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Abstract Bimodal gene expression by genetically identical cells is a pervasive feature of

signaling networks and has been suggested to allow organisms to hedge their ‘bets’ in uncertain

conditions. In the galactose-utilization (GAL) pathway of Saccharomyces cerevisiae, gene induction

is unimodal or bimodal depending on natural genetic variation and pre-induction conditions. Here,

we find that this variation in modality arises from regulation of two features of the pathway

response: the fraction of cells that show induction and their level of expression. GAL3, the

galactose sensor, controls the fraction of induced cells, and titrating its expression is sufficient to

control modality; moreover, all the observed differences in modality between different pre-

induction conditions and among natural isolates can be explained by changes in GAL3’s regulation

and activity. The ability to switch modality by tuning the activity of a single protein may allow rapid

adaptation of bet hedging to maximize fitness in complex environments.

Introduction
Non-genetic heterogeneity is a pervasive feature of gene expression and cellular signaling

(Kærn et al., 2005; Balázsi et al., 2011; Raj and van Oudenaarden, 2008). Bimodal responses,

where cells in an isogenic population adopt one of two distinct states, are particularly important for

microbes coping with fluctuating environments (Grimbergen et al., 2015; Veening et al., 2008) and

cells of multicellular organisms differentiating into discrete types (Xiong and Ferrell, 2003;

MacArthur et al., 2009).

The galactose-utilization (GAL) pathway in Saccharomyces cerevisiae is a well-characterized

bimodal response and a classic model of microbial decision-making (Johnston, 1987; Bhat, 2008).

Bimodality of GAL gene expression has been attributed to bistability arising from positive feedback

through the Gal1p kinase and the Gal3p transducer (Venturelli et al., 2012; Acar et al., 2005). Per-

turbations of many of the components of the GAL pathway such as the Gal2p permease, the Gal4p

activator, and the Gal80p repressor have been found to affect quantitative features of the GAL

response (Acar et al., 2005; Hawkins and Smolke, 2006; Acar et al., 2010; Ramsey et al., 2006)

and in principle could modify the feedback in the system and thus affect whether the response is

bimodal or unimodal. However, only changes in Gal1p and Gal3p Venturelli et al., 2012;

Acar et al., 2005 have been shown to affect modality.

Our existing insight into modality in the GAL system comes almost entirely from measuring one

pathway phenotype, the induced fraction, under one environmental perturbation, galactose titration

(Venturelli et al., 2012; Acar et al., 2010; Venturelli et al., 2015; Peng et al., 2015; Lee et al.,

2017). The few studies that have deviated from this experimental approach have resulted in obser-

vations that raise new questions. For example, the GAL response was found to be unimodal or

bimodal depending on the carbon source prior to encountering galactose (Biggar and Crabtree,
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2001); the molecular basis of this behavior is unknown. In our own previous work that focused on dif-

ferences in GAL genes induction in mixtures of glucose and galactose between natural isolates

(Lee et al., 2017; Wang et al., 2015), we noted that some strains showed a bimodal response while

others had a unimodal response (Lee et al., 2017). These differences provide an opportunity to dis-

sect the genetic basis underlying the differences in modality.

In this work, we confirm and expand the observation that the pattern of GAL pathway induction

can be either unimodal or bimodal depending on genetic background and pre-induction conditions.

A phenomenological model of GAL induction led us to a conceptual framework for variation in

modality that identified the relative thresholds of induced fraction and expression level regulation as

the two critical factors. Using this simple framework, we can explain the variation in modality we

observed and predict how new perturbations would affect modality. Finally, we show that both natu-

ral variation and pre-induction conditions achieve changes in modality by tuning the expression and

activity of a single signaling protein in the GAL pathway. These results reveal a simple evolutionary

mechanism by which organisms can shape their responses to the environment, and suggest that

modality is a highly adaptable feature of a signaling response.

Results

Genetic and environmental factors affect the modality of the GAL
response
To study what causes the GAL response to be unimodal in some strain backgrounds and bimodal in

other strain backgrounds, we measured the expression of a GAL1 promoter driving YFP (GAL1pr-

YFP) in 30 geographically and ecologically diverse yeast strains (Wang et al., 2015; Liti et al., 2009;

Cromie et al., 2013) grown in different combinations of glucose and galactose (Figure 1A). We

titrated glucose concentration in a constant concentration of galactose and observed that some dis-

played bimodal population distributions (Figure 1B, ‘DBVPG1106’) while others displayed unimodal

population distributions with a glucose-dependent GAL1 expression level (Figure 1B, ‘BC187’, Fig-

ure 1—figure supplement 1; Ricci-Tam et al., 2021). Both unimodal and bimodal population distri-

butions were stable even when cells were kept in the same environment for 24 hr (Figure 1—figure

supplement 2), suggesting that the difference in modality is a steady-state phenomenon. In addi-

tion, we studied what causes the modality of the GAL response to change based on growth history.

