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Screening for chronic conditions 
with reproductive factors using a 
machine learning based approach
Siyu Tian1,5, Weinan Dong2,3,5, Ka Lung Chan4, Xinyi Leng4, Laura Elizabeth Bedford2 & 
Jia Liu3*

A large proportion of cases with chronic conditions including diabetes or pre-diabetes, hypertension 
and dyslipidemia remain undiagnosed. To include reproductive factors (RF) might be able to 
improve current screening guidelines by providing extra effectiveness. The objective is to study the 
relationships between RFs and chronic conditions’ biomarkers. A cross-sectional study was conducted. 
Demographics, RFs and metabolic biomarkers were collected. The relationship of the metabolic 
biomarkers were shown by correlation analysis. Principal component analysis (PCA) and autoencoder 
were compared by cross-validation. The better one was adopted to extract a single marker, the general 
chronic condition (GCC), to represent the body’s chronic conditions. Multivariate linear regression 
was performed to explore the relationship between GCC and RFs. In total, 1,656 postmenopausal 
females were included. A multi-layer autoencoder outperformed PCA in the dimensionality reduction 
performance. The extracted variable by autoencoder, GCC, was verified to be representative of three 
chronic conditions (AUC for patoglycemia, hypertension and dyslipidemia were 0.844, 0.824 and 
0.805 respectively). Linear regression showed that earlier age at menarche (OR = 0.9976) and shorter 
reproductive life span (OR = 0.9895) were associated with higher GCC. Autoencoder performed 
well in the dimensionality reduction of clinical metabolic biomarkers. Due to high accessibility and 
effectiveness, RFs have potential to be included in screening tools for general chronic conditions and 
could enhance current screening guidelines.

Type 2 diabetes mellitus (T2DM), hypertension and hyperlipidemia are chronic conditions that can result in 
severe complications1,2, including cardiovascular disease (CVD), the leading cause of death worldwide3,4. 
Unfortunately, a large number of patients with these conditions remain undiagnosed. Most updated literatures 
showed that in 2019 there are 50.1% (231.9 million) of diabetes patients still undiagnosed worldwide5. A large 
proportion of cases with hypertension6 and hyperlipidemia7 are also unware of their condition, particularly in 
low and middle income countries8.

Screening of those at risk of chronic conditions is of significance for both individuals and wider society, yet 
there are gaps in current practices. Early identification is generally based on commonly collected risk factors, such 
as age, gender, smoking status, body mass index (BMI) and family history. A number of societies and task forces 
have recommended various screening guidelines that consist of these risk factors9–11; however, there are grow-
ing concerns that such guidelines might be inadequate and inaccurate12–15. For example, the American Diabetes 
Association (ADA) and the US Preventive Services Task Force (USPSTF) guidelines have shown only a fair per-
formance when externally validated12,13. Furthermore, a trial exploring the effectiveness of a population-based 
screening programme in the United Kingdom found that screening was not associated with a reduction in 
all-cause mortality over a median period of 9.6 years15. A number of commonly used screening functions have 
also been shown to be ineffective in population screening16.

To include novel or extra factors might help to identify high risk groups more accurately and has the potential 
to improve current screening guidelines for chronic conditions, in terms of both effectiveness and efficiency. 
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Indeed, a growing body of studies has identified a strong relationship between women’s reproductive factors 
(RF) and chronic conditions. For example, early menarche has been found to be associated with an increased 
risk of T2DM17,18, obesity and insulin resistance19. Moreover, a retrospective study conducted in Europe showed 
that, after adjustment for confounding, early menopause and shorter reproductive life span was associated with 
T2DM20. A Japanese study also found a similar relationship regarding hypercholesterolemia21. Furthermore, the 
China Kadoorie Biobank study reported that Chinese women with late menopause (≥53 years) were 1.21 (95% 
CI: 1.03–1.42) times more likely to have T2DM than women with menopause at 46–52 years old (p < 0.0001)22. 
Another Chinese study also found that a higher number of live births was associated with hypertension and DM, 
and mediated by lifestyle and dyslipidemia23. Additional studies conducted in different regions and healthcare 
settings have shown similar results. It is also important to note that RFs are highly accessible in all medical set-
tings with low cost, hence we hypothesized that RFs are associated with chronic conditions and, as novel factors, 
might be able to improve current screening guidelines to assess women’s risk of chronic conditions21.

