
Counter-diabatic driving for fast spin
control in a two-electron double quantum
dot
Yue Ban1 & Xi Chen2

1Department of Electronic Information Materials, Shanghai University, 200444 Shanghai, People’s Republic of China, 2Department
of Physics, Shanghai University, 200444 Shanghai, People’s Republic of China.

The techniques of shortcuts to adiabaticity have been proposed to accelerate the ‘‘slow’’ adiabatic processes
in various quantum systems with the applications in quantum information processing. In this paper, we
study the counter-diabatic driving for fast adiabatic spin manipulation in a two-electron double quantum
dot by designing time-dependent electric fields in the presence of spin-orbit coupling. To simplify
implementation and find an alternative shortcut, we further transform the Hamiltonian in term of Lie
algebra, which allows one to use a single Cartesian component of electric fields. In addition, the relation
between energy and time is quantified to show the lower bound for the operation time when the maximum
amplitude of electric fields is given. Finally, the fidelity is discussed with respect to noise and systematic
errors, which demonstrates that the decoherence effect induced by stochastic environment can be avoided in
speeded-up adiabatic control.

E
LECTRON spins in quantum dots (QDs)1–5 have been extensively investigated for potential applications in
quantum information processing, as spins in QDs are expected as a possible realization of qubit in quantum
information science and technology6. Especially, a two-electron double QD can be further regarded as the

smallest network to implement quantum computation, in which the highly entangled spin state, i.e. the singlet,
can be generated. Requirements of precisely controlled qubits have intensively stimulated the detailed studies of
the interactions in double-dot systems7,8 and the observations of phenomena thereby, such as Pauli spin blockade8

and Coulomb blockade9. Furthermore, the demands for achieving efficient quantum computations and avoiding
decoherence motivate us to manipulate spin states in double QDs in a fast and robust way. There are several
methods to manipulate spin in QDs, such as electron spin resonance induced by magnetic field oscillating at the
Zeeman transition frequency1 and electric control with spin-orbit (SO) coupling2. Recently, conventional ‘‘rapid’’
adiabatic passages in quantum optics, for example, Landau-Zener scheme, have been extensively used to spin
control in single QD10, coupled double QD11, tripled QD12, which can be applied to prepare entanglement states13

and quantum logical gates, such as NOT14 and CNOT15 gates.
Shortcuts to adiabaticity16,17 have been proposed to speed up the adiabatic process without final excitation with

many applications in atomic, molecular, optical physics, many-body physics, and even spintronics, see recent
review18. In a single QD, we applied the inverse engineering method19 to design a fast and robust protocol of spin
flip in the nanosecond timescale20, based on the Lewis-Riesenfeld invariant theory21. Furthermore, in a two-
electron QD, more freedom in the applied electric fields provides the flexibility to control spin states by the
invariant dynamics and controllable Lewis-Riesenfeld phases22. An alternative shortcut is provided by counter-
diabatic control proposed by Demirplak and Rice23, equivalent to tansitionless quantum driving24. This technique
was originally utilized to fast adiabatic control in two-level quantum systems theoretically17,23,24 and experiment-
ally25,26. Short afterwards, it has been extended to multi-level systems17,27, and even many-body systems28–31.

In this Report, we propose a fast and reliable protocol to generate the entangled spin states by using counter-
diabatic driving. The external electric fields are designed for rapid spin control in a two-electron double QD in the
presence of a static magnetic field and SO coupling. We apply the electric fields, instead of magnetic fields, and
take advantage of SO coupling, since the time-dependent electric fields are easy to be generated on the nanoscale
by adding local electrodes3. In addition, as comparing to a single QD, counter-diabatic driving is applicable in a
two-electron double QD, as there exists more freedom with four controllable parameters, x and y components of
the external electric fields for each dot. To simplify the experimental setup and reduce the device-dependent noise,
we further apply the concept of multiple Schrödinger pictures32 to find an alternative shortcut with only x
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component of the applied electric fields. Moreover, we also quantify
how the electric fields increase with shortening the time, to provide
the lower bound of operation time for a given maximal amplitude of
electric fields. Finally, the stability of designed shortcuts are discussed
with respect to decoherence and systematic errors. Our approach
presents a simple way to manipulate the singlet-triplet transition,
which could be useful for rapid entanglement state preparation.