Biggar and Crabtree, 2001, previously showed that populations of the laboratory strain S288C had

a unimodal GAL induction when grown with raffinose as a carbon source prior to encountering mix-

tures of glucose and galactose, but a bimodal response when mannose was used as the initial carbon

source (Figure 1C). In contrast to our results when titrating galactose in the presence of glucose, all

30 of our natural isolates showed bimodal responses when we titrated the galactose concentration

in the absence of glucose (Figure 1D, Figure 1—figure supplement 3). These observations suggest

that glucose plays a critical role as a second input to the bistable GAL pathway that can cause a

qualitative change in the modality of GAL pathway induction.

Differences in induction and expression level regulation can explain the
variation of modality
In the absence of galactose, Gal80p binds the transcription factor Gal4p and keeps it in an inactive

state (Lue et al., 1987; Wu et al., 1996). In the presence of galactose, Gal3p binds Gal80p, releas-

ing Gal4p from the Gal80p-Gal4p complex, and allowing Gal4p to drive the transcription of a num-

ber of GAL genes. The initiation of transcription of the galactose sensors Gal1p and Gal3p by Gal4p

creates a positive feedback loop, and this is believed to be the mechanism underlying the bistability

of the system (Venturelli et al., 2012).

While glucose can completely inhibit the GAL response, its role in determining the modality of

the response has been poorly explored. Glucose has two inhibitory effects on the GAL pathway. (1)

It indirectly decreases the intracellular concentration of galactose through competition for binding

to transporters (Escalante-Chong et al., 2015). This in turn decreases the amount of active Gal3p

and thereby affects the fraction of cells that induce the GAL pathway (induced fraction) (Ricci-

Tam et al., 2021). (2) It directly increases the activity of the transcriptional repressor Mig1p which

regulates GAL4 expression and thereby decreases the expression of GAL genes (induction level)

Palme, Wang, et al. eLife 2021;10:e69974. DOI: https://doi.org/10.7554/eLife.69974 2 of 16

Research article Computational and Systems Biology

https://doi.org/10.7554/eLife.69974


(Ricci-Tam et al., 2021; Figure 2A). Because the system is bimodal in pure galactose, glucose can-

not drive unimodality solely through the transporter-dependent indirect effect, leading us to suspect

that the Mig1p-dependent mechanism is responsible.

We built a phenomenological model of the GAL pathway to determine whether independently

tuning the indirect and direct effects of glucose are sufficient to change modality. Based on our

measurements of the pathway response (Ricci-Tam et al., 2021), we mathematically described the

indirect and direct effects of glucose as Hill functions that decrease with increasing glucose concen-

tration, with the final induction profiles being a simple product of these composite functions. To sim-

ulate a range of population induction profiles, we generated population distributions for the

induced fraction and induced level from a normal distribution whose standard deviation is derived

from GAL gene expression measurements (Figure 2—figure supplement 1;

Materials and methods). We then varied the glucose threshold for the induced level while keeping

the glucose threshold for the induced fraction constant (Figure 2B) or the glucose threshold for the

induced fraction while keeping the glucose threshold for the expression level constant (Figure 2C).

Indeed, changing either can switch the population behavior between unimodal and bimodal. In both

cases, the pathway is bimodal when the glucose inhibition threshold for the induction level is less

than the glucose inhibition threshold for the induced fraction.

Figure 1. Genetic and environmental factors change galactose-utilization (GAL) modality. (A) Experimental workflow. Natural isolates of yeast tagged

with a fluorescent reporter of GAL1 (GAL1pr-YFP) expression were first grown in synthetic (S) medium with a pre-induction carbon source for 16 hr, then

switched to S medium with mixtures of glucose and galactose. After 8 hr, GAL1 expression was analyzed by flow cytometry. (B–C) GAL induction of two

natural isolates (DBVPG1106 and BC187) or a lab strain (S288C) in mixtures of glucose and galactose after pre-induction growth in raffinose or

mannose. Glucose concentration was titrated in twofold steps from 0.0039% to 1% while galactose concentration was kept constant at 0.25%. Top:

Induction profiles of two natural isolates. Each plot is composed of nine histograms with color intensities corresponding to the density of cells with a

given YFP abundance. Galactose concentration was titrated in twofold steps from 1% to 0.0039%. Bottom: Blow out of two histograms of YFP level

normalized by side scatter (SSC) at a single concentration of glucose and galactose (see Figure 1—figure supplement 4 for histograms of all

conditions). Since the GAL pathway responds to the ratio of galactose and glucose (Escalante-Chong et al., 2015), increasing the glucose

concentration while keeping the galactose concentration constant simultaneously decreases GAL activation and increases glucose repression. All

measurements are representative examples of at least two independent repeats. Repeat measurements are plotted in Figure 1—figure supplement 5.

