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Nano Random Forests to mine protein 
complexes and their relationships in 
quantitative proteomics data

ABSTRACT Ever-increasing numbers of quantitative proteomics data sets constitute an un-
derexploited resource for investigating protein function. Multiprotein complexes often fol-
low consistent trends in these experiments, which could provide insights about their biology. 
Yet, as more experiments are considered, a complex’s signature may become conditional and 
less identifiable. Previously we successfully distinguished the general proteomic signature of 
genuine chromosomal proteins from hitchhikers using the Random Forests (RF) machine 
learning algorithm. Here we test whether small protein complexes can define distinguishable 
signatures of their own, despite the assumption that machine learning needs large training 
sets. We show, with simulated and real proteomics data, that RF can detect small protein 
complexes and relationships between them. We identify several complexes in quantitative 
proteomics results of wild-type and knockout mitotic chromosomes. Other proteins covary 
strongly with these complexes, suggesting novel functional links for later study. Integrating 
the RF analysis for several complexes reveals known interdependences among kinetochore 
subunits and a novel dependence between the inner kinetochore and condensin. Ribosomal 
proteins, although identified, remained independent of kinetochore subcomplexes. Together 
these results show that this complex-oriented RF (NanoRF) approach can integrate pro-
teomics data to uncover subtle protein relationships. Our NanoRF pipeline is available online. 

INTRODUCTION
Proteins influence many processes in cells, often affecting the syn-
thesis, degradation, and physicochemical state of other proteins. 
One strategy that diversifies and strengthens protein functions is the 
formation of multiprotein complexes. For this reason, identification 
of partners in complexes is a powerful first step to studying protein 

function. However, determination of membership to or interaction 
with protein complexes remains an arduous task, mainly achieved 
via demanding biochemical experimentation. The latter can be 
limited by the ability to overexpress, purify, tag, stabilize, and obtain 
specific antibodies for the proteins in complexes of interest. Thus 
any methods that facilitate protein complex identification and moni-
toring (Gingras et al., 2007; Kustatscher et al., 2014; Skinner et al., 
2016) have the potential to accelerate the understanding of biologi-
cal functions and phenotype. The vast amount of proteomics data 
already available represents a largely untapped resource that could 
potentially reveal features undisclosed by traditional analysis, such 
as condition-dependent links, intercomplex contacts, and transient 
interactions.

Biochemical cofractionation has been widely used to identify 
protein complexes. Members of a multiprotein complex typically 
coelute with a single mass, charge, elution rate, and so on in tech-
niques such as chromatography, gel electrophoresis, and coimmu-
noprecipitation. Another common way to discover complexes is to 
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the common behavior. We therefore constructed artificial proteomics 
data in which we could independently control these two properties 
and evaluate their influence on detecting a hypothetical complex.

We generated artificial proteomics tables (Figure 1A) by populat-
ing random values into tables of similar sizes to our original data set: 
20 “experiment” columns by 5000 “protein” rows. In those tables, 
12 “proteins,” which were intended to represent a hypothetical pro-
tein complex, were constrained to have identical behavior in a frac-
tion X of columns while leaving independent random values in the 
remaining experiments. This action imitated situations in which a 
complex covaried in only an informative subset of experiments 
(Figure 1A, middle). For example, if X = 0.5, 10 of 20 “experiments” 
would contain the signature behavior. Next we jittered all the en-
tries in the table by adding Gaussian noise of strength Y. Figure 1B 
illustrates the data generated by this approach and exemplifies visu-
ally how the number of informative variables and noise contribute to 
a protein group’s signature behavior.

We wondered first whether the mean of pairwise correlations be-
tween proteins of a complex would suffice to reveal membership as 
levels of noise and informative experiments changed. As one would 
expect, when the noise was low and the fraction of informative 
experiments was high, protein correlation was high. However, it 
dropped rapidly with slightly weaker signatures (Figure 1D).

We then asked whether the machine learning algorithm Random 
Forests (RF; Breiman, 2001) would recognize stronger or weaker sig-
natures in the behavior of the hypothetical complex (for an introduc-
tory explanation of the algorithm, see Materials and Methods). RF 
has been used in several biological data contexts, including gene 
expression, protein–protein interactions, and mass spectrometry 
(Fusaro et al., 2009; Qi, 2012). Specifically, we asked whether RF 
could distinguish our hypothetical complex (i.e., the positive class) 
from an independent group of other proteins (i.e., the negative class) 
composed of 365 rows in the random protein table (Figure 1A, mid-
dle). In two previous studies from our group (Ohta et al., 2010; 
Kustatscher et al., 2014), we used RF because 1) it samples combina-
tions of experiments and attempts to draw a boundary between a 
positive and a negative class, 2) it is nonparametric and can handle 
missing values (Qi, 2012), and 3) for every “protein,” an RF score 
between 0 and 1 indicates whether it behaves as part of the hypo-
thetical complex (Figure 1C). Proteins that are part of the positive and 
negative classes also obtain an unbiased score regardless of whether 
they belong to the training classes (see Materials and Methods).