Results
Two electrons are confined in a double QD, described as a quartic
potential in Fig. 1, where they are isolated by Coulomb blockade9. In
the presence of the applied magnetic fields, the lowest four eigen-
states of the system can be expressed by singlet and triplet for S 5 0
and S 5 1 in the basis of jS, Szæ. This report presents a method to
achieve fast adiabatic transition between the triplet and the singlet.
We design the electric fields in x 2 y plane to manipulate spin states
with static magnetic fields along z direction in each dot, considering
structure-related Rashba (a) and bulk-originated Dresselhaus (b) for
[110] growth axis. If the energy difference between the singlet and the
lowest one of the triplet is much less than the gap between the singlet
and the triplet, we focus on the state transition between these lowest
two, as shown in Fig. 1, where Landé factor g , 0 like in GaAs and
InAs QDs.

By choosing j1æ 5 (1, 0)T and j21æ 5 (0, 1)T, referring to the states
j0, 0æ and j1, 1æ, respectively, we may first take the reference
Hamiltonian as

H0~
�h
2

Z iY

{iY {Z

� �
, ð1Þ

where Y~{
ffiffiffi
2
p

ae Ax
L{Ax

R

� �.
�hc, Z~ {J{Dð Þ=�hzeb Ax

LzAx
R

� ��
�hc,

and Ax
j is determined by the electric fields, E j tð Þ~{ 1=cð ÞLAj

�
Lt.

The subscriptions j 5 L, R represent the left and the right dots,
respectively. Here we assume the ansatz of the vector potentials is
Ax

j ~A0 tanh t{ajtf
� ��

wjtf
� �� 	

z1

 �

, where aL 5 0.54, aR 5 0.48,
wL 5 wR 5 0.1. The ansatz of vector potentials satisfies the condition
Ax

j 0ð Þ^0 and guarantees that the electric fields Ex
j start to be driven

from t 5 0, that is, Ex
j :0, when t # 0. When the adiabatic condition

Z _Y{Y _Z

Y2zZ2ð Þ3=2

�����
�����=1 ð2Þ

is fulfilled, the spin state will evolves from j21æ to j1æ adiabatically
along one of instantaneous eigenstates. When the final time is tf 5

11 ns, the spin state is completely inverted, and the final population
of j1æ is larger than 0.9999.

Shortening the manipulation time to tf 5 2 ns, shrinking Ax
j into

this time duration and keeping the same amplitude, we can find the
state evolution is no longer adiabatic and the final state cannot reach
j1æ at the final time. The same profiles of time-dependent Y and Z
terms in H0 are shown in Fig. 2 (a) for different operation times, tf.

Counter-diabatic driving, equivalent to transitionless quantum
driving17,23,24, provides supplementary time-dependent interactions
H1 to cancel the diabatic couplings of H0, and make the process fast
and adiabatic, where H1 is17

H1~
�h
2

0 X

X 0

� �
, ð3Þ

with X~
ffiffiffi
2
p

ae Ay
L{Ay

R

� �.
�hc, driven by Ey

D, the difference between y

component of two electric fields. As a result, the exact dynamical
evolution of total Hamiltonian H 5 H0 1 H1 coincides with adiabatic
approximation of the reference Hamiltonian H0. However, to imple-
ment accelerated adiabatic transitions more energy price has to pay,
that is, the maximal amplitude of Ay

j in the X term increases when the
finally time tf is shortened. This can be intuitively understood from
time-energy uncertainty principle, that is, Ay

j is proportional to 1/tf.

Since Ej tð Þ~{ 1=cð ÞLAj
�
Lt, the larger value of Ex

j and Ey
D are finally

required for the shorter time, tf, as shown in Fig. 2 (c).
In reality, the electron spin is subject to the device-dependent

noise, which could be the amplitude noise of the electric fields20. It
can be quite important, especially when the electric fields are rela-
tively weak. From the above analysis, we find that four controllable
parameters, Ex

j and Ey
j , x and y components of the electric fields

for each electron in a double QD should be applied. If y compo-
nent of the electric fields can be reduced, we can remove the ampli-
tude noise from y component of the electric field. In addition to
decreasing the total decoherent effects resulting from the device-
dependent noise, the cancellation of y component of the electric field
might be also useful to simplify the setup. To this end, we apply
the concept of multiple Schrödinger pictures to find an alternative
way to implement the shortcuts. Making unitary transformation of

Figure 1 | Schematic diagram of a two-electron double quantum dot in
the presence of external electric fields and spin-orbit coupling, where the
singlet state and the lowest one of triplet states are considered as effective
two-level system, when JzDj j=J with Zeeman term D 5 gmBB.