(D) GAL induction of two natural isolates in different galactose concentrations after pre-induction growth in raffinose.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Galactose-utilization (GAL) induction of natural isolates in different glucose and galactose concentrations.

Figure supplement 2. Galactose-utilization (GAL) induction profiles of 14 natural isolates (panel titles) with unimodal induction behavior after 8 or 24 hr
in the same environment.

Figure supplement 3. Galactose-utilization (GAL) induction of natural isolates in different galactose concentrations.

Figure supplement 4. Histograms of the glucose gradient heatmaps plotted in Figure 1B and C.

Figure supplement 5. Reproducibility of induced fraction (blue) and induced mean (green) measurements of different 30 natural isolates (panel titles).
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Figure 2. Phenomenological modeling of galactose-utilization (GAL) induction. (A) Schematic description of the

GAL pathway with indirect or direct inhibition by glucose. (B–C) Modeling results for varying expression level

regulation with constant induced fraction regulation (B) or varying induced fraction regulation with constant

expression level regulation (C). The induced fraction and mean induced level curves were chosen to be Hill

functions based on empirical data (e.g. Figure 1—figure supplement 5). To create a population distribution,

normal distributions were defined around the mean (log) induced level and a constant uninduced expression level,

with standard deviations determined by fitting to observed distributions (Figure 2—figure supplement 1). The

overall expression distribution is the induced-fraction-weighted sum of induced and uninduced distributions. For

the uninduced subpopulation, the relative expression level was set to 10�3. Model results are represented by

histograms at nine different glucose and galactose combinations. The intensity of the color on the plot

corresponds to the density of cells with a given induction value. This analysis can be extended to a continuous

range of induced fraction and induced level behaviors (Figure 2—figure supplement 2).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Fit of the standard deviation to the mean induction level.

Figure supplement 2. Comparison of a wide range of induced fraction and induced level behaviors.
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Differences in induction and expression level regulation predict the
modality of natural isolates
To analyze whether natural genetic variation could change modality by altering the induced fraction

or induction level, we analyzed these features in our 30 natural yeast isolates. First, we determined

the induced and uninduced subpopulations by comparing GAL reporter distributions to the distribu-

tion of an uninduced sample (as in Peng et al., 2015, Figure 3—figure supplement 1). From these

two subpopulations, we then calculated two summary metrics for each strain’s behavior: E10

(‘expression level threshold’), the glucose concentration where the GAL1 expression level of the

induced subpopulation reaches 10% of its level in pure galactose (Figure 3A), and F90 (‘induced frac-

tion threshold’), the glucose concentration where 90% of cells are in the induced subpopulation

(Figure 3B). Our modeling suggests that determining the E10 and F90 should be sufficient to predict

whether the induction behavior is bimodal or unimodal. To test this hypothesis, we used the mea-

sured E10 and F90 as inputs into phenomenological model and computed modality. Overall, for both

bimodal and unimodal strains, the experiments and models are in good agreement (Figure 3C and

D, Figure 3—figure supplements 2–3). One minor discrepancy is that metrics from unimodal strains

often predict a narrow range of bimodality in our model. We believe there are two factors that might

explain the difference between the experimental data and the model predictions. First, to measure

the F90, there must be measurable gene induction. Therefore, the calculated F90 is a lower bound for

the actual value of F90 in unimodal strains; in many cases, the calculated F90 will be higher than the

actual F90. If the calculated F90 for simulations of unimodal strains is increased by even a factor of 2,

the discrepancy between the behaviors disappears (Figure 3—figure supplement 4). Second, the

slopes of the induced fraction curves could also be subject to variation and this could affect modal-

ity. Increasing the steepness of the induced fraction curve or induced level curves by increasing the

Hill coefficients in our models can make simulations more unimodal (Figure 3—figure supplement

5). Indeed, some natural isolates appear to have steeper induction curves (Figure 3—figure supple-

ment 6). Overall, however, our model correctly predicts and provides a useful conceptual lens for

understanding bimodality of GAL pathway induction across natural isolates.

We next scanned the parameters for our phenomenological model using a wide range of sum-

mary metrics and slopes to delimit a phase diagram of GAL induction modality. We then compared

this phase diagram to the experimental data from natural isolates (Figure 3E). The modality of the

natural isolates agrees well with their predicted modality in the phase diagram, supporting our

hypothesis that the E10 and F90 measurements capture the important biological features that deter-

mine the modality of a strain.

Our phenomenological model gives us a potential molecular explanation for unimodality: Mig1p

activity leads to unimodality by inhibiting GAL4 expression in the regime where Gal3p activation is

still strongly dependent on glucose and galactose. Therefore, a strong prediction of the model is

that removing Mig1p regulation should restore bimodality in unimodal strains. To test this predic-

tion, we analyzed the induction profile of a mig1D strain. Deleting MIG1 removes the glucose depen-

dent regulation of GAL4 expression level and thus the E10 of the deletion strain is increased

compared to the wild-type strain (Figure 3F). As predicted, deleting MIG1 converts the strain from

unimodal to bimodal. In addition, the observed F90 value for the bimodal mig1D strain is higher than

that for the unimodal wild type. This supports our hypothesis that Mig1p-dependent repression con-

ceals the actual F90 value of unimodal strains and that the observed F90 value of unimodal strains is a

lower bound for the actual F90 value.

