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Objectives: To identify plasma extracellular vesicles (EVs) associated with radiographic
knee osteoarthritis (OA) progression.

Methods: EVs of small (SEV), medium (MEV) and large (LEV) sizes from plasma of OA
participants (n=30) and healthy controls (HCs, n=22) were profiled for surface markers
and cytokine cargo by high-resolution flow cytometry. The concentrations of cytokines
within (endo-) and outside (exo-) EVs were quantified by multiplex ELISA. EV associations
with knee radiographic OA (rOA) progression were assessed by multivariable linear
regression (adjusted for baseline clinical variables of age, gender, BMI and OA severity)
and receiver operating characteristic (ROC) curve analysis.

Results: Based on integrated mean fluorescence intensity (iMFI), baseline plasma MEVs
carrying CD56 (corresponding to natural killer cells) predicted rOA progression with
highest area under the ROC curve (AUC) 0.714 among surface markers. Baseline iMFI
of TNF-a in LEVs, MEVs and SEVs, and the total endo-EV TNF-a concentration, predicted
rOA progression with AUCs 0.688, 0.821, 0.821, 0.665, respectively. In contrast, baseline
plasma exo-EV TNF-a (the concentration in the same unit of plasma after EV depletion) did
not predict rOA progression (AUC 0.478). Baseline endo-EV IFN-g and exo-EV IL-6
concentrations were also associated with rOA progression, but had low discriminant
capacity (AUCs 0.558 and 0.518, respectively).

Conclusions: Plasma EVs carry pro-inflammatory cargo that predict risk of knee rOA
progression. These findings suggest that EV-associated TNF-amay be pathogenic in OA.
The sequestration of pathogenic TNF-awithin EVs may provide an explanation for the lack
of success of systemic TNF-a inhibitors in OA trials to date.
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INTRODUCTION

Extracellular vesicles (EVs) are released by almost all
mammalian cells. Due to their cargo (cytoplasmic proteins,
DNA, mRNA, miRNA, small non-coding RNAs, mitochondria,
and cytokines), EVs are believed to be able to act as mediators of
cell-to-cell communication and as paracrine effectors (1–4).
Studies in OA have focused on the beneficial effects of
mesenchymal stem cell (MSC)-derived EVs (5, 6), the
detrimental effects of subchondral bone osteoblast-derived
small EVs (SEVs) (7), and the surface markers and cytokine
cargo of SEVs (also known as exosomes) in OA synovial fluid
(SF) (8, 9). SEVs from knee OA SF carry surface markers CD9,
CD81 and CD63 and cytokines (IL-1b, IL-2, IL-4, IL-5, IL-6, IL-
13, IL-17, TNF-a and IFN-g (8–10), and are associated with OA
disease severity (8). SEVs from OA SF induce the release of pro-
inflammatory cytokines (IL-1b, IL-6 and TNF-a), chemokines
and metalloproteases in vitro by M1 macrophages (9), enhance
chemotaxis of peripheral blood mononuclear cells, promote
inflammatory responses, and inhibit chondrocyte proliferation
(10). SEVs from IL-1b stimulated human synovial fibroblasts
significantly up-regulate articular chondrocyte expression of
MMP-13 and ADAMTS-5 (11). Taken together, these studies
suggest a pathogenic role of SF-derived EVs in OA.

Despite the evidence for a role of EVs in the pathogenesis of
OA, to our knowledge, there have been no previous studies
evaluating the role of EV subpopulations in OA progression. To
fill this important knowledge gap, we profiled OA and healthy
control (HC) plasma for EV surface markers, ‘endo-EV’ (within
EV) cytokine cargo, and exo-EV cytokine concentrations (in EV-
depleted supernatant after ExoQuick precipitation of EVs from
the unit of plasma), to evaluate and compare their associations
with knee radiographic (r)OA severity and progression.
METHODS

Study Participants
Sixty plasma specimens were analyzed including: (1) healthy
controls (HCs, n=16), non-progressive OA (OA-NP, n=16) and
progressive OA (OA-P, n=14) from the completed Genetics of
Generalized Osteoarthritis (GOGO) study (12); and (2)
additional HC samples (n=6) from the commercial vendor
(Zenbio). The samples were matched for gender, race and
decade of age (Table 1). Samples were stored at -80°C until
Frontiers in Immunology | www.frontiersin.org 2
analysis. All samples and data were acquired with informed
consent under IRB approval of Duke University or the
commercial vendor (Zenbio).