The objective of the current study is to explore the relationship between RFs and chronic conditions in order 
to assess the application of RFs as preliminary screening tools for general chronic conditions in women, so as to 
allow for the early diagnosis and intervention. This is challenging as clinical biomarkers of chronic conditions 
consist of multiple parameters as dependent variable and it is difficult to clarify its relationship with RFs using 
standard statistical methods. Therefore, in order to investigate their association, we applied a machine learning 
based dimensionality reduction technique, autoencoder, to generalize one single marker to represent chronic 
conditions.

Methods
Participants.  A cross-sectional study was conducted in the Gansu Province of China. Random stratified 
sampling was adopted to include participants who were under care in primary health service organizations. The 
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2 . It was estimated that 384 participants ought to 
be enrolled from each of the 28 sample centres (accuracy = 95%, confidence = 95%). To allow for missing data, 
and the constitution of demographic factors, 12,000 participants were recruited, of which 11,115 completed the 
study.

Participants were eligible for inclusion if they were: (1) female; (2) postmenopausal; (3) no self-reported DM, 
hypertension or dyslipidemia.

Participants were excluded if they were: (1) diagnosed with secondary diabetes or secondary hypertension; (2) 
pregnant and lactating; (3) taking medicine that affects the metabolism of glucose and lipids within 3 months; and 
(4) diagnosed with type 1 diabetes; (5) Non-natural menopause.

Study design.  From June to August 2016, seven investigators with a registered nursing practicing certificate 
administered a questionnaire, physical tests and biochemical tests to participants.

The questionnaire was designed based on related studies25,26 and modified according to pre-survey results in 
order to minimize bias. The investigators interviewed each participant face-to-face and completed the question-
naire accordingly. Five RFs were collected: age at menarche, age at menopause, reproductive life span, live births 
and abortion history.

The investigators performed five physical tests using standard instruments to measure height, weight, waist 
and hip circumference, heart rate, systolic blood pressure (SBP) and diastolic blood pressure (DBP). All tests were 
repeated three times and the average reading calculated. Body mass index (BMI) was calculated with weight (kg)/
height2 (m2), and waist-to-hip ratio (WHR) was calculated using waist (cm)/hip (cm).

Three biochemical tests were performed, which included: 1) a fast blood-glucose test; 2) a blood lipids test; 
and 3) oral glucose tolerance test (OGTT). All laboratory assays were performed in accredited medical labora-
tories by the Chinese National Health Authority. Protocols were strictly adhered to. Total cholesterol (TC), total 
triglyceride (TG), high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), fasting plasma glucose 
(FPG), OGTT 2 h plasma glucose (OGTT 2 h PG) were collected.

Ethical considerations.  The ethics committee of the School of Public Health in Lanzhou University 
approved this study. All relevant ethical guidelines and regulations were strictly adhered to throughout. Informed 
consent was obtained from each participant whose data was included in the analyses.