Differences in induction regulation explain the history dependence in
modality
It has previously been reported that pre-induction growth conditions can affect the modality of GAL

induction (Biggar and Crabtree, 2001). This offers another opportunity to test the predictions from

our modeling framework. To see how metabolic history affects F90 and E10, we grew 13 natural iso-

late strains in mannose, raffinose, acetate, or glycerol prior to transferring them into mixtures of glu-

cose and galactose (Figure 4—figure supplement 1). A range of different behaviors were observed,

which could be broken into two categories of responses. The first category is strains that are unimo-

dal in some pre-induction conditions but bimodal in others (Figure 4A and C). The second category

is strains that do not change modality based on the tested pre-induction conditions; the strains are
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Figure 3. Experimental validation of model predictions. (A) Expression level metric (E10). GAL induction is

measured in 2% galactose to determine the maximal expression level. The E10 is the glucose concentration at

which the expression level of the induced subpopulation reaches 10% of the expression level in 2% galactose in

the absence of glucose. (B) Induced fraction metric (F90). The induced fraction for each strain is calculated as the

fraction of cells with an expression level that is outside the range of an uninduced population grown in 2% glucose

(Figure 3—figure supplement 1). The F90 is the glucose concentration where the induced fraction reaches 90%.

(C–D) Modality prediction based on induction metrics. In the phenomenological model, the position of the

induced fraction and induced level functions are determined by the F90 and the E10, respectively. (E) F90 and E10
values of a panel of 30 natural isolates. Values correspond to the mean of two to five replicates. Modality was

determined by comparing the fit of the data to a single or double Gaussian model (See Materials and methods).

Background colors correspond to predicted regimes for unimodal and bimodal strains. Simulations with diverse

combinations of F90 and E10 values as well as different slopes for the induced fraction and induced level curves

delineate regimes of unimodal and bimodal behaviors. The overlap represents an ambiguous regime where both

Figure 3 continued on next page
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always bimodal or always unimodal in all pre-induction carbon sources tested here (Figure 4E). As

predicted by the model, pre-induction conditions led to changes in F90 and/or E10 that should

change modality; all our experimental results agree with the predictions from our phase diagram of

GAL induction (Figure 4B,D and F). While changing either F90 or E10 in model is sufficient to change

modality, we found that in response to changes in pre-induction carbon the change in F90 was con-

siderably larger than the change in E10 (8.6 versus 1.8, respectively; Figure 4—figure supplement

2). Our phenomenological model predicts that the magnitude of the changes in F90 alone are suffi-

cient to explain the observed changes of modality.

Differences in GAL3 expression explain the history dependence in
modality
To determine how pre-induction carbon source modulates F90, we measured the expression of GAL

genes in pre-induction conditions using transcriptional reporters (Figure 5A). We found that GAL

genes are down-regulated in carbon sources that lead to bimodal induction (mannose) and up-regu-

lated in carbon sources that lead to unimodal induction (acetate, glycerol). Among all GAL genes,

the expression levels of GAL3 and GAL4 show the strongest fold change between the carbon sour-

ces tested (Figure 5A).

We hypothesized that GAL3 was more likely than GAL4 to be the dominant factor due to its high

dynamic range of expression (Figure 5A) and prior evidence that GAL3 can have a large effect on

the GAL decision (Acar et al., 2010). We therefore analyzed the regulation of GAL3 by a range of

pre-induction carbon sources in nine natural isolates using a transcriptional reporter for the

GAL3S288C promoter. We found that in each strain the GAL3 expression level in a pre-induction con-

ditions generally correlates with the modality observed later (Figure 5B).

To test if GAL3 expression prior to induction is the key determinant of modality, we used a tetra-

cycline-inducible promoter to control the expression of GAL3 directly. We predicted that forcing a

change in GAL3 expression while keeping the pre-induction carbon the same should change modal-

ity. Conversely, changing the pre-induction carbon without changing GAL3 expression should not

change modality.

Indeed, we found that the pre-induction level of Gal3p, not the pre-induction carbon, is critical

for setting modality. For the laboratory strain S288C, pre-induction growth in mannose leads to low

GAL3 expression and a bimodal induction profile, while pre-induction growth in raffinose leads to

higher GAL3 expression and a unimodal induction profile (Figures 4A and 5A). When we overex-

pressed GAL3 during pre-induction growth in mannose using tetracycline induction, we saw an

increase in the induced fraction and a loss of bimodality (Figure 5C). Thus, the GAL3 concentration

pre-induction is sufficient to set the modality in this strain background. Similarly, artificially setting

the GAL3 level of mannose pre-induction cultures to that of a raffinose pre-induction culture con-

verted the induction profiles to one similar to a raffinose pre-induction culture (Figure 5C,II and IV).

