effect. That is, a much lower 

percentage of V1 neurons are tuned to the oblique than to the cardinal 

orientation (Coppola et al., 1998; DeValois et al., 1982; Furmanski & 

Engel, 2000; Li et al., 2003). In addition, neurons with the oblique pref-

erences exhibit wider orientation tuning widths than neurons with the 

cardinal preferences (Kennedy & Orban, 1979; Nelson, Kato, & Bishop, 

1977; Orban & Kennedy, 1981; Rose & Blakemore, 1974). Thus, the 

asymmetry might reduce with training at a slower rate in the oblique 

than in the cardinal orientation.

Taking all these results together, visual experience can modify or 

shape the response properties of cortical neurons that contribute to 

perceptual asymmetries. Thus, visual experience (or learning) can play 

a critical role (promoting or hindering) in perceptual asymmetry.

sOME UNREsOlvED                                             
AND CONTRADICTORY IssUEs

In spite of the successful demonstration of visual perceptual asym-

metries in various dimensions, there remain a number of contradic-

tory and unresolved issues in the scientific literature. As part of the 

above review, the cardinal superiority of visual performance over the 

oblique orientation directly corresponds to the asymmetry of neural 

organization in the primary visual cortex. But, it is still unclear why 

visual acuity is finer for vertical stimuli than it is for horizontal stimuli 

(Saarinen & Levi, 1995), a demonstration opposed to the fact that more 

cells are devoted to horizontal than to vertical orientation (Li et al., 

2003). Some scientists have tried to associate this demonstration with 

the everyday fact that we experience more vertical than horizontal 
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stimuli (Gregory, 1997). However, we wonder to what extent such 

normal visual experience can alter the physiological preponderance 

and why such inconsistency does not occur for some other visual tasks 

such as contrast sensitivity and spatial resolution (Carrasco et al., 2001; 

Rijsdijk et al., 1980). That is, our daily experience may not be respon-

sible for altering typical orientation asymmetry. In fact, the orientation 

detectors and many other feature detectors in the two hemispheres are 

neither functionally equivalent nor are they absolutely exclusive or in-

dependent. So, we propose that any consistency/inconsistency between 

our orientation perception and cell representation can be determined 

by the balanced/imbalanced functional interaction of the two hemi-

spheres rather than by normal visual experience.  

A more important topic that requires scientific attention is that all 

the previous studies of visual experience (see above) are concerned 

with how experience or learning shapes the WVF asymmetries. No at-

tempt has been made to explore whether this factor can also accelerate 

or hinder the BVF asymmetries. For example, the left-right visual field 

asymmetries have been associated with the functional specializations 

of the corresponding hemispheres, but no attention has been paid to 

whether experience can alter their specialized functions. In the case of 

the upper-lower visual field asymmetries the lower field advantages have 

been interpreted by finer attentional resolution in the lower than in the 

upper visual field (He, Cavanagh, & Intriligator, 1996, 1997; Intriligator 

& Cavanagh, 2001), but we still do not know whether this increased 

attentional resolution is learned or innate. We suggest that it might be 

learned, at least partly, because we usually look downward rather than 

upward in our daily activities. However, past scientific studies cannot 

give a satisfactory explanation of the superiority of the upper field over 

the lower field in visual search (Previc & Blume, 1993), apparent size 

(Ross, 1997), and object recognition (Chambers, McBeath, Schiano,    

& Metz, 1999) tasks. In fact, these observations are contradictory to the 

demonstration that attentional resolution is finer (He et al., 1996, 1997; 

Intriligator & Cavanagh, 2001) and neural representation is larger in 

the lower than in the upper visual field (Connolly & Van Essen, 1984; 

Lehmann & Skrandies, 1979; Maunsell & Van Essen, 1987; Portin et al., 

1999; Skrandies, 1987; Van Essen et al., 1984). However, a theoretical 

account of the disparity between upper and lower field dominance was 

proposed by Previc (1990), referring to the differences between the two 

major streams of primate’s visual processing: the subcortical (magno-

cellular/parvocellular) level (Breitmeyer, 1992) and cortical (dorsal/

ventral organization) level (Ettlinger, 1990; Goodale & Milner, 1992; 

Ungerleider & Mishkin, 1982). Previc (1998) posited that the process-

ing of stimuli from lower and upper visual fields are promoted by these 

two neural systems, and that they are related to the near (peripersonal) 

and far (extrapersonal) spaces, respectively. According to this perspec-

tive, the specialization of the lower and upper visual fields and their 

neural systems depends on the segregation of the near and far spaces, 

which occurred during primate evolution. The lower visual field was 

mainly involved in the perceptual processes required for visuomotor 

coordination in the peripersonal space, largely performed by the dor-

sal pathways of the primate’s visual system. And the upper visual field 

was linked to the visual search and recognition mechanisms directed 

towards the extrapersonal space, primarily controlled by the ventral 

system. However, Previc’s ideas are based on his assumption about 

primate evolution and lacks empirical support.

CONClUDING REMARKs

This review demonstrates the wide range of perceptual variability or 

asymmetry both within- and between-visual fields. The within-visual 

field asymmetries are typically caused by neural preferences or asym-

metric neural distribution in visual cortices. However, silencing corti-

cal activity or preventing visual experience may block the typical devel-

opment of the asymmetries. The foveal-peripheral asymmetries have 

been attributed to the biased distribution of retinal cones and cortical 

neurons. The upper-lower visual field asymmetries have been explained 

by asymmetric neural distribution and attentional resolution, whereas 

the left-right visual field asymmetries have been explained by stimulus 

driven attentional bias or by the functional specialization of the two 

hemispheres. However, it remains unknown whether visual experience 

can change the BVF asymmetries. Also, it has yet to be investigated 

whether either hemisphere can independently determine the WVF 

asymmetries. This would be very challenging because such an attempt 

would require physiological isolation of the cerebral hemispheres. The 

two hemispheres of the brain are actually designed to constantly com-

municate with one another and their separation for experimental pur-

pose may lead to functional abnormality or at least some discrepancies 

between pre- and post-separation. However, we suggest that as human 

brains are plastic, like the WVF asymmetries the BVF asymmetries 

can be modified by visual experience. Empirical confirmation of this 

hypothesis would enable scientists to alter the functional properties 

of the hemispheres in the expected direction. This knowledge could 

be used for human welfare, particularly for the brain-damaged patient 

population.
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