Figure 1E shows that the RF score of the hypothetical complex 
remained high even with few informative experiments but fell sig-
nificantly with higher noise. Therefore, if one looked at the RF score 
alone, even small amounts of noise could lead to failure to recog-
nize members of the true complex (false negatives), even when they 
initially had a fairly strong correlation. These results suggest that on 
its own, the RF score is not robust to noisy conditions even when 
correlation in a complex is high.

We reasoned that a noise-induced decrease in RF scores could 
be tolerated as long as the scores of members of the hypothetical 
complex were overall higher than those of the negative class. On 
the other hand, levels of noise too high and too few informative 
experiments could lead to false positives. To strike a balance, we 
searched for an RF score that, if used as a boundary between the 
two classes, maximized separation quality, that is, made the fewest 
class misassignments between the hypothetical complex and the 
hypothetical contaminants. This can be assessed by the Matthews 
correlation coefficient (MCC; exemplified in Figure 2A, bottom). 
Figure 1F shows that class separation quality remains high for differ-
ent levels of noise and small fractions of informative experiments. 

combine chemical cross-linking, fractionation, and mass spectrom-
etry, which covalently fixes proteins that interact (Leitner et al., 
2016). However, biochemical fractions often contain contaminants, 
that is, proteins that are not genuine subunits of the complex of 
interest, despite having similar biochemical properties. One way to 
reveal bona fide members is to combine several fractionation 
experiments, as well as perturbations (Moore and Lee, 1960). Mem-
bers of a complex will behave coordinately, whereas contaminants 
will usually show a more independent behavior. From a quantitative 
perspective, this translates into protein covariance—the covariance 
of proteins within a complex is stronger than that with contaminants. 
As additional biochemical fractionation conditions are considered, 
high covariance sets true members of a complex apart from con-
taminants or hitchhikers. This principle was used recently in a large-
scale effort that predicted 622 putative protein complexes in human 
cells by assessing the coordinated behavior of proteins across sev-
eral fractionation methods, among others (Havugimana et al., 2012; 
Michaud et al., 2012).

Covariance among members of protein complexes has been ob-
served in several integrative proteomics experiments (Ohta et al., 
2010; Borner et al., 2014) and even used to predict association with 
complexes (Andersen et al., 2003; Borner et al., 2014). This relies on 
the fact that the cofractionation of proteins that are functionally 
interconnected will be affected by common parameters, such as 
knockouts or varying biochemical purification conditions. However, 
performing covariance analysis using multiple quantitative pro-
teomics data sets is nontrivial. First, experimental or biological noise 
hampers quantitation of protein levels. Second, only a fraction of 
the experiments may be informative for any given complex. Third, 
proteins may go undetected, leading to missing values. Fourth, the 
relationship between different protein groups may only be observed 
under specific circumstances. The power of multivariate analysis 
methods such as principal component analysis (PCA) and hierarchi-
cal clustering or k-nearest neighbors (KNN) could be limited when a 
protein complex’s signal in the data is affected in all these ways. 
Here we show that the supervised machine learning technique Ran-
dom Forests can overcome these limitations, distinguish the covari-
ance of small protein groups, and provide biologically sound, pre-
dictive insights into protein complex composition, relationships, 
and function. We describe this approach using as an example the 
behavior of multiprotein complexes in mitotic chromosomes.

RESULTS
Random Forests can detect small protein complexes in 
simulated organelle proteomics data
Proteins in multiprotein complexes have been shown to covary 
across quantitative proteomics experiments of organelles (Ohta 
et al., 2010; Borner et al., 2014). That is, the absolute or relative 
quantities of proteins that together form a complex increase or 
decrease in a coordinate manner. This concerted behavior forms a 
potentially detectable “signature” of the complex across sets of 
proteomics experiments. Other proteins that share the same signa-
ture may be functionally related to the complex. 