Data analysis.  First, a descriptive analysis was applied to summarize the biomarkers and RFs. Following 
that, since all the clinical biomarkers are continuous variables and are verified following normal (Gaussian) dis-
tribution (by Kolmogorov-Smirnov normality test), the relationship between included clinical biomarkers was 
explored using Pearson correlation analysis and hierarchical clustering analysis. Corresponding correlation plots 
were used to display the complex relationships between each of the two variables27. Through this method, we were 
able to demonstrate the redundancy of the clinical biomarkers. An autoencoder was then applied to generalize a 
single marker to represent 10 clinical biomarkers of the chronic conditions. Meanwhile, a more generic dimen-
sionality reduction method, principle component analysis (PCA), was applied for comparison. Disease binary 
variables (positive or negative, represented by 1 or 0) of pathoglycemia, hypertension and dyslipidemia were 
determined from the continuous values of the original 10 clinical biomarkers according to the clinical ascertain-
ment of these diseases. For both methods, using disease binary variables as labels and extracted single variable 
as the risk score to set different threshold, area under curve (AUC) with 95% confidence interval was calculated 
based on 10-fold cross-validation, in order to verify the representation power of the extracted variable. T-test was 
used to compare the representation power (AUC) of both methods.
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An autoencoder is a data-driven neural network with an encoder, a bottleneck layer and a decoder combined. 
The encoder (also a multilayer network) can project the high-dimensional data onto a low-dimensional feature 
space at the output of the bottleneck layer, which can also be considered as a feature extraction of the input. The 
multilayer decoder network can then reconstruct the data from the coder layer reversely. Therefore, the net-
work can be trained unsupervised with the same input and output by minimizing the mean square error (MSE) 
between them at the output of the network using a backpropagation algorithm28. The bottleneck layer is consid-
ered as a valid dimensionality reduction or feature extraction and then it can be used as a generalized marker to 
represent the input (the 10 biomarkers).

The structure of this autoencoder is presented in Fig. 1. Ten clinical biomarkers were used as the inputs and 
outputs to train the final autoencoder. All activation functions were set to be sigmoid functions for nonlinear 
transformation. Initially, considering the sample size and degree of freedom (decided by the number of parame-
ters to be estimated), we set up a range for the number of layers and neurons. The specific numbers of layers and 
neurons were finally determined by greedy search, as well as other hyper-parameters, such as the learning rate 
and batch size.

After the better dimensionality reduction method was identified, it was used to extract the single biomarker of all 
cases. This single general marker is named as the general chronic condition (GCC) in this paper. Receiver operating 
characteristic curves (ROC) were plotted to show the capability of GCC to represent these three chronic conditions.

The relationship of GCC and RFs was then analyzed using multivariate linear regression. This confirmed 
whether the reproductive factors were associated with the GCC, and in other words, whether they are effective 
preliminary screening tools for chronic conditions. Missing data were handled using multiple imputation by 
chained equation (MICE) for 5 times and the results were pooled with Rubin’s rule29.

Statistical analysis was implemented on R 3.5.1. All significance tests were two-tailed and α = 0.05. 
PCA was implemented by prcomp function, and AUC was calculated by pROC package. The autoen-
coder was implemented on Python 3.5.4 using Tensorflow, which is an open-source software library for 
machine learning. Raw dataset and code can be found on Github. (https://github.com/dongdongdongdwn/
Reproductive-factors-as-screening-tools-for-chronic-conditions-in-primary-care-using-a-machine-learn).

Results
Participant characteristics.  As shown in Fig. 2, 11,115 cases with valid data were included initially. 
According to our inclusion and exclusion criteria, 1,656 postmenopause women without self-report chronic con-
ditions were retained for further analysis.

The clinical biomarkers collected from physical and biochemical tests are listed in Table 1 with respect to three 
age groups (years: 41–50, 51–65, >65). The mean values of the BMI were statistically different (p < 0.01) across 
the groups. A similar finding was also apparent for WHR, TC, fasting plasma glucose, OGTT 2 h plasma glucose, 
SBP and DBP. Table 2 describes the distribution of the 5 reproductive factors.

Correlation within clinical biomarkers.  According to the correlation matrix and Hierarchical Clustering 
of the 10 clinical biomarkers (Fig. 3), none of the biomarkers were uncorrelated, which implies that complicated 
relationships and strong redundancy exist across the biomarkers, and dimensionality reduction could potentially 
extract a better representation.

