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Breast cancer incidence and mortality rates have been consistently high among women.
The use of diverse therapeutic strategies, including chemotherapy, endocrine therapy,
targeted therapy, and immunotherapy, has improved breast cancer prognosis. However,
drug resistance has become a tremendous obstacle in overcoming breast cancer
recurrence and metastasis. It is known that mitochondria play an important role in
carcinoma cell growth, invasion and apoptosis. Recent studies have explored the
involvement of mitochondrial metabolism in breast cancer prognosis. Here, we will
provide an overview of studies that investigated mitochondrial metabolism pathways in
breast cancer treatment resistance, and discuss the application prospects of agents
targeting mitochondrial pathways against drug-resistant breast cancer.
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INTRODUCTION

Breast cancer is the second most common cancer in the world and ranks first in cancer incidence in
women (1). Its diagnosis rate is increasing year by year, accompanied by a long-term high mortality
rate (2). Early breast cancer is usually effectively treated using surgery alone or in combination with
adjuvant radiotherapy. However, most patients with advanced breast cancer undergo mastectomy
combined with radiotherapy and/or chemotherapy. Notably, the growing popularity of hormone
therapy and targeted drug therapy in the treatment of breast cancer has greatly improved its five-
year survival rate (3). Although breast cancer treatment methods have progressively diversified, the
treatment of breast cancer, especially of triple-negative breast cancer(TNBC), a highly
heterogeneous tumor, remains challenging (4), primarily due to chemotherapy resistance (5).
Various recent studies have focused on discovering chemotherapy targets and the mechanisms
underlying chemotherapy resistance to improve breast cancer prognosis. Furthermore, molecules,
such as neuropilin-1 and follistatin-like 1,are considered to be involved in breast cancer resistance to
doxorubicin. Nevertheless, the role of these new molecules in specific clinical applications requires
further exploration. Therefore, there is an urgent need to explore more effective methods (6, 7).

Recently, the role of mitochondria in cancer has attracted increasing attention. It is well known
that mitochondria play an important role in tumor cell occurrence, proliferation and apoptosis.
Interestingly, recent studies have shown that tumor chemoresistance is closely related to
mitochondria (8). Studies have demonstrated that mitochondrial fission is regulated by dynamin-
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related protein 1 (Drp-1) and mediated by high-mobility group
box 1 protein (HMGB1), a chemotherapy-induced colon cancer
product, promoting colorectal cancer tumor chemoresistance
(9). Atovaquone, an antiparasitic drug, can effectively block
mitochondrial respiration at clinically relevant concentrations,
and further increase hepatocellular carcinoma chemosensitivity
(10). These studies have laid the foundation for finding the
treatments for chemoresistant cancers. In recent years, the role of
mitochondria in breast cancer has received substantial attention
(11, 12). However, the relationship between mitochondria and
chemoresistance in breast cancer has not been systematically
examined. This review focuses on studies that investigated the
role of mitochondria in breast cancer chemoresistance and
discusses the mechanisms and relevant treatment prospects.

Mitochondrial in Tumor Metabolism and
Breast Cancer Drug Resistance
In the human body, tumor cells are found in a dynamic
microenvironment, composed of complex stromal cells and
extracellular matrix (13), in which mitochondria play an essential
role. The originalWarburg effect suggests thatmitochondrial defects
in tumor cells lead to impaired aerobic respiration, which renders
tumor cells more prone to aerobic glycolytic metabolism (14, 15). It
has been proposed that the changes in tumor cell metabolism are
caused by the expression of oncogenes and hypoxia-related signal
molecules that upregulate glycolytic enzymes. At the same time
hypoxia inducible factor (HIF)-induced pyruvate dehydrogenase
kinase (PDK) inhibits the PDH complex, and Akt, an oncogene,
mediates the transcription of Glucose transporter type 1 (GLUT1)
promoting the binding of hexokinase 2 to the voltage-dependent
anion channels (VDAC) on the outer mitochondrial membrane to
induce aerobic glycolysis. The synergistic effects of these pathways
and the increase of mitochondrial autophagy lead to the glycolytic
phenotype of tumor cells (16, 17). On the other hand, a series of
studies on the “reverse” Warburg effect revealed that cancer-
associated fibroblasts in the tumor microenvironment can change
their phenotype through mitochondrial dysfunction and aerobic
glycolysis, thereby providing high-energy nutrients to tumor
epithelial cells promoting tumor growth, metastasis and
chemoresistance (15, 18, 19). Furthermore, Sotgia, F et al. found
that 15 molecular markers related to mitochondrial germination
and translation were differentially expressed in the tumor
microenvironment using an analysis of genome-wide
transcription profile data of human breast cancer cells and
immunohistochemical verification. In addition, the important role
of mitochondria in the metabolic symbiosis between tumor
epithelial cancer cells and their surrounding stroma, suggests that
the targeting mitochondrial gene expression and translation may be
a new treatment approach for breast cancer (20).