We wondered how strong a complex’s signature would need to 
be for its detection. The signature is an outcome of the resemblance 
of each protein’s behavior to that of each other and how much the 
group stands out from other groups. We reasoned that the strength 
of the signature could be modulated in two ways: 1) by controlling 
the fraction of informative experiments (experiment subsets in which 
the members of the complex correlate) and 2) by different amounts 
of noise. Less informative experiments should “dilute” the complex’s 
signal, whereas stronger noise should lead to fluctuations away from 
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chromosomes isolated from chicken DT40 
wild-type and knockout cell lines (Ohta 
et al., 2010, 2016). The proteins targeted for 
knockouts belong to a range of mitotic chro-
mosome complexes of two groups: struc-
tural maintenance of chromosomes (SMC) 
complexes such as condensin (SMC2-4), 
cohesin (SMC1-3; Uhlmann et al., 1999; 
Sonoda et al., 2001; Mehta et al., 2012), 
SMC5-6 (Stephan et al., 2011; Wu and Yu, 
2012), and the kinetochore (Ska3). We previ-
ously used RF to distinguish between large 
groups of “true” chromosomal proteins and 
potential hitchhikers or contaminants. Given 
that RF could distinguish small covarying 
groups in simulated data, we asked whether 
it could detect known small protein com-
plexes based on real data and whether any 
other proteins shared the signature of the 
complexes.

Figure 2A illustrates our strategy to detect 
protein complexes in mitotic chromosomes 
and retrieve proteins that may be functionally 
linked with them. First, we choose a protein 
complex (Figure 2, red dots) and a set of cu-
rated hitchhikers (Figure 2, blue dots; Ohta 
et al., 2010), which serve as the negative class 
(Supplemental Table S2). Then we use RF to 
distinguish the complex from the hitchhikers 
on the basis of our proteomics data. Every 
protein gets an RF score, and we look for a 
boundary cut-off that maximizes class sepa-
ration quality, that is, such that most mem-
bers of a complex are above it and most 
contaminants are below. True members that 
exceed the cut-off are said to be “identifi-
able.” Other, nonmember, noncontaminant 
proteins above that cut-off together with true 
members are said to covary/associate with 
them (Figure 2, A and B, orange dots). To 
find the boundary cut-off and its significance, 
we use the MCC (Figure 2A, bottom) as in 
the previous section. A more traditional way 
to evaluate the significance of this result is to 
consider a hypergeometric test. If we were to 
draw proteins at random from a bag in which 
true members and hitchhikers were mixed, 
such a draw would be analogous to setting 

an RF cut-off. For a given draw, the larger the number of true members 
and the lower the number of hitchhikers, the lower is the probability 
of such draw.

We analyzed a number of different complexes with RF (Figure 2B). 
In particular, we performed NanoRF on the constitutive centromere–
associated network (CCAN), the KNL-Mis12-Ndc80 (KMN) complex, 
nucleoporin 107-160 (Nup107-160)/RanGAP, SMC 5/6, cohesin, and 
ribosomal proteins. Figure 2B shows an overview of the RF result for 
each complex. Most complexes yielded a high separation quality, 
and most bona fide subunits were assigned higher RF scores than 
the contaminants. Other proteins (orange) distinguished themselves 
from hitchhikers, with scores as high as bona fide complex subunits. 
These significantly covarying proteins likely correspond to a mix of 
known, putative, and potentially spurious associations, which we 

All measures showed the lowest values for the weakest signatures, 
where the complex can no longer be distinguished from randomly 
covarying groups. Taking the results together, we conclude that RF 
is able to distinguish significant signatures of a protein group under 
conditions of high noise and few informative experiments, even 
though the group could be as small as a protein complex. Because 
of the small training set size, we refer to this instance of Random 
Forests as NanoRF.

RF analysis can distinguish protein complexes 
from contaminants in proteomics experiments of 
mitotic chromosomes
Our group has collected and published stable isotope labeling by 
amino acids in cell culture (SILAC) proteomics data of mitotic 

FIGURE 1: Supervised machine learning algorithm RF can detect small, correlated protein 
groups in artificial proteomics data. (A) Depiction of the procedure used to simulate proteomics 
data with “protein” rows and “experiment” columns. Some rows are made identical (red tones) 
in a fraction of experiments to simulate a hypothetical complex (HC) that correlates in some 
experiments, and Gaussian noise is then added elementwise to each table entry. (B) Visual 
description of a hypothetical complex (red) vs. other randomly generated proteins (gray) as the 
number of experiments (left–right) and the noise (bottom-up) affect the protein values in the 
experiments. (C) Visualization of the output from RF. The RF score denotes how much a protein 
resembles the complex, and separation quality indicates how easily unrelated proteins covary 
with the complex. Red and gray dots depict the hypothetical complex and other proteins, 
respectively. (D–F) Heat maps showing how the fraction of informative experiments (x-axis) and 
the noise amount (y-axis) affect the mean correlation (D), RF score (E), and separation quality 
(F) of proteins in a complex. In each square, the value projected is the mean of means of five 
independent groups. 
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avoids biasing the training toward particular 
observations (Breiman, 2001). Because we 
built our trees in this way, the results shown 
are already controlled for training set bias.