Figure 2 | (a) Time dependence of Y (solid blue line) and Z (dashed red line) terms of H0. (b) The applied electric fields Ex
L (solid blue line) and Ex

R (dashed

red line) drive the state transition of H0 adiabatically, with tf 5 11 ns. (c) The applied electric fields Ex
L (solid blue line), Ex

R (dashed red line) and Ey
D (dot-

dashed green line) drive the state transition of H in a fast adiabatic way with shorter time tf 5 2 ns.
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Hamiltonian H32,33 by a rotation around z axis with the angle p/2 2 w,
we obtain

~H~
�h
2

Zz _w iQ

{iQ {Z{ _w

 !
, ð4Þ

without sx term, where tan w 5 Y/X and Q~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2zY2
p

. Again, the
maximal amplitude of Q will increase when decreasing time tf, due to
the fact that X becomes dominant (the maximal amplitude of Y is
unchanged). The Hamiltonian ~H is equal to the original one H at t 5

0 and tf, which guarantees that the initial (final) states of H and ~H
coincide. However, the dynamics is not same during the intermediate
process, although the populations are always equal. Accordingly, we
may acquire two new controllable x component of the electric fields,
Exn

L and Exn
R , calculated from Eq. (4), see Fig. 3.

Discussion
Comparisons of Exn

L and Exn
R provided by different times suggest that

stronger electric fields have to be used for shorter times, though the
amplitude of electric fields might be optimized by using superadia-
batic iterations32. However, the amplitude of electric fields cannot be
arbitrarily large simply because strong fields may destroy the sys-
tems. In order to quantify the energy price mentioned above, we
demonstrate the relation between the maximal values of electric
fields and the operation time tf, see Fig. 4. The maximal amplitude
of electric fields, Emax~max Exn

L

�� ��, Exn
R

�� ��� �
, fulfills the scaling law at

very short times,

Emax!
1
t2

f

, ð5Þ

since Exn
j !Ay

j

.
tf and Ay

j !1
�

tf go to infinity in the limit of tf R 0.

The asymptotic exponent of tf implies that the minimal time should
be !E{1=2

max , which provides the lower bound of operation time when
the maximal amplitude of electric fields is given. If the spin system in
quantum dot, rather than the atom in harmonic trap, is considered as
working medium in the cooling cycles of quantum refrigerator, the
minimal time for the (accelerated) adiabatic process, bounded by
the energy, could be relevant to the third law of thermodynamics
and the unattainability principle34,35.

For a realistic setup, the coupling to the stochastic environment is
a general scenario to be considered, where the hyperfine interactions
with the nuclear spin could play important role at low temperature.
To study the decoherence effect, we present the master equation for
the density matrix36 in a generic form:

_r~{
i
�h

~H,r
� 	

{
c

2

X
i

si, si,r½ �½ � ð6Þ

where c is the dephasing rate. Solving the Bloch equation, we can
obtain the final fidelity (F 5 r11) for different times, see Fig. 5, and
demonstrate that the faster manipulation increases the fidelity with
less influences attributed by decoherence.

To demonstrate the feasibility of our protocol, we also check the
stability with respect to systematic errors in Exn

j . The real electric

fields can be Ereal
j ~Exn

j 1zlð Þ, where l is the relative deviation.
The dependence of fidelity F on l is exhibited in Fig. 6 for different
times. Different from decoherence affected by the stochastic envir-
onment, fidelity is more stable with larger tf, since the systematic
error considered here depends on the amplitude of electric fields.
In general, the speeded-up adiabatic protocol has different stability
with respect to different types of noise and systematic errors.
Alternatively, one can combine the inverse engineering and optimal
control theory to pick up the most robust protocol in quantum two-
level systems in presence of different noise and errors37–39.