In addition to showing unimodal induction after raffinose pre-induction, this strain also shows

Figure 3 continued

unimodal and bimodal behaviors are possible. Standard deviations of the F90 and E10 measurements are plotted in

Figure 3—figure supplement 7. (F) Effect of mig1D on GAL1 induction profiles.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Identification of the induced subpopulation.

Figure supplement 2. Experimental and simulated galactose-utilization (GAL) induction profiles of bimodal
strains.

Figure supplement 3. Experimental and simulated galactose-utilization (GAL) induction profiles of unimodal
strains.

Figure supplement 4. Experimental and simulated galactose-utilization (GAL) induction profiles of unimodal
strains with higher F90.

Figure supplement 5. Experimental and simulated galactose-utilization (GAL) induction profiles of unimodal
strains with varying steepness.

Figure supplement 6. Fitted values for the n parameter.

Figure supplement 7. Effect of the threshold for the size of the smaller subpopulation on the modality metric.

Figure supplement 8. F90 and E10 values of a panel of the 30 natural isolates in Figure 3.
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unimodal behavior after pre-induction in acetate or glycerol (Figure 4A). Next, we titrated GAL3 in

a strain where the endogenous GAL3 gene was deleted to allow for constant GAL3 expression

below the wild-type level. As predicted, when pre-induction GAL3 expression in these sugars was

low, we saw bimodal induction almost identical to that seen with mannose pre-induction

(Figure 5D). Pre-induction GAL3 concentrations also set the induced fraction with almost no

Figure 4. Metabolic history changes modality. (A) History dependence of induction profiles. Induction profiles of S288C in mixtures of glucose and

galactose after pre-induction growth in different carbon sources for 16 hr. (B) F90 and E10 values for isolates that are unimodal after growth in raffinose

and bimodal after growth in mannose. (C) Induction profiles of Y12-WashU after growth in different carbon sources for 16 hr. (D) F90 and E10 values for

isolates that are bimodal after growth in raffinose and unimodal after growth in either acetate or glycerol. (E) Induction profiles of YPS1009 after growth

in different carbon sources for 16 hr. (F) F90 and E10 values for isolates that are always unimodal or bimodal. All measurements are representative

examples of two independent repeats (compared in Figure 4—figure supplements 3–4).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Galactose-utilization (GAL) induction of natural isolates in different glucose and galactose concentrations after growth in
different carbon sources.

Figure supplement 2. Fold change between the highest and lowest E10 and F90 values after growth in different pre-induction conditions for all isolates
shown in Figure 4—figure supplement 1.

Figure supplement 3. Reproducibility of induced fraction (blue) and induced mean (green) measurements of 14 natural isolates (left titles) after growth
in different pre-induction carbon sources (top titles).

Figure supplement 4. Reproducibility of F90 and E10 measurements.
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dependence on the pre-induction carbon source (Figure 5D). We conclude that regulation of GAL3

expression in pre-induction conditions is the major driver of history dependence in the modality of

GAL induction.

Natural variation in GAL3 alleles underlies the genetic changes in
modality
The central role of GAL3 expression in setting the modality of induction suggests that natural varia-

tion in GAL3 alleles could be responsible for the observed differences in modality between isolates

(Figure 1B). Previously, we showed that polymorphisms in the GAL3 gene explain most of the natu-

ral variation in the decision to induce the GAL pathway (i.e. the F90) (Lee et al., 2017), suggesting

that allele swaps of the GAL3 ORF should alter the F90 of the strain, which in some cases would be

Figure 5. Pre-induction GAL3 levels determine the modality of induction profiles. (A) Expression of galactose-utilization (GAL) genes in different pre-

induction carbon sources in S288C as determined by fluorescence of GAL promoter-YFP protein transcriptional reporter strains. (B) Effect of pre-

induction growth in different carbon sources on the expression of a GAL3S288C reporter in S288C and nine natural isolates. Colors correspond to the

modality of the induction profile of these strains in the given pre-induction carbon source. (C) Left: Effect of GAL3 overexpression during pre-induction

growth in mannose. Connected points correspond to a doxycycline titration series for a S288C TetO7pr-GAL3 strain. Right: Complete induction profiles

of S288C in mannose (I) or raffinose (II) and S288C TetO7pr-GAL3 in mannose at two concentrations of doxycycline that lead to GAL3 expression levels

that bracket the expression level of GAL3 from a raffinose pre-induction culture (III, IV). (D) Left: Effect of synthetic GAL3 expression in a Dgal3 during

pre-induction growth in different carbon sources. Connected points correspond to a doxycycline titration series in different carbon sources for a S288C