Radiographic Procedures and Grading
Knee radiographic imaging was performed as reported
previously for the GOGO study (12) and scored for Kellgren
and Lawrence (K/L) grade (0–4) (12–14). K/L scores from both
knees of a participant were summed yielding scores with range 0-
8. HCs from GOGO were defined as participants having knee K/
L grade 0 bilaterally. Participants having knee OA was defined as
having summed K/L grade ≥1 at baseline. The change of K/L
scores from both knees of a participant were summed yielding
scores with range 0-6. Radiographic knee OA progression was
defined as K/L grade increase ≥1 unit in at least one knee during
follow-up (mean 3.8 years, range 1.1-8.6 years) (Table 1). HCs
from Zenbio were defined as no self-reported diseases or
medical conditions.

EV Separation From Plasma Samples
EV isolation required 50 ml plasma for each marker panel as
previously reported (4, 15). Blood samples were centrifuged at
3000 rpm for 15 min at 4 °C to separate plasma from cells and
debris; plasma samples were aliquoted and frozen at − 80 °C until
analysis. Frozen plasma samples were thawed followed by
centrifugation at 2000 g for 10 minutes at 4°C to remove
remaining debris. EVs in plasma were separated by ExoQuick
(System Biosciences) following the manufacturer’s instructions
(4, 15, 16). As described below, EVs were profiled for surface
markers and cytokines; endo-EV and exo-EV cytokine
concentrations were also measured.

Profiling EV-Carried Surface Markers and
Cytokines by High Resolution Multicolor
Flow Cytometry
As previously described (4, 15), EVs were profiled for the
following surface markers to identify EV subpopulations by
cell of origin (Supplementary Table 1) (4, 15, 17–25): CD81,
CD9, CD29, CD63, CD8, CD68, CD14, CD56, CD15, CD235a,
CD41a, CD34, CD31, major histocompatibility complex (MHC)-
class I antigens HLA-A, HLA-B and HLA-C (HLA-ABC), MHC-
class II antigens HLA-DR, -DP and -DQ (HLA-DRDPDQ) (BD
Biosciences), CD4, CD19 and MHC-class I antigen HLA-G
(ThermoFisher Scientific). We also profiled endo-EV cytokines
IL-1b, TNF-a, IFN-g (BD Biosciences), and IL-6 (ThermoFisher
TABLE 1 | Demographic information of the study participants.

HC* HC OA-NP OA-P

Sample number n=6 n=16 n=16 n=14
Mean (SD) age at enrollment (years) 55.5 (11) 68.4 (8) 68.7 (8) 69.3 (8)
Gender (Female) % 50% 50% 50% 57%
Mean (SD) BMI at enrollment (kg/m2) 28 (8) 27 (3) 32 (8) 29 (5)
Median (range) Summed Baseline K/L grade N/A 0 (0) 2 (1-6) 2 (1-6)
Median (range) Summed Change in K/L grade N/A 0 (0) 0 (0) 3 (1-6)
Octobe
r 2021 | Volume 12 | Article
HC, healthy control; *obtained from Zenbio; OA-P, radiographic knee osteoarthritis progressor; OA-NP, radiographic knee osteoarthritis non-progressor; SD: standard deviation; BMI,
body mass index; K/L grade, Kellgren and Lawrence grade; N/A, not applicable.
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Scientific). The percentages (%) and geometric mean
fluorescence intensity (MFI) of EVs carrying each tested
marker were determined using a high-resolution multicolor
BD LSR Fortessa X-20 Flow Cytometer with the BD
FACSDiVa software (BD Biosciences). The integrated MFI
(iMFI) of surface markers and cytokines was calculated by
multiplying percentage of positive population with the MFI of
that population (15, 26, 27).