The complex metabo l i c ne twork of the tumor
microenvironment is regulated by a variety of molecules, many of
which have been found to participate in mitochondria-related
metabolic pathways (21, 22). Caveolin-1(CAV-1) is a major
structural protein in small plasma membrane invaginations that
maintains membrane stability and signal transduction (23). Clinical
studies have shown that CAV-1 is an important predictor of breast
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cancer prognosis (24, 25). Furthermore, it has been found that a
decrease in CAV-1 levels in stromal cells in the tumor
microenvironment enhances breast cancer resistance to tamoxifen
(24). Moreover, in a study using mouse xenograft models, it was
found that CAV-1 expression was positively correlated with the
tumor sensitivity to nab-paclitaxel (26). CAV-1 downregulation in
tumor-associated stromal fibroblasts could increase reactive oxygen
species (ROS) production, thus inducing oxidative stress followed
by autophagy and mitochondrial dysfunction. The outcome of this
metabolic change will promote mitochondrial metabolism using
high-energy substances, such as L-lactic acid and ketone bodies to
provide nourishment to epithelial cancer cells. The mitochondrial-
targeted superoxide dismutase 2(SOD2) is a potential inhibitor that
can resist to oxidative stress and block the production of molecules
that can nourish tumors, thereby effectively reversing the tumor-
promoting phenotype of CAV-1 in breast cancer cells (27).
Monocarboxylate transporter 4 (MCT4), an independent
prognostic factor for breast cancer survival, was found to be
negatively correlated with the expression of CAV-1 (28, 29).
Thus, the combined analysis of MCT4 and CAV-1 expression
levels in the matrix can improve the accuracy of breast cancer
prognosis. The antioxidant N-acetyl-cysteine has been shown to
inhibit the oxidative stress-induced formation of MCT4.
Furthermore, MCT4 inhibitors can effectively inhibit the influx of
L-lactic acid and ketone bodies into the tumor microenvironment,
constituting a novel strategy for tumor treatment. However, MCT1
inhibitors are currently considered to have similar efficacy to that of
MCT4 and are employed in the clinical studies (29, 30).
Corresponding to these findings, CAV-1 was found to be
overexpressed in drug-resistant breast cancer cells (31).
Astragaloside IV (AS-IV), a biologically active substance purified
from Astragalus, can work synergistically with paclitaxel to trigger
the mitochondrial apoptosis pathway and effectively induce drug-
resistant breast cancer cell death. This process involves AS-IV
activation of eNOS/NO/ONOO− signaling by CAV-1 inhibition
that enhances the chemosensitivity of breast cancer cells to
paclitaxel (32) (Figure 1). Intriguingly, the expression level of
CAV-1 in TNBC has also been found to be negatively correlated
with cancer cell radiation sensitivity (33).

Mitochondria in Tumor Apoptosis and
Breast Cancer Drug Resistance
B-cell lymphoma 2 (BCL-2) family proteins play a crucial role in
the process of regulating cell apoptosis and have both pro-
apoptotic and anti-apoptotic activities (34). Typical pro- and
anti-apoptotic members are BAX, BCL2, and BCL-XL,
respectively (35, 36). Pro-apoptotic proteins such as BAX can
promote the release of cytochrome C and second mitochondria-
derived activator of caspases (Smac) from mitochondria, leading
to cysteinyl aspartate specific proteinase (caspase)-induced cell
apoptosis. BCL-2 and BCL-XL inhibit the pro-apoptotic effects of
BAX and other molecules (37). In this way, the anti-apoptotic
BCL-2 family proteins help breast tumor cells escape apoptosis
and acquire drug resistance (38). Thus, inhibiting anti-apoptotic
BCL-2 family proteins is a potentially valuable therapeutic
strategy against breast cancer drug resistance. Studies have
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found that microRNA-195 can target BCL-2 to trigger
mitochondrial dysfunction and then cause apoptosis, thereby
enhancing the therapeutic efficacy of the chemotherapy drug
etoposide in breast cancer (39). Via another mechanism,
Sabutoclax (BI-97C1), a BCL-2 homology domain 3 (BH3)
mimetic, acts as a pan-BCL-2 inhibitor (40). Sabutoclax has
shown potent cytotoxicity against drug-resistant breast cancer in
vivo and in vitro. Furthermore, Sabutoclax not only causes the
release of caspase from mitochondria to cause cancer cell
apoptosis, but also blocks the interleukin 6/signal transducers
and activators of transcription (IL-6/STAT) pathway to
eliminate the breast cancer stem cells. Interestingly, it has also
been successfully used in combination with standard
chemotherapy to treat chemoresistant breast cancer (41).
Consistent with their principle of action, drugs, such as ABT-
737, ABT-263 (Navitoclax) and a-tocopheryl succinate (a-TOS),
target BCL-2 in the mitochondria (Figure 2). Among them,
ABT-737 has been confirmed to improve