Dgal3 TetO7pr-GAL3-mScarlet strain. Right: Complete induction profiles of S288C Dgal3 TetO7pr-GAL3-mScarlet after pre-induction growth in different

carbon sources with constant GAL3 expression.
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enough to switch the modality of induction. To test this prediction, we determined the modality of a

set of 30 allele swap strains comprised of 10 GAL3 alleles in three genetic backgrounds. The experi-

mentally determined modality of all allele swap strains agrees with the expected modality

Figure 6. Allele swaps of GAL3 change modality. (A) F90 and E10 values for a panel of allele swaps (10 GAL3 alleles

in three different genetic backgrounds). Strains that never reach an induced fraction of 90% are not shown here.

Black outlines denote the wild-type strains. All measurements are representative examples of two independent

repeats (compared in Figure 6—figure supplements 4–5). (B–E) Effect of GAL3 allele swaps on modality. (Top)

Induction profiles of (B–D) wild-type isolates or (E) S288C GAL3YPS606. (Middle) Induction profiles of (B–D) GAL3

allele swaps and (E) GAL3 promoter or GAL3 coding regions (CDS) swaps. (Bottom) Effect of the perturbation on

F90 and E10. Arrows start at the values of the wild-type or S288C GAL3YPS606 strains and end at the values of the

perturbed strain.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Effect of GAL1 and GAL4 allele swaps.

Figure supplement 2. Effect of GAL1 and GAL4 allele swaps in the GAL3 allele swap background.

Figure supplement 3. Reproducibility of induced fraction (blue) and induced mean (green) measurements of 10
GAL3 alleles (left titles) in three different strain backgrounds (top titles).

Figure supplement 4. Galactose-utilization (GAL) induction of allele swap strains in different glucose and
galactose concentrations.

Figure supplement 5. Reproducibility of F90 and E10 measurements.
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(Figure 6A, Figure 6—figure supplement 1). For example, replacing the GAL3 allele of two unimo-

dal strains, BC187 and S288C, with the GAL3 allele of any of the bimodal strains is sufficient to

change the induction profiles from unimodal to bimodal (Figure 6B and C). In agreement with our

model, the F90 in these strains decreases sufficiently to convert strains from unimodal to bimodal.

Replacing the GAL3 gene of the bimodal strain YJM978 with the alleles of unimodal strains does not

change the modality (Figure 6D). This is also in agreement with the model which predicts that the

magnitude of the increase in F90 caused by allele swaps in the YJM978 strain background is insuffi-

cient to change modality (Figure 6D). Swapping the alleles of GAL1, the second galactose sensor,

or GAL4, the transcription factor that activates GAL gene expression, does not affect modality (Fig-

ure 6—figure supplement 2). Similarly, swaps of GAL1 or GAL4 alleles in GAL3 allele swap strains

have no additional effect on modality (Figure 6—figure supplement 3), suggesting that the role of

GAL3 in setting modality can evolve independently of other GAL genes.

To further explore the variations in modality among the natural isolates, we analyzed the contri-

bution of promoter and coding sequence variation. We found that SNPs (single nucleotide polymor-

phisms) in either promoter or coding regions (CDS) are sufficient to change modality (Figure 6E–F).

For example, S288C with GAL3YPS606 is unimodal, but replacing the YPS606 promoter in this strain

with the YJM421 promoter leads to bimodal induction (Figure 6E). Similarly, BC187 with GAL3NC-02

is unimodal, but replacing the NC-02 coding sequence with the YJM978 coding sequence leads to

bimodal induction (Figure 6F). The mechanisms by which promoter and CDS changes are able to

change the modality will be the subject of future work.

Discussion
In mixtures of glucose and galactose, the response of the GAL pathway in a population of yeast cells

can be either unimodal or bimodal depending on their evolutionary history and their current environ-

mental conditions. Here, we show that the modality of GAL induction in different strains depends on

the relationship between the glucose effects on the induced fraction and the expression level. Glu-

cose inhibits the expression of GAL genes, preventing the positive feedback that is crucial for bist-

ability. In general, any input to a pathway that can conditionally create or eliminate feedback has the

potential to modulate bistability. Since many signaling responses are controlled by multiple inputs,

our findings imply that other unimodal responses could be bimodal in different conditions and vice

versa.

Bimodality in the GAL response is considered a bet-hedging strategy where a fraction of the pop-

ulation prepares for glucose depletion by inducing the GAL pathway while other cells maximize their

current growth and do not induce the pathway (Venturelli et al., 2015; Wang et al., 2015). This

heterogeneity helps populations deal with uncertain, fluctuating environments. Bet-hedging is

advantageous in the GAL system when the switching rate between glucose and galactose environ-

ments is high (Acar et al., 2008). Indeed, cells evolve bimodality in MAL gene expression when they

are continuously switched between glucose and maltose (New et al., 2014). Because cells can some-

times be in environments with a high switching rate and other times in environments with a low

switching rate, a strategy that allows the extent of bet-hedging to be tuned could be optimal. In this

work, we show strains can tune the amount of bimodality both physiologically, based on their meta-

bolic history, and genetically, presumably based on the environmental statistics that different natural

isolates have faced in their evolutionary history. Further work will be needed to determine the evolu-

tionary consequences of tunable bimodal responses such as the ones we characterize here.