Multiplex ELISA for Cytokine
Quantification
To confirm the efficiency of the EV precipitation, the
concentration and size distribution of particles (in the
ExoQuick precipitate of EVs and the remaining EV-depleted
supernatants) derived from 50 µl plasma were measured by
nanoparticle tracking analysis and dynamic light scattering as
previously reported (4, 15) (Supplementary Figure 1). As
previously described (15), EV pellets were lysed in NP40 lysis
buffer (Thermo Fisher Scientific) in the same volume as the EV-
depleted supernatants. The concentrations of endo-EV and exo-
EV (remaining EV-depleted supernatant after ExoQuick
precipitation) cytokines were measured by multiplex ELISA
using the Custom Pro-inflammatory Panel (IL-1b, IL-6, TNF-
a, IFN-g, Meso Scale Diagnostics) following the manufacturer’s
instructions (15, 28, 29).

Receiver Operating Characteristic (ROC)
Curve Analysis
Multivariable logistic regression and ROC curve analyses (30, 31)
were performed to evaluate the discriminant ability of baseline
EV-related variables for knee OA progression, defined as change
in knee K/L grade (summed across knees). Model stabilities were
validated using a 2,500 non-parametric bootstrap resampling
approach; 95% bias-corrected confidence intervals (CIs) for area
under the ROC curve (AUC) are reported. Likelihood ratio (32)
test was used to assess model fit; the R-square value (RSq) (33),
corrected Akaike’s Information Criterion (AICs) (34) and the
Bayesian Information Criterion (BIC) (35) are reported. Rsq
closer to 1 indicates a better fit to the data; while for AIC and
BIC, the model having the smaller value is considered better.
Specificity was determined at sensitivity 80%. The analyses were
performed using JMP Pro 15 (SAS). AUC is interpreted as
follows: AUC ≤0.5 indicates no better than a random classifier;
AUC >0.5 is considered validated; AUC >0.65 is considered a
moderate discriminant capability.

Statistical Analyses
Data in this study were not normally distributed based on
D’Agostino-Pearson omnibus normality test; therefore,
nonparametric analyses were performed. Comparisons between
HC, OA-NP and OA-P were performed using Kruskal-Wallis
test. Comparisons of endo-EV and exo-EV cytokines were
performed using Wilcoxon matched-pairs signed rank test.
Comparisons between the tested cytokines in each participant
group were performed using Friedman test. False Discovery Rate
(FDR) was generated using the Benjamini and Yekutieli method
with significant results defined by FDR (q value) <0.05.
Frontiers in Immunology | www.frontiersin.org 3
Multivariable linear regression modeling was performed with
adjustment for baseline clinical variables (age, gender, body mass
index [BMI] and summed knee OA K/L score) to identify
associations of endo-EV and exo-EV biomarkers with knee
rOA progression, defined by change in summed K/L score
from baseline to follow-up. A p value <0.05 was considered
statistically significant. GraphPad Prism 8.0 software
(GraphPad) and JMP Pro 15 software were used for
statistical analyses.
RESULTS

Multiple Immune Cell-Related LEVs and
MEVs Were Associated With Knee rOA
Progression
There are currently no specific markers for different EV subtypes
(36). Following the recommendations from the International
Society for Extracellular Vesicles (36), we used operational terms
(range of sizes along with descriptions of cell of origin defined by
their surface markers) to describe EV subsets as in our previous
work (4, 15). With our newly developed high-resolution
multicolor flow cytometry-based methodology, we identified
three major subsets of plasma EVs in human HCs: large EVs
(LEVs), 1000-6000 nm; medium sized EVs (MEVs), 100-1000
nm; and SEVs, <100 nm; these major subsets based on size were
confirmed using dynamic light scattering (4, 15). In this study,
these three major subsets of plasma EVs were also identified in
plasma of participants with knee OA. Plasma EVs from HC and
OA participants all carried surface markers of human stem cells
and progenitor cells, immune cells, activated pro-inflammatory
fibroblasts, epithelial and endothelial cells indicative of their cell
origins (Supplementary Figure 2 and Supplementary Table 1)
(4, 15, 17–25).