An algorithm capable of overfitting may 
be able to identify any arbitrary group of 
proteins by leveraging noise and other 
irrelevant properties. Therefore, to further 
rule out overfitting, we ran RF on 5000 pro-
tein sets generated at random from our data 
set. The size of those test sets (10 random 
positive-class proteins and 400 random neg-
ative-class proteins) was in the range of the 
chromosomal protein complexes we investi-
gated, which ranged between seven and 20.

Figure 2B, bottom, shows the result of 
performing RF on a randomly picked target 
group of proteins rather than a complex and 
another randomly picked group as a mock 
group of contaminants/hitchhikers. Both 
classes intercalate; in other words, RF classi-
fication shows poor performance (there is no 
evidence for any discrete group in the data), 
and no member of the mock target group is 
identifiable (RF score close to zero). Because 
the RF classification and MCC values are of 
such poor quality, interpretation of the RF is 
undefined in these conditions. Our results 
with the random groups contrast starkly with 
the successful identification of proteins sep-
arating as protein complexes from the nega-
tive class (Figure 2B, top). 

We further evaluated the significance of 
our results using receiver-operating charac-
teristic (ROC) curves (Figure 2C) and MCC 
values (Figure 2D). Starting from the highest 
RF score, an ROC curve evaluates the frac-
tion of positive class members recovered 
(true positives) on the vertical axis versus 
the negative class members recovered 
(false positives) on the horizontal axis. An 
ROC curve that climbs vertically is favorable 
because it means that the RF score is sensi-
tive to the complex. Under these circum-
stances, the area under the ROC curve 
(AUC) is >0.5. In contrast, if the RF score 
contains a poor signal, the positive and 
negative classes are retrieved randomly. In 
this case, the ROC curve climbs up the di-
agonal and has an area of ∼0.5. In our analy-
sis, all of the complex-specific RF retrieved 
∼70% of the complexes before any false 
positives were collected (Figure 2C). All our 

complexes showed an AUC between 0.9 and 0.999 (Supplemental 
Table S2), implying accurate classification. In contrast, ROC curves 
of the randomly selected groups (examples in Figure 2C, black and 
gray lines) remained close to the diagonal. 

Finally, for some complexes we studied, it could be a matter of 
chance that they separated well from the negative class. We sought 
to address how likely it is for a random group to obtain a high sepa-
ration quality by chance in our data set. We evaluated the distribu-
tions of class separation quality (as quantified by the peak MCC 

attempt to dissect in the following sections. Supplemental Table S2 
gives the full list of proteins associated with each complex.

A common concern in supervised machine learning is overfit-
ting—a situation in which the algorithm performs well for reasons 
other than the inherent properties of proteins in the data. This can 
be due, for example, to training set bias. A way to control for the 
latter is through out-of-bag (OOB) analysis, which overlaps function-
ally with cross-validation. For every tree constructed, the algorithm 
leaves a random number of training observations out. This internally 

FIGURE 2: RF can detect small protein complexes in chicken chromosome SILAC proteomics 
experiments. Red, protein complex; blue, contaminants/hitchhikers; orange, proteins showing 
high covariance with identifiable members of the complex (RF scores as high as those of the 
complex) that potentially associate with it. (A) Logic of the procedure to detect complexes with 
RF. Groups separable in multiple dimensions (only two depicted) yield a higher MCC than 
inseparable groups. (B) RF scores of multiple complexes vs. the same set of contaminants/
hitchhikers and randomly selected groups from the table. Bottom, randomly chosen sets of 
proteins yields poor red/blue separation, implying that the members of the mock complex are 
unidentifiable. In this case, the next optimal cut-off is driven by exclusion of contaminants. 
(C) ROC performance curves of the RF as a classifier for each protein complex and for two 
randomly selected protein groups (gray, black). Diagonal shows the random assignment 
scenario. (D) Kernel densities of MCC values for 500 RF runs of each complex and 5000 runs for 
randomly assigned groups (black). Sample sizes: 10 for positive class and 425 for negative class. 
All distributions were made of height 1 for visualization purposes.
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We categorized several possible interde-
pendence scenarios between kinetochore 
complexes (Figure 3, A and B). According to 
these scenarios, the CCAN and the Nup107-
160/RanGAP complex (Figure 3C) appeared 
to be independent, that is, they do not 
associate with each other. In contrast, the 
KMN network associated with both. We 
concluded that perturbations on both 
CCAN and Nup107-160 have a hierarchical 
effect on KMN (i.e., their effects propagate 
to KMN but not vice versa), implying that 
the latter is involved in links between inner 
and outer kinetochore. These observations 
are consistent with current models of the 
kinetochore (Kwon et al., 2007; Screpanti 
et al., 2011). Supplemental Figure S1 shows 
other proteins associated with the CCAN, 
Nup-Ran, or SMC5-6 complexes.