Previous work on cell-to-cell heterogeneity has typically emphasized the complex genetic archi-

tecture of the pathways involved (Ansel et al., 2008; Fehrmann et al., 2013). In contrast, the physi-

ological and genetic variation in modality in the GAL pathway can be explained by changes in the

behavior of a single gene. Swapping the GAL3 alleles of natural isolates can turn a unimodal strain

into a bimodal strain. We show that the environment tunes the expression level of GAL3, and this

tuning is sufficient to change the modality of GAL induction (Figure 6 and Figure 6—figure supple-

ment 1). Circuit designs such as these, where a single gene controls modality, may have been

selected in evolution, since they allow cells to easily adapt their behavior on both physiological and

evolutionary timescales.

The control of GAL pathway modality by mannose, raffinose, glycerol, and acetate suggests an

additional layer of metabolic regulation that has been largely missed in previous analyses of this
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pathway. These findings show that factors other than canonical glucose catabolite repression can be

important in determining the inducibility of GAL genes, consistent with our findings that many

mutants outside the GAL pathway can have a significant effect on GAL response (Hua and Springer,

2018). The fact that pre-induction carbon sources mostly affect F90, just as GAL3 allele swaps do,

suggests that the GAL3 positive feedback loop may be a nexus of regulation of GAL genes by multi-

ple signals in the cell. In future studies, understanding the metabolic regulation of this well-studied

system could give insight into the connections between metabolism and metabolic signaling in a

variety of systems.

Materials and methods

Strains and media
Strains were obtained as described in Lee et al., 2017; Wang et al., 2015. An initial set of 36 strains

were assayed in a glucose gradient (1–0.0039%) with a constant background of 0.25% galactose.

Strains DBVPG6765, CLIB324, L-1528, M22, W303, YIIC17-E5 were excluded from downstream anal-

ysis due to poor growth in our media conditions. Strain 378604X was also excluded due to a high

basal expression phenotype that was an outlier in our collection. The genetic basis of this behavior is

likely an interesting topic for follow-up studies. All experiments were performed in synthetic minimal

medium (‘S’), which contains 1.7 g/L yeast nitrogen base (YNB) (BD, Franklin Lakes, NJ) and 5 g/L

ammonium sulfate (EMD). In addition, D-glucose (EMD, Darmstadt, Germany), D-galactose (Millipor-

eSigma, St. Louis, MO), mannose (MilliporeSigma), glycerol (EMD), acetate (MilliporeSigma), and/or

raffinose (MilliporeSigma) were added as a carbon source. Cultures were grown in a humidified incu-

bator (Infors Multitron, Bottmingen, CH) at 30˚C with rotary shaking 999 rpm (500 mL cultures in 1

mL 96-well plates).

Flow cytometry
Cells were struck onto YPD agar from �80˚C glycerol stocks, grown to colonies, then inoculated

from colony into YPD liquid and cultured for 16–24 hr. Then, cultures were inoculated in a dilution

series (1:200 to 1:6400) in S + 2% pre-induction carbon source medium. The pre-induction cultures

were incubated for 16–20 hr, and then their optical density (OD600) was measured on a plate reader

(PerkinElmer Envision). The outgrowth culture with OD600 closest to 0.1 was selected for each

strain, and then washed twice in S (with no carbon sources). To determine expression levels in pre-

induction conditions, washed cells were then diluted in Tris-EDTA pH 8.0 (TE) in a shallow microtiter

plate (CELLTREAT, Pepperell, MA). For sugar gradient experiments, washed cells were diluted 1:200

into the appropriate sugar in 96-well plates (500 mL cultures in each well) and incubated for 8 hr.

Then, cells were harvested and fixed by washing twice in TE and resuspended in TE before transfer-

ring to microtiter plate for measurement. Flow cytometry was performed using a Stratedigm

S1000EX with A700 automated plate handling system.

GAL3 titration in pre-induction conditions
To titrate GAL3 levels in the presence of the native GAL3 gene, the AGA1 gene was replaced with a

MYO2pr-rtTA-TetO7pr-GAL3 construct in a hoD:GAL1pr-YFP strain. Cells were grown for 16 hr in S

+ 2% mannose as described above, but the medium was supplemented with doxycycline (Millipore-

Sigma) concentrations ranging from 38.9 to 0.0176 mg/mL in 1.5� dilutions steps. To measure the

total GAL3 expression level after pre-induction growth, the AGA1 gene was replaced with a

MYO2pr-rtTA-TetO7pr-YFP construct in a hoD:GAL3pr-YFP reporter strain. After pre-induction

growth in the same dilution doxycycline concentrations, cells were harvested and YFP levels were

determined using flow cytometry as described above.