Figure 1.  Structure of the multilayer autoencoder.
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Dimensionality reduction.  Due to the internal correlation within the biomarkers, a dimensionality reduc-
tion method is reasonable to be used to extract representative features. Multilayer autoencoder and PCA were 
performed based on 10-fold cross validation and results were compared with a t-test. As shown in Table 3, AUCs 

Figure 2.  Flow chart of included population.

Biomarkers Total

Age

41–50 (n = 577) 51–65 (n = 554) >65 (n = 525) P value

BMI(kg/m2) 22.54 (2.91) 22.85 (2.56) 23.37 (2.79) 22.98 (3.32) <0.01

WHR 0.86 (0.07) 0.86 (0.06) 0.86 (0.07) 0.87 (0.07) <0.05

TC(mmol/L) 4.46 (0.94) 4.46 (0.94) 4.50 (0.87) 4.55 (1.01) <0.05

TG(mmol/L) 1.73 (1.16) 1.64 (1.13) 1.80 (1.18) 1.73 (1.13) 0.23

HDL-C(mmol/L) 1.30 (0.31) 1.32 (0.27) 1.29 (0.30) 1.32 (0.35) 0.24

LDL-C(mmol/L) 2.75 (0.72) 2.72 (0.70) 2.79 (0.65) 2.72 (0.77) 0.19

FPG(mmol/L) 4.88 (0.90) 4.80 (0.74) 4.99 (0.91) 5.13 (1.21) <0.01

OGTT 2 h PG(mmol/L) 6.50 (2.10) 6.70 (2.18) 6.99 (2.28) 7.11 (2.48) <0.01

SBP(mmHg) 120.39 (13.75) 118.00 (11.55) 124.36 (12.89) 129.39 (16.22) <0.01

DBP(mmHg) 76.50 (11.76) 76.03 (7.24) 77.93 (15.20) 80.67 (16.13) <0.01

Table 1.  Clinical biomarkers by categories of age (N = 1656, mean ± std). (Note: Levene’s Test showed the 
variances were statistically equal between groups (p < 0.05) for each variable, one-way ANOVA was adopted 
to examine the difference between groups; Abbreviation: BMI = body mass index; WHR = waist-hip-ratio; 
TC = total cholesterol; TG = triglyceride; HDL-C = high density lipoprotein cholesterol; LDL-C = low 
density lipoprotein cholesterol; FPG = fasting plasma glucose; OGTT 2 h PG = OGTT 2 hour plasma glucose; 
SBP = systolic blood pressure; DBP = diastolic blood pressure).
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of autoencoder were significantly higher (p value < 0.01) than the PCA for all chronic conditions (pathoglycemia, 
hypertension, dyslipidemia), indicating that autoencoder could produce a more representative variable to express 
the body’s metabolism.

Reproductive Factors n (%)

Age at menarche

≤12 77 (4.65%)

13 387 (23.37%)

14 662 (39.98%)

15 219 (13.22%)

16 129 (7.79%)

≥17 182 (10.99%)

Age at menopause

≤45 137 (8.27%)

46–48 477 (28.8%)

49–50 691 (41.73%)

≥51 353 (21.32%)

Live births

0 200 (12.08%)

1 752 (45.41%)

2 468 (28.26%)

≥3 236 (14.25%)

Abortion history

0 1532 (92.51%)

1 86 (5.19%)

≥2 39 (2.36%)

Reproductive life span

≥40 108 (6.52%)

37–39 272 (16.43%)

34–36 641 (38.71%)

30–33 452 (27.29%)

≤29 182 (10.99%)

Table 2.  The distribution of the reproductive factors (N = 1656).