Even though the CCAN RF prediction 
was rich in associated proteins, which might 
be expected from a crowded chromatin en-
vironment, the entire condensin complex 
associated with the CCAN. This depen-
dence might imply a potential relationship 
between these complexes that merits fur-
ther study. Finally, Figure 3D shows that the 
CCAN RF prediction is independent of the 
SMC 5/6 complex, and no CCAN protein 
cofractionated with ribosomal proteins (Sup-
plemental Figure S2). Together these results 
show that, by integrating the outcome of 
several complex-specific RF results, we can 
reconstruct known dependences at the ki-
netochore and identify novel intercomplex 
dependences. Of note, none of these rela-
tionships was directly addressed a priori by 
the experiments used. 

We suggest that this strategy to infer 
protein functions and relationships by train-
ing RF with small protein complexes be 
named NanoRF. The results presented here 
constitute a proof-of-concept demonstra-
tion of the method in the context of the 
kinetochore. A thorough use in the context 
of SMC complexes, as well as experimental 

verification of NanoRF predictions, can be found in Ohta et al. 
(2016). Our code, as well as a step-by-step guide on how to perform 
NanoRF, is available (Montano-Gutierrez, 2016).

DISCUSSION
A recurrent goal in the postgenomic era has been to make sense of 
increasing amounts of underexploited data, including noisy and in-
complete proteomics output. Our results show that, even with high 
noise and when few experiments are informative, small groups of 
strongly covarying proteins, that is, multiprotein complexes, can be 
recognized by their coordinated behavior using RF (Figures 1 and 
2). In data of this type, statistical measures such as the mean correla-
tion (Figure 1C) or absolute RF score of members in a complex can 
drop considerably (Figure 1D). We demonstrated that lower RF 
scores can be informative as long as complexes separate out from 
contaminants by their RF score (Figure 1F). By tolerating a decrease 

values) for real complexes and for randomly sampled protein groups 
(Figure 2D). The highest MCC value obtained for the random classes 
was 0.543 (p ≈ 0.0002, N = 5000), and the minimum MCC value for 
the complex separation was 0.71 (p ≈ 0.002, N = 500). These results 
support the hypothesis that the NanoRF can distinguish between 
protein complexes and contaminants in real data. 

Integration of several complex-specific RF results 
reveals known and novel interdependences among 
protein complexes
The covariance of each complex could be its unique signature or 
could overlap with that of other complexes, possibly implying con-
ditional interdependence among complexes. We decided to test 
this hypothesis with kinetochore subcomplexes because there is 
significant contact among them. To this aim, we analyzed two- 
dimensional (2D) plots of RF for different complexes (Figure 3).

FIGURE 3: Known and novel interdependences among complexes revealed by RF. Highest 
separation quality thresholds are depicted by dashed lines. (A) A 2D diagram to visualize 
intersections between RF results for different complexes. Proteins above both thresholds (pink 
quadrant) associate with both complexes, whereas those above only one remain independent. 
(B) Possible scenarios of interdependence between complexes inferred from 2D RF plots. A 
hierarchical effect (bottom left) occurs when the RF of one complex (squares) brings up the 
other complex (triangles) but not vice versa. A third-group link (bottom right) is equivalent to a 
double hierarchical effect on the pink circle complex. Many three-group relationships exist; in 
the case shown, the circle complex is the only link between the triangle and square complexes. 
(C, D) A 2D interdependence plot of the CCAN (C and D, squares) vs. the Nup107-160/RanGap 
complex (C, triangles) and the SMC 5/6 complex (D, triangles).



678 | L. F. Montaño-Gutierrez et al. Molecular Biology of the Cell

respectively. Fluorescence microscopy showed localization of VRK1 
to chromosomes and PTPN6 to microtubules (Ohta et al., 2016). 

We believe that finding the objectively best separation quality 
lessens the burden to select an arbitrary significance cut-off for can-
didates, especially as more uninformative experiments are col-
lected. We intentionally avoided using a hypergeometric p value as 
a significance measure because 1) the exact p values for all of our 
complexes are ≤10−11 (Supplemental Table S2), 2) p values were 
strongly influenced by the number of proteins in the complex, and 
3) they were undefined for some of the random group RF results in 
which neither of the two classes was above the MCC threshold 
(Figure 2B, bottom). 