Baseline iMFI of multiple plasma EV subpopulations were
associated with baseline clinical variables including age, gender,
BMI and summed knee OA K/L score (Supplementary
Figure 3). Adjusting for these baseline clinical variables,
baseline iMFI of multiple plasma LEVs and MEVs were
statistically significantly associated with knee rOA progression.
LEV subpopulations associated with rOA progression included
the following: CD29+, CD63+, CD8+, CD15+, CD14+, CD19+,
and ratio of CD15/CD8 (reflecting neutrophil-EV to T cell-EV
ratio) (Figure 1A). MEV subpopulations associated with rOA
progression included the following: CD81+, CD9+, CD31+,
CD29+, CD63+, CD56+, CD68+, and HLA-DRDPDQ+

(Figure 1B). No SEV subpopulations based on EV surface
markers were associated with knee rOA progression. These
LEV and MEV surface markers yielded AUCs >0.5
(Figures 1C, D); CD56+ MEVs (AUC 0.714), corresponding to
NK cell-EVs, yielded the highest AUC (Figure 1D).

Endo-EV TNF-EV TNF-a in Plasma
Associated With Knee OA Progression
TNF-a is a classical pro-inflammatory cytokine playing critical
roles in OA pathogenesis (29, 37–41). Recently, we found that
October 2021 | Volume 12 | Article 758386

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. TNF-a Predicts Knee OA Progression
endo-EV concentrations of TNF-a (in lysates of EV pellets) were
significantly higher than the exo-EV concentrations (in EV-
depleted supernatants) in the same unit volume of plasma
from OA participants, suggesting that EVs are a major source
of systemic TNF-a(15). Here, we report, the concentration of
endo-EV TNF-a was significantly higher in OA-P than HC
participants, while exo-EV TNF-a concentrations did not differ
among the study groups (Figure 2A). Adjusting for baseline
clinical variables, the baseline concentration of endo-EV TNF-a
was statistically significantly associated with knee rOA
progression (Figure 2B) . In addit ion, the basel ine
concentration of endo-EV TNF-a predicted knee rOA
progression with moderate discriminant ability (AUC 0.665,
Figure 2C). In contrast, exo-EV TNF-a was neither associated
with nor predictive of knee rOA progression (Figures 2B, C).
In addition to EVs being a major source of systemic TNF-a, this
Frontiers in Immunology | www.frontiersin.org 4
suggests that plasma endo-EV TNF-a represents a promising
systemic biomarker for predicting risk of knee rOA progression.

Plasma EVs from HCs, OA-NP and OA-P participants were
assessed by flow cytometry for an array of cytokines including
TNF-a. TNF-a was present in all sizes of plasma EVs and was
the most abundant endo-EV cytokine of the four analyzed and
the most abundant cytokine in all three participant groups based
on mean percentage of TNF-a+ LEVs, MEVs and SEVs
(Supplementary Figure 4). Baseline iMFI of TNF-a in LEVs
was significantly higher in OA-P than HCs (Figure 3A), which is
consistent with the differential concentration of endo-EV TNF-a
observed between these two groups by ELISA based analyses
(Figure 2A). Moreover, baseline iMFI of TNF-a in MEVs and
SEVs was significantly higher in OA-P than OA-NP (Figure 3A).
With adjustment for baseline clinical variables, baseline iMFI of
TNF-a in EVs of all sizes was associated with knee rOA
A