Methods
Effective Hamiltonian. The total spin-dependent Hamiltonian consists of
Heisenberg term, Zeeman term, and interactions between the electric fields and the
electrons, expressed as

Htotal~JsL
:sRz

X
j

Djs
z
j {

e
c

X
j

Aj
: vj, ð7Þ

The subscripts j 5 L, R represent the left dot and the right one, respectively. Zeeman
term is D 5 gmBB with the equal magnetic fields B applied to the left dot and the right
one in z direction, and Aj are the vector potentials of the electric fields. The spin
operators of two electrons confined in each dot are sj 5 sj/2 with z component sz

j . The

Heisenberg term JsL ? sR describes the exchange coupling J between two spins. The
example of a double QD of GaAs-based structure (g 5 20.44) is taken with B 5 3.7 T.
The energy gap between the singlet and the triplet is J 5 0.1 meV, so that

Figure 3 | Electric fields of Exn
L (solid blue line) and Exn

R (dashed red line),
designed from the Hamiltonian ~H, see Eq. (4).

Figure 4 | Dependence of Emax on short time tf (solid blue line), where the
dashed straight line shows the asymptotic exponent of tf, i.e. Emax!1

.
t2
f .

Figure 5 | Fidelity F versus dephasing rate c with respect to tf 5 2 ns
(solid blue line), tf 5 3 ns (dashed red line), tf 5 4 ns (dot-dashed black
line).
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JzDj j=J~0:06=1. SO coupling term of Hamiltonian includes structure-related
Rashba (a) term and bulk-originated Dresselhaus (b) term for [110] growth axis,

Hsoc~
X

j

a sx
j py

j {s
y
j px

j


 �
z
X

j

bsz
j px

j , ð8Þ

so that the spin-dependent velocity operators become

vx yð Þ
j ~

i
�h

Hsoc,x yð Þj
h i

: ð9Þ

As a result, after shifting some quantity of Htotal, we can derive a 2 3 2 Hamiltonian

H~
�h
2

Z XziY

X{iY {Z

� �
, ð10Þ

where Z, Y are Ax
j -dependent while X is Ay

j -dependent, seen in the section above.

Counter-diabatic driving and Z-axis rotation. Naturally, we separate the
Hamiltonian H into two parts, H0 and H1, where H0 includes the Y and Z terms driven
by the x components of electric fields applied in each dot, and H1 includes only X term
driven by the y components. The strategy of counter-diabatic driving in a two-
electron double QD is to set H0 as reference first, which could be not adiabatic at all.
Next, we calculate and add the complementary interaction H1 to cancel the diabatic
couplings of H0 and make the spin control fast and adiabatic17,23,24. Actually, the
separation of Hamilton H (10) into H0 and H1 depends strongly on the choice of
growth axis [110]. For instance, if the growth axis [111] is chosen, the SO coupling
term should be modified as

Hsoc~
X

j

a sx
j py

j {s
y
j px

j


 �
z
X

j

bs
y
j px

j , ð11Þ

and the 2 3 2 Hamiltonian (10) becomes

H~
�h
2

{ JzDð Þ=�h XziY

X{iY JzDð Þ=�h

� �
, ð12Þ

with X~
ffiffiffi
2
p

ae Ay
L{Ay

R

� �.
�hc and Y~{

ffiffiffi
2
p

azbð Þe Ax
L{Ax

R

� ��
�hc. Therefore, the

approach presented here is not valid, since the reference H0 and the counter-diabatic
driving H1 can not be naturally separated and calculated.

Here counter-diabatic driving is applicable in a two-electron double QD, as in
Hamiltonian H (10) there exists freedom with four controllable parameters, x and y
components of the external electric fields for each dot. This is different from the
Hamiltonian in a single QD where there are only two controllable parameters, x and y
components of the electric field, so that it is impossible to produce the required all-
electrical interaction by counter-diabatic driving20.

Furthermore, using multiple Schrödinger pictures to describe various physical
settings sharing the same dynamics is helpful to find alternative shortcuts, when the
counter-diabatic term is difficult or impossible to implement32. One can transform
the Hamiltonian based on Lie algebra to cancel the unwanted component of
Hamiltonian40. Applying this concept, we make unitary transformation of
Hamiltonian H by z-axis rotation. While the original dynamics satisfies
i�hLtY tð Þ~HY tð Þ, the new dynamics is given by i�hLt

~Y tð Þ~~H ~Y tð Þ, where
~Y tð Þ~U{Y tð Þ, ~H~U{ H{Kð ÞU and K~i�h _UU{ . In our case, we use the unitary
operator U~ �h=2ð Þe{i p=2{wð Þsz , to obtain the Hamiltonian (4).
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