Instead of direct p value use, the significance of the predictions 
by NanoRF is subject to the probability of obtaining a high separa-
tion quality by chance for a given data set. To minimize the risk of 
type I error, we suggest that the peak MCC for a complex at the 
cut-off should be higher and nonoverlapping with the MCCs ob-
tained for randomly assigned protein groups in a data set. In our 
analysis, the probability of obtaining an MCC as high as that of real 
complexes by chance was negligible—our sampled MCC distribu-
tions did not overlap (Figure 2D)—but it might vary for other data 
sets. Naturally, a lower MCC might be accepted at the risk of more 
false positives. 

For prediction of associations with a complex, the false discovery 
rate for each complex should be proportional to the fraction of neg-
ative-class proteins that surpass the classification threshold. A small 
negative class could lead to underestimating false positives because 
higher noise might increase the RF score of spurious proteins. 
Therefore a large negative class might be essential for a realistic 
false discovery rate estimation (Tarca et al., 2007), and a small one 
could be compensated with a more stringent prediction cut-off for 
the RF score. 

Potential applications of NanoRF
In the context of all the massive protein–protein interaction net-
works being identified, we face a lack of detail in the functionality, 
hierarchy, specificity, and conditionality of these interactions. We 
sowed that NanoRF could satisfy these unmet needs by providing 
deep insight into protein complexes.

Experiments are informative if members of a complex covary in 
them (Figure 1A). Differentiating between informative and nonin-
formative experiments (feature selection) could be a powerful 
tool for protein complex data mining. For example, a specific set 
of perturbations might break the stoichiometry (and hence the 
correlation) in a complex. In this direction, our NanoRF pipeline 
(Montano-Gutierrez, 2016) includes a calculation of each experi-
ment’s “importance” for classification, although exploiting such 
importance might not be straightforward. This estimation em-
ploys the Gini importance, which compares classification perfor-
mance with or without a given experiment. A thorough analysis of 
importance measures is provided by Louppe et al. (2013).

We speculate that NanoRF could be performed on the same 
complex multiple times, each time using a distinct subset of experi-
ments. These subsets could correspond, for example, to different 
time points or biological conditions, such as drug treatments. Such 
analysis could potentially inform how a complex’s identifiability 
changes with the experiments or whether there is a difference in as-
sociated proteins from one condition to the next. Such changes in 
retrieval might provide insight into conditional binding partners or 
the biology of specific conditions, drugs, or diseases. 

Of importance, NanoRF does not require proteins to remain 
physically attached to each other during analysis, which may be 

of the RF score while maximizing separation quality, we were able to 
predict highly specific associations with complexes (Figure 2B) and 
retrieve known intercomplex relationships in our data set (Figure 3). 
Because no experiment targeted all of the complexes detected, this 
strategy could potentially identify protein function in any combina-
tion of comparable proteomics results.

In simple terms, NanoRF attempts to find the strongest possible 
signature for a complex (if any exists) within a specific data set. The 
premise is that any other protein whose RF score is as high as that of 
bona fide members while being clearly distinguishable from con-
taminants is essentially difficult to distinguish from the complex 
itself. Our results with real complexes suggest that the strongest 
statistical associations we found have biological relevance. 

Comparison between NanoRF and other methods
Two previous studies from our group used RF to attempt to find 
general trends shared by functional members of chromosomes 
(Ohta et al., 2016) or interphase chromatin (Kutstatscher et al., 2014) 
in proteomics data. The evidence presented in the present work 
suggests that the “true chromosome class” is the integration of the 
signatures of multiple protein complexes covarying in specific, 
distinguishable ways. Because of strong yet conditional, complex-
specific covariance, adding more than one complex to a training 
class may restrict the performance of RF. Compared to multiclassifier 
combinatorial proteomics and fractionation profiling (Borner et al., 
2014), our prediction would upgrade, for example, from “true chro-
mosomal protein” to “protein dependent on complex A but not 
complex B.” To cite another example, the polybromo- and-BAF-
containing (PBAF) complex (ARID2, PBRM1, BRD7, SMARCB1 and 
SMARCE1) associated specifically with Nup107-160 but not with the 
CCAN (Supplemental Figure S1A). Consistent with this prediction, 
another bromodomain-containing protein, CREBBP, was found to 
interact with Nup98 in the Nup107-160 complex and was linked to 
Nup98 oncogenicity (Kasper et al., 1999).