B

C

D

FIGURE 1 | Multiple immune cell-associated LEVs and MEVs at baseline were associated with knee radiographic (r)OA progression. Plasma EVs from OA
participants (n = 30, 53% OA-NP and 47% OA-P) at baseline were profiled with the indicated surface markers by high resolution multicolor flow cytometry.
(A, B) Multivariable linear regression modeling was performed with adjustment for the baseline clinical variables (age, gender, BMI and summed knee OA K/L score)
to identify the associations of the knee OA radiographic severity changes from baseline to follow-up with the baseline iMFI of each surface marker in gated LEVs,
MEVs or SEVs. The Leverage Plots represent plots of leverage of summed knee rOA progression (x axis, scaled in units of the response) vs the baseline iMFI (y axis)
of the indicated surface markers in LEVs (A) and MEVs (B) with an asterisks indicate the p < 0.05. No SEV subpopulations based on EV surface markers were
associated with knee rOA progression. (C, D) Multivariable logistic regression and ROC curve analysis were used to assess AUC of the knee rOA progression-
associated surface markers in LEVs (C) and MEVs (D) to predict progression of radiographic knee OA. Since all tested surface markers in SEVs were not significantly
associated with knee rOA progression, they were excluded from ROC analysis. AUC > 0.5 was considered validated and AUC > 0.65 (red font) was considered a
moderate discriminant capability. 95% bias-corrected confidence intervals (CIs) for AUCs are reported. LEVs, large EVs; MEVs, medium EVs; iMFI, integrated mean
fluorescence intensity. *p < 0.05.
October 2021 | Volume 12 | Article 758386
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progression (P<0.1); this was statistically significant for TNF-a
in MEVs (Figure 3B). Although the baseline iMFI of TNF-a in
EVs of all sizes predicted knee rOA progression, MEVs and SEVs
had higher AUCs and specificity (both AUC 0.821 and specificity
81% at sensitivity 80%) than LEVs (AUC 0.688 and specificity
63% at sensitivity 80%) (Figure 3C).

Other Pro-Inflammatory Cytokines
Associated With Knee rOA Progression
Endo-EV IFN-g concentrations were significantly higher in OA-P
than both OA-NP and HC participants; exo-EV IFN-g
concentrations did not differ among the study groups
(Figure 4A). In contrast, exo-EV IL-6 concentrations were
significantly higher in OA-P than both OA-NP and HC
participants; endo-EV IL-6 concentrations did not differ among
the study groups (Figure 4B). There were no statistically significant
differences between the study groups based on concentrations of
endo-EV or exo-EV IL-1b, or iMFIs of IL-1b, IL-6 or IFN-g in EVs
of all sizes (data not shown). Adjusting for baseline clinical variables,
baseline concentrations of endo-EV IFN-g (Figure 4C) and exo-EV
IL-6 (Figure 4D) were statistically significantly associated with knee
rOA progression and yielded validated AUCs of 0.558, and
0.518, respectively.
DISCUSSION

All major types of immune cells (neutrophils, macrophages, NK
cells, T cells, B cells, dendritic cells, and granulocytes) actively
infiltrate OA synovial tissues, releasing cytokines and EVs into the
joint that may contribute to structural progression of OA (11, 42–
45). In this study, we identified plasma EVs from OA participants
carrying surface markers indicative of multiple cell origins including
human stem cells and progenitor cells, all major types of immune
cells, activated pro-inflammatory fibroblasts, epithelial and
Frontiers in Immunology | www.frontiersin.org 5
endothelial cells (4, 15, 17–25). We identified plasma EVs in OA
that carry the major pro-inflammatory cytokines, TNF-a, IFN-g,
IL-6 and IL-1b, demonstrating their pro-inflammatory phenotype.
We found that the concentration of endo-EV TNF-a and the iMFI
of TNF-a in EV subsets in OA plasma were associated with and
strong predictors of knee rOA progression, while plasma exo-EV
TNF-a was neither associated with nor predictive of knee rOA
progression. Based on this prior work, we know that these TNF-a+

EVs are present and abundant in OA synovial fluid (15). This
suggests that EV associated TNF-a may play a role in
OA progression.