To titrate GAL3 levels in the absence of the native GAL3 gene, the AGA1 gene was replaced with

a MYO2pr-rtTA-TetO7pr-GAL3-mScarlet construct in a gal3D hoD:GAL1pr-YFP strain. Cells were

grown for 16 hr in S + 2% pre-induction carbon source as described above, but the medium was

supplemented with doxycycline concentrations ranging from 38.9 to 0.0176 mg/mL in 1.5� dilutions

steps. To measure the total GAL3 expression level after pre-induction growth, cells were washed

and mScarlet levels were determined by fluorescence microscopy using a Hamamatsu Orca-R2
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camera (Hamamatsu, Japan) on a Ti Eclipse inverted Nikon microscope (Tokyo, Japan). Microscopy

images were analyzed using U-net (Falk et al., 2019) and custom Python scripts.

Data analysis
Data analysis was performed using custom MATLAB scripts, including Flow-Cytometry-Toolkit

(https://github.com/springerlab/Flow-Cytometry-Toolkit); Springer, 2016.

To determine the modality of GAL induction experiments, a Gaussian function was fitted to the

population distribution for each of the nine sugar combinations. If the degree-of-freedom adjusted

R2 of the fit was less than 0.99, two Gaussian functions were fitted to the data. Distributions were

then determined to be bimodal if the distance between the means of the Gaussians was more than

twice of the highest standard deviation of the Gaussian (as in Venturelli et al., 2012) and the frac-

tion of the smaller Gaussian was higher than 0.15. The modality of induction profiles was mostly

unaffected by changes in this threshold (Figure 3—figure supplement 7). GAL induction experi-

ments or simulations that had a bimodal distribution in at least one combination of glucose and

galactose in all replicates were called bimodal.

Phenomenological model
Induction profiles were simulated from E10 and F90 metrics using functions that describe the induced

fraction and the mean expression level of the induced subpopulations as a function of the glucose

concentration. For the mean induced level, the following function was used:

log10 Mean induced levelð Þ ¼
bE10ð Þn

glucose½ �nþ bE10ð Þn
� 2:5� 3

where b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:6=0:4n
p

converts the glucose concentration where 10% of the maximal expression

level is reached (i.e. the E10) to the glucose concentration where 50% of the maximal expression level

is reached. The function was scaled from �3 to �0.5 to match the range of the experimental data.

To obtain realistic versions for the n constant, this function was fitted to the induced level curves of

natural isolates, the mean fitted n value was extracted for every natural isolate, and the mean of

these values was used for simulations (induced level curve: 1.15, induced fraction curve: 1.69, see

Figure 3—figure supplement 6).

For the induced fraction, the following function was used:

Induced fraction¼
aF90ð Þn

glucose½ �nþ aF90ð Þn

where a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:9=0:1n

p

converts the glucose concentration where 90% of the cells are induced (i.e.

the F90) to the glucose concentration where 50% of the cells are induced. This function was fitted to

the induced level curves of bimodal natural isolates, the mean fitted n value extracted for every natu-

ral isolate, and the mean of these values was used for simulations (Figure 3—figure supplement 6).

For nine concentrations of glucose and galactose, induced level and induced fraction values were

extracted from these curves to generate simulated populations in these conditions. For a total popu-

lation size of 20,000 cells, uninduced and induced subpopulations were generated according to the

induced fraction value. The expression level values of cells were drawn from normal distributions

with the mean expression level of the uninduced subpopulation at a constant level of 10�3 and the

mean expression level of the induced subpopulation determined by the equation above. The stan-

dard deviations of the distributions were determined by fitting a quadratic equation to experimental

standard deviations at different expression levels:

Standard deviation¼�0:2 � log10 Induced levelð Þþ 1:75ð Þ2þ0:4

To delineate possible unimodal and bimodal regimes, GAL induction was simulated using all pos-

sible combinations of 10 different values for E10 and F90 (1, 0.5, 0.25, 0.125, 0.0625, 0.0313, 0.156,

0.0078, 0.0039, 0.0020, 0.0010). The Hill constants n for the induced fraction and the induced level

functions in these simulations were varied between the lowest and highest experimentally fitted n

values (induced level curve: 0.84 and 1.50, induced fraction curve: 0.75 and 2.95, see Figure 3—fig-

ure supplement 6). The E10 metric, the F90 metrics, and the modality of the induction profile were
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determined from these simulations as described above. In the F90-E10 space, unimodal and bimodal

regimes were delineated by the bounding line with a slope of 1 that would capture all the unimodal

or bimodal simulations respectively on one side of the line.
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