Methods such as fractionation profiling (FP; Borner et al., 2014) 
and multivariate proteomic profiling (Borner et al., 2012) are based 
on the use of guilt-by-association analyses to similarly detect protein 
complexes and cleverly deal with the intricate nature of proteomics 
data, in particular, missing values, but do not account for the condi-
tional covariance of the complex, that is, a signal being present in 
only a few experiments. We showed that NanoRF finds such covari-
ance even when there is significant noise. It successfully predicted 
proteins with previously uncharacterized links to mitosis (Ohta et al., 
2016).

NanoRF is a supervised method that is ideal for deeply exploring 
complexes or protein groups that are already of interest to the re-
searcher. Such groups may be either true protein complexes or any 
potential protein group hypothesized to covary. We demonstrated 
that known protein complexes show a strong detectable signature, 
but other kinds of protein groups may be detectable as well. For 
discovery of protein complexes, other methods, including unsuper-
vised RF or clustering, are more suitable.

Potential pitfalls and statistical considerations of NanoRF
It is not possible to conclude from computational analysis alone that 
the relationships predicted by NanoRF are direct physical interac-
tions between the aforementioned protein complexes. Neverthe-
less, our results come strictly from protein-level dependences (or 
indirect effects of these) rather than changing expression levels, and 
so physical associations are likely. Further support for this comes 
from a study in which we used the algorithm to explore chromosome 
structure. NanoRF associated VRK1 and PTPN6 with CCAN and RZZ, 
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RF analysis
The analysis was done with a custom R pipeline based on Leo Brei-
man and Adele Cutler’s RF algorithm (Breiman, 2001) implemented in 
R (Liaw and Wiener, 2002). All of the scripts used are freely available 
through a Github repository (Montano-Gutierrez, 2016) and include a 
step-by-step R guide script to perform NanoRF on any particular data 
set. The RF algorithm attempts to find a series of requirements in the 
data that are satisfied by the positive training class and not by the 
negative training class. All of these decisions are performed sequen-
tially, and hence they become a decision tree. An example of a deci-
sion tree would be “proteins with values >x in experiments 1 and 2. 
Out of those, proteins with values <y in experiments 3 and 5.” Be-
cause the best set and decision sequence is not known a priori, the 
best bet is to generate many decision trees at random (hence the 
name Random Forest). Each tree votes for all compliant proteins as 
members of the positive class. The clearer the difference between the 
two classes in the data, the larger is the number of trees that will vote 
for the positive class as indeed positive. The RF score (calculated for 
each protein) is the fraction of trees that voted for a protein as posi-
tive. To get a score for the members of the positive class as well, 
during the generation of each tree, some of the members of the posi-
tive and negative classes are left out and treated as unknown. This 
OOB procedure intrinsically controls for training set bias. 

We set the number of trees in the forest to 3000 in each run. 
The Matthews correlation coefficient was calculated by using the 
formula

MCC TP TN FP FN

(TF + FP)(TP + FN)(TN + FP)(TN + FN)
= ⋅ − ⋅

where TP indicates true positives, FP false positives, TN true nega-
tives, and FN false negatives. For null values of any of the sums in 
the denominator, the MCC was defined as 0. To choose a particular 
RF score as a cut-off, we evaluated 100 possible cut-offs between RF 
scores 0 and 1 and kept the one that maximized the MCC. For cut-
offs with the same maximum MCC, we chose the smallest RF as a 
cut-off to maximize sensitivity.

Simulation and random protein group size choices
The group size for simulated and randomly chosen protein were 
chosen to correspond as closely as possible to the values in our 
original data set. The original data set consists of 4998 protein rows 
identified in the Maxquant analysis and 12 columns (each corre-
sponding to one of the experiments we used for this analysis). The 
manually curated data set of hitchhikers and contaminants (Ohta 
et al., 2010), which we used as the negative class, comprised 367 of 
the 4998 protein rows. With those actual parameters in mind, we 
defined the number of rows, columns, and controls as 5000, 20, and 
400, respectively, for numerical simplicity. 

We expect the trends found in our simulations (although not the 
specific numbers) to be general to different data set sizes. Of impor-
tance, we took care to minimize the number of variables in this anal-
ysis that depend on data set size. In particular, 1) we study the 
proportion (rather than raw number) of informative variables in the 
data set, 2) the results in Figure 1, D–F, are the mean of give inde-
pendent hypothetical complexes in order to yield robust results, 
and 3) the simulated experiments were standard normal distribu-
tions, which should yield convergent results with larger numbers.

In-silico analysis of noise and informative experiment fraction
We arbitrarily generated matrices with ∼5000 “protein” rows and 20 
“experiment” columns (sizes similar to our SILAC ratio matrix) 

difficult for weakly interacting or insoluble protein complexes such 
as those associated in chromatin or membranes.