Figure 3.  Correlation matrix and Hierarchical Clustering of the clinical biomarkers (a) Correlation matrix of 
biomarkers; (b) Hierarchical clustering.
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Subsequently, autoencoder was applied to all cases, translated 10 biomarkers into a single general marker 
(GCC). As shown in Fig. 4, when distinguishing pathoglycemis, hypertension and dyslipidemia respectively, GCC 
showed good discrimination power with an AUC of more than 0.8 (AUC = 0.844, 0.824, 0.805).

Association between the reproductive factors and the GCC.  Finally, the relationship between RFs 
and GCC was explored by multivariate linear regression. As illustrated in Table 4, after adjustment of age, GCC, 
as the dependent variable, was associated with age at menarche (p < 0.05) and reproductive life span (p < 0.01). 
It was also found that GCC was higher with early age at menarche (OR = 0.9976, 95%CI: 0.9961–0.9998) and 
shorter reproductive life span (OR = 0.9895, 95%CI: 0.9926–0.9864). No significant results were found as for age 
at menopause, live births and abortion history.

Discussion
This study explored the relationship between chronic conditions and reproductive factors and demonstrated that 
age at menarche and reproductive life span have potential to be incorporated into screening tools for general 
chronic conditions. The chronic conditions were generalized from relevant clinical biomarkers using one of the 
most advanced non-linear dimensionality reduction techniques in machine learning. Autoencoder outperformed 
a state-of-the-art dimensionality reduction method, PCA, and extracted a more discriminative general marker. To 
our knowledge, there is currently no similar study reported.

Metabolic syndrome (MS) is a traditional way to represent the chronic conditions, but had been given consid-
erable doubt by both the American Diabetes Association and the European Association regarding its value as a 
CVD risk marker as too much critically important information was missing to warrant its designation as a “syn-
drome”30. Meanwhile, it has been shown that MS is insensitive to identifying some chronic metabolic diseases31. 
However, it is well know that these chronic conditions (i.e. pathoglycemia, hypertension and dyslipidemia) are 
characterized by metabolic disorder and show clustering on account of similar risk factors and correlative phys-
iological mechanisms32,33. Hence, we used a machine learning based approach, autoencoder, to generate a repre-
sentative marker to represent these chronic conditions.

Machine learning and artificial intelligence have become emerging techniques in health care for big data 
analysis34,35. Autoencoder was first introduced by Hinton in 2006 and has been verified to outperform traditional 
approaches for dimensionality reduction36 and gained increasing use as an application in medical studies37. In 
this study, the autoencoder was trained with more than 1,000 samples with 10 biomarkers and found to success-
fully extract one single marker, the GCC, to generalize the biomarkers for the chronic conditions. GCC was also 
shown to have the power to discriminate the chronic diseases (AUCs > 0.8). In comparison, the marker that 
was extracted by PCA was not discriminative enough (AUCs < 0.7). This could be interpreted by the nonlinear 
expressiveness of multilayer autoencoder36 which derives from its multiple hidden layers and nonlinear activa-
tion functions38. The improved nonlinear reconstruction of autoencoder over PCA has also been verified and 
explained by other researchers39,40. In addition, it is well known that a multilayer autoencoder requires more 
computation than PCA, however, due to the limited sample size (N = 1,656), these two methods did not show 
apparent difference in the computation time.