TNF-a is a classical pro-inflammatory cytokine produced by a
broad variety of cell types, including, but not limited to,
macrophages, monocytes, T cells, B cells, NK cells, mast cells,
keratinocytes, astrocytes, microglial cells, muscle cells, intestinal
paneth cells, tumor cells, synoviocytes and articular chondrocytes
(46–48). Based on human in vitro data, TNF-a may play a critical
role in the pathogenesis of OA (38, 40, 49). Previous human studies
reported that serum TNF-a concentrations predicted knee rOA
progression (50), and were associated with joint space narrowing
(51). SF TNF-a concentrations were associated with knee pain (29).
In addition, TNF-a polymorphisms were associated with
susceptibility to OA in a Korean population (52).

Although in an animal study, TNF-a inhibition significantly
decreased pro-inflammatory cytokines (IL-1b, IL-17a and IL-8),
MMP-3 and MMP-9, inflammatory cell infiltration and bone
destruction in joints and cartilage of rats with OA (53), the
reported human trials of TNF-a inhibitors for OA are limited to
three and all have been negative. These three trials (n=60 hand OA,
n=84 hand OA, and n=20 knee OA) all used human TNF antibody,
adalimumab (54). Only a single case report indicated that
neutralizing TNF-a using adalimumab (40 mg subcutaneously
every other week) decreased pain and improved joint function,
visibly decreased synovial effusion and synovitis and bone marrow
edema, and dramatically decreased nocturnal pain and improved
A B C

FIGURE 2 | The concentration of endo-EV TNF-a at baseline was associated with knee rOA progression. The concentrations of exo-EV and endo-EV TNF-a in
plasma from HC (n = 16), OA-NP (n = 16) and OA-P (n = 14) participants at baseline were measured by multiplex immunoassay. (A) The graphs represent the
differential concentrations of endo-EV and exo-EV TNF-a between HC, OA-NP and OA-P. Comparisons between HC, OA-NP and OA-P were performed using
Kruskal-Wallis test with significant results defined by FDR q< 0.05; asterisks indicate the p value as * <0.05. (B) Multivariable linear regression modeling was
performed with adjustment for the baseline clinical variables to identify the associations of summed knee rOA progression with baseline concentrations of TNF-a in
OA participants (n = 30, 53% OA-NP and 47% OA-P). The Leverage Plots represent plots of leverage of summed knee rOA progression (x axis) vs the baseline
concentrations (y axis) of endo-EV and exo-EV TNF-a. (C) Multivariable logistic regression and ROC curve analysis were used to assess AUC and specificity (at
sensitivity 80%) of endo-EV and exo-EV TNF-a in OA participants (n = 30, 53% OA-NP and 47% OA-P) to predict progression of radiographic knee OA. Rsq, AICs,
and BICs were based on likelihood ratio test. 95% bias-corrected confidence intervals (CIs) for AUCs are reported. Endo-EV, within EV; Exo-EV, outside EV; HC,
healthy control; OA-P, radiographic knee osteoarthritis progressor; OA-NP, radiographic knee osteoarthritis non-progressor.
October 2021 | Volume 12 | Article 758386
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walking distance (48). One possible explanation for these conflicting
results is that TNF-a binds to two types of receptors with opposing
functions — TNFRI mediating pro-inflammatory signals, and
TNFRII mediating anti-inflammatory signals. Therefore,
Frontiers in Immunology | www.frontiersin.org 6
neutralization of TNF-a could result in a mixed clinical response,
similar to prior observations resulting from treatments targeting
both receptors: inhibiting signaling of both TNFRI and TNFRII
reduced collagen-induced arthritis, but increased pro-inflammatory
A B

C

FIGURE 3 | The iMFI of endo-EV TNF-a at baseline was associated with knee rOA progression. Plasma EVs from HC (n = 6), OA-NP (n = 16) and OA-P (n = 14)
participants at baseline were profiled for intra-vesicle TNF-a by high-resolution multicolor flow cytometry. (A) The graphs represent the iMFI of TNF-a in gated LEVs,
MEVs and SEVs between HC, OA-NP and OA-P. Comparisons between HC, OA-NP and OA-P were performed using Kruskal-Wallis test with significant results
defined by FDR q< 0.05; asterisks indicate the p value as * <0.05 and ** <0.01. (B) Multivariable linear regression modeling was performed with adjustment for the
baseline clinical variables to identify the associations of the knee OA radiographic severity changes from baseline to follow-up with the baseline iMFI of TNF-a in OA
participants (n = 30, 53% OA-NP and 47% OA-P). The Leverage Plots represent plots of leverage of summed knee rOA progression (x axis) vs the baseline iMFI (y
axis) of TNF-a in LEVs, MEVs and SEVs. (C) Multivariable logistic regression and ROC curve analysis were used to assess AUC and specificity (at sensitivity 80%) of
TNF-a in LEVs, MEVs and SEVs in OA participants (n = 30, 53% OA-NP and 47% OA-P). Rsq, AICs, and BICs were based on likelihood ratio test. 95% bias-
corrected CIs for AUCs are reported. LEVs, large EVs; MEVs, medium EVs; SEVs, small EVs; iMFI, integrated mean fluorescence intensity. HC, healthy control
obtained from Zenbio; OA-P, radiographic knee osteoarthritis progressor; OA-NP, radiographic knee osteoarthritis non-progressor.
October 2021 | Volume 12 | Article 758386
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cytokine levels and reduced Treg cell activity. In contrast, selective
blockade of TNFRI signaling reduced collagen-induced arthritis
without the major side effects observed with both TNFRI and
TNFRII blockade (55, 56). Another possible explanation is that
TNF-a carried by EVs is sequestered from systemic anti-TNF-a.
For flow cytometric quantification of intra-vesicular cytokines
including TNF-a, it is necessary to fix and permeabilize the EVs;
thus, permeability to antibodies is not expected to be a property of
circulating EVs in vivo. We observed that the concentration of
endo-EV TNF-a was higher than the matched exo-EV TNF-a in
the same unit volume of OA plasma. Therefore, neutralizing soluble
TNF-a in blood may not be sufficient when a large amount of
pathogenic TNF-a is sequestered in EVs and potentially
inaccessible to the neutralizing antibody. Nevertheless, these EVs
would be expected to be able to fuse their membrane to the plasma
membrane of specific target cells, followed by discharge of their
luminal cargo [e.g. TNF-a) to the cytoplasm of their target cell
(57)]. Given the dual biological functions of TNF-a in arthritis
mediated by TNFRI and TNFRII, and potential technical difficulties
depleting EV-carried TNF-a in vivo, neutralizing TNF-a with
biologics may not be an ideal therapeutic approach for treating
OA. Instead, it may be important to lower the production of
TNF-a+ EVs. Monitoring of TNF-a+ EVs in plasma could also
be a promising companion diagnostic for OA.

Similar to TNF-a, the concentration of endo-EV, but not exo-
EV, IFN-g was significantly associated with knee OA
progression, although it was not as strong a predictor of knee
OA progression. In contrast, the concentration of exo-EV, but
Frontiers in Immunology | www.frontiersin.org 7
not endo-EV, IL-6 was significantly associated with knee OA
progression. These findings suggest that endo-EV and exo-EV
pro-inflammatory cytokines may play different roles in the
pathogenesis and worsening of OA and represent different
biological processes in OA progression.

Among the test surface markers, CD56+ MEVs, related to NK
cells, were the strongest predictor of knee rOA progression with
the highest AUC. NK cells are one of the principal leukocyte
subsets that infiltrate OA synovia (58); NK cells in both
peripherial blood and SF of patients with OA produce pro-
inflammatory cytokines,TNF-a, IL-6, and IFN-g. The frequency
of NK cells producing these pro-inflammatory cytokines is
significantly higher in OA SF than plasma (59). In vivo
antibody-mediated depletion of NK cells ameliorates disease in
experimental OA, demonstrating their pathogenicity, which is
likely mediated by their ability to promote inflammation and
bone destruction (60).

The neutrophil to lymphocyte ratio (NLR) in peripheral
blood is already a non-invasive and cost-effective biomarker of
various systemic diseases, including cancers, cardiovascular
diseases and rheumatologic diseases, and has been shown to be
associated with OA severity (61–63). Recently, we found that the
ratios of neutrophil EVs to lymphocyte EVs (from T cells, B cells
and NK cells), and to T cell EVs, were highly correlated between
SF and plasma in OA (15). Here we show that the ratio of
neutrophil EVs to T cell EVs was associated with knee OA
progression (with a validated AUC). These data taken together
suggest that these NLR ratios, based on EV quantification, could
A

B

C

D

FIGURE 4 | The concentrations of endo-EV IFN-g and exo-EV IL-6 at baseline were associated with knee rOA progression. The concentrations of exo-EV and endo-
EV IFN-g and IL-6 in plasma from HC (n = 16), OA-NP (n = 16) and OA-P (n = 14) participants at baseline were measured by multiplex immunoassay. (A, B) The
graphs represent the differential concentrations of endo-EV and exo-EV IFN-g (A) and IL-6 (B) between HC, OA-NP and OA-P. Comparisons between HC, OA-NP
and OA-P were performed using Kruskal-Wallis test with significant results defined by FDR q < 0.05; asterisks indicate the p value as * < 0.05. (C, D) Multivariable
linear regression modeling was performed with adjustment for the baseline clinical variables to identify the associations of summed knee rOA progression from
baseline to follow-up with the baseline concentrations of IFN-g and IL-6 in OA participants (n = 30, 53% OA-NP and 47% OA-P). The Leverage Plots represent plots
of leverage of summed knee rOA progression (x axis) vs the baseline concentrations (y axis) of endo-EV and exo-EV IFN-g (C) and IL-6 (D). Endo-EV, within EV; Exo-
EV, outside EV; HC, healthy control; OA-P, radiographic knee osteoarthritis progressor; OA-NP, radiographic knee osteoarthritis non-progressor.
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serve as systemic biomarkers of OA joint pathology and possibly
other comorbidities, such as cardiovascular disease. The
breakthrough advantage of determining NLR ratio based on
EVs is the ability to use frozen archival samples in contrast to
the current method requiring fresh cells.

The first limitation of this exploratory study was the limited
number of available samples related to difficulties collecting
human specimens of matched gender, race, decade of age, and
diversity of OA disease severity and progression. The second
limitation was the lack of fresh cells, so we could not directly link
EV profiles to the inflammatory phenotype of their parent cells.
In addition, OA is often associated with comorbidities that might
increase the prevalence of pro-inflammatory EVs. Given the
sample sizes, assessing effects of comorbidities was outside the
scope of these analyses. However, the GOGO study recruited
cognitively intact, ambulatory older adults. In this regard, there is
potential selection bias for individuals without major
comorbidities other than OA. Although these limitations exist,
this study identified several potential new knee OA progression-
associated EV biomarkers and predictors worthy of further study
as new systemic predictors of knee OA progression. This study
also provides insights to optimize therapies targeting TNF-a
pathways in OA. Our findings would encourage more studies to
explore the roles of these EV biomarkers in OA pathogenesis and
disease development.

In summary, we identified several immune cell- and pro-
inflammatory cytokine-associated EV subpopulations that were
significant independent predictors of knee rOA progression.
Among these EV biomarkers, baseline iMFI of TNF-a in
MEVs and SEVs was significantly higher in plasma of OA-
Progressors than OA-Non-progressors, and the best predictor of
knee rOA progression with highest AUC and specificity.
Interestingly, baseline iMFI of TNF-a in EVs of all sizes, and
total concentration of endo-EV TNF-a all predicted rOA
progression. In contrast, baseline exo-EV TNF-a concentration
was not associated with nor predictive of rOA progression. These
data suggest that EV-associated TNF-a may be pathogenic in
OA. Sequestration of large amounts of TNF-a in plasma EVs of
OA patients, as shown here, may explain the disappointing
results to date of TNF-a inhibitors in OA disease
modifying trials.
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