Here we described NanoRF, which uses supervised machine 
learning to 1) detect protein complexes of interest in noisy data 
sets with few informative experiments, 2) predict proteins that 
have functional associations with specific complexes, and 3) 
evaluate the relationship between complexes according to their 
behavior. NanoRF enables hypothesis-driven data analysis from 
ever-increasing, underexploited quantitative proteomics data. It is 
generally assumed that machine learning requires large training 
sets to work. However, we established that RF can retrieve strik-
ingly small protein complexes, their associated proteins, and rela-
tionships between complexes from ordinary proteomics results. 
We anticipate NanoRF to complement experimental cofraction-
ation approaches such as immunoprecipitation.

MATERIALS AND METHODS
Cell culture, mitotic chromosome isolation, and SILAC 
mass spectrometry
The present analysis was done by collecting and integrating the 
data from previous work (Ohta et al., 2010, 2016). All cell culture, 
mitotic chromosome extraction, and mass spectrometric analysis 
procedures are detailed there. In brief, chromosomes were ex-
tracted from wild-type chicken DT40 cells (clone 18), as well as from 
conditional knockouts for chromosome structure proteins SMC2, 
CAP-H, CAP-D3, Scc1, and SMC5 (Hudson et al., 2003; Green et al., 
2012; Ohta et al., 2016) and a genetic knockout of kinetochore pro-
tein Ska3 (Ohta et al., 2016). All strains were incubated with 
nocodazole for 13 h to arrest the cells in metaphase. In the case of 
the conditional knockouts, cells were incubated with doxycycline for 
20–60 h to inhibit target gene expression before nocodazole treat-
ment. Mitotic chromosomes of wild-type and knockout (KO) cell 
lines were grown respectively in “heavy” and “light” medium and 
then mixed in equal amounts judging by Picogreen quantification. 
In the Ska3 KO experiment, samples were equated using histone H4 
as a reference. Thirty trypsin-digested fractions were desalted using 
StageTips (Rappsilber et al., 2003) and analyzed by liquid chroma-
tography/mass spectrometry (MS) on an LTQ-Orbitrap (Thermo 
Fisher Scientific) coupled to high-performance liquid chromatogra-
phy via a nanoelectrospray ion source. MS data were analyzed using 
MaxQuant 1.0.5.12 for generating peak lists, searching peptides, 
protein identification (Cox and Mann, 2008), and protein quantifica-
tion against the UniProt database (release 2013_07). 

Preparation of MS data for NanoRF
Only the SILAC ratios from the Protein groups MaxQuant output 
table were used. As for the Ska3 KO experiment, SILAC ratio column 
values were taken directly from Ohta et al. (2010) and reindexed ac-
cording to the rest of the experiments. The ratio columns in Supple-
mental Table S1 were directly and only used for the analysis. The 
features included consist only of the SILAC ratio columns of our ex-
periments—no other feature selection, engineering, or combination 
was performed a priori.

All the raw MS and MaxQuant output data, including those 
from the Ska3 experiment (Ohta et al., 2010), are available via Pro-
teomeXchange with identifier PXD003588. Missing values were 
substituted by the median value of each experiment, as is com-
mon practice in RF applications. We reasoned that doing so would 
penalize the lack of observations by giving the same score to miss-
ing proteins of both positive and negative classes, which in turn 
increases the intersection between classes and thereby decreases 
separation quality.
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by sampling a standard normal distribution. In each matrix, 365 
“proteins” were selected to be part of the negative class and five 
groups of 12 proteins were set to be identical within their group in 
2,4,…, 20 “experiments” (Figure 1, D–F, horizontal axis). Next all of 
the values in each matrix were jittered with Gaussian noise with SD 
of 0.2, 0.4,…, 2 (Figure 1, D–F, vertical axis). Missing values were not 
added to the simulations, on the basis that they would be filled with 
median values, which would add variance and thus have similar ef-
fect to noise addition. We then ran the RF analysis for the five groups 
versus the negative set. The values in Figure 1, D–F, are the mean of 
means of the RF score and of highest MCC for each positive group. 
The correlation was the mean of intragroup correlations of all posi-
tive groups. 

Definition of protein group covariance
The covariance between random variables is only defined pairwise, 
and, as such, the “mean correlation of a complex” as mentioned in 
the text can be seen as a matrix A, where Ai j is the correlation of 
protein I with protein j. Several proxies of a single group-covariance 
measure exist. For practical purposes, the average of the lower 
triangular entries of the correlation matrix was used as a proxy of 
covariance. 
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