Via the multivariate linear regression, earlier age at menarche and shorter reproductive life span have been 
found to be associated with chronic conditions. In terms of age at menarche, our findings are in accordance 
with numbers of studies in which females with early age at menarche are at higher risk of chronic diseases. A 
recent study on Chinese elderly women (age = 70.39 ± 6.21) reported that women with metabolic syndrome had 
younger menarche age, higher gravidity and parity41. Additionally, in a multicenter case control study, Lecinana 
and his colleagues determined that very early exposure onset (age < 13) may do harm to body metabolism func-
tion42. Generally, adulthood adiposity is considered as potential mediator43. Apart from that, the association 
between reproductive life span and the risk of chronic conditions is also supported by relevant studies and could 
be interpreted by the protective effect of estrogen20. In terms of the age at menopause, currently there is not a uni-
form conclusion as some studies have not found any relationship44,45 whereas some have46,47. Mechanistic studies 
have demonstrated beneficial effects of estrogen on insulin secretion and glucose homeostasis. Meanwhile, some 
researchers believe the effect on TC is a result of a decrease in serum estradiol48 and a decrease in the activity of 
LDL-C receptors49. There is also an assumption that insulin resistance is associated with pregnancy and parturi-
tion50,51. However, after multivariable adjustment, we did not observe any such association. Besides, some spe-
cific reproductive conditions, such as polycystic ovary syndrome (PCOS), are associated with insulin resistance52 
and secondary hyperandrogenism53. Lagana and his colleagues also found that insulin sensitizers could improve 
the PCOS symptoms54, which hints that additional RFs could benefit the chronic conditions screening. In sum, 
despite the fact that the relationship between RFs and chronic conditions could not be interpreted by a single 
factor, RFs do have strong associations with chronic conditions.

Autoencoder PCA p value

Pathoglycemia 0.827 (0.814–0.838) 0.569 (0.560–0.579) <0.01

Hypertension 0.809 (0.794–0.821) 0.662 (0.651–0.674) <0.01

Dyslipidemia 0.801 (0.788–0.813) 0.674 (0.669–0.679) <0.01

Table 3.  Comparison of the discrimination power (AUC) of extracted factors by autoencoder and PCA. (Note: 
AUCs with 95% CI are reported, t-test is used to examine the statistical difference).
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Low cost disease detection models are of great importance to reduce the health economic burden, and 
especially to benefit developing countries55. High accessibility and low cost are outstanding advantages of RFs. 
Furthermore, there are studies that have shown that the validity and reproducibility of self-reported RFs are 
good56. Therefore, RFs have potential as screening tools for chronic conditions and could improve current screen-
ing guidelines.

A number of important limitations need to be considered. First, this is a cross-sectional study and hence it 
cannot infer causality. Second, this study only tested the possibility that RFs can be incorporated into a screen-
ing tool and did not give the actual sensitivity and specificity of RFs to screen for chronic conditions. In terms 
of further research, a structured screening tool should be developed and externally validated. Third, although 
not included in the current study, uric acid and HbA1c are also crucial biomarkers for chronic conditions and 
it is important that future research takes them into account. Last, interpretability is always a key concern when 
applying machine learning to medical data analysis. Many advanced methods have been proposed to unfold the 
black box of neuron networks. In future study, we hope to focus on this specific question and explore the GCC 
more comprehensively.

To conclude, autoencoder performed well in the dimensionality reduction of clinical biomarkers, demonstrat-
ing its potential in further medical data process. Women with earlier age at menarche and shorter reproductive 
life span are more likely to suffer from chronic conditions. Due to high accessibility and effectiveness, RFs show 
potential to be included in preliminary screening tools for general chronic conditions in clinical practice and 
could enhance current screening guidelines.

Data availability
The original data is not currently available online but can be requested in machine-readable format from the 
corresponding author on reasonable request.
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Figure 4.  Discrimination power of GCC for different chronic conditions Area under ROC curve is adopted. 
The optimal thresholds to distinguish positive and negative cases were presented.

Independent 
variables OR p

OR 95% CI

Lower Upper

Age at menarche 0.9976 0.0190* 0.9961 0.9998

Age at menopause 1.0026 0.0593 1.0015 1.0036

Reproductive life span 0.9895 0.0000* 0.9926 0.9864

Live births 1.0016 0.2088 0.9991 1.0041

Abortion history 0.9995 0.8846 0.9932 1.0059

Age 1.0000 0.4721 1.0000 1.0000

(Constant) 0.9883 0.7012 0.9303 1.0498

Table 4.  Relationship between RFs and GCC (N = 1656). (Note: Multivariate linear regression with forward 
stepwise is used. *p < 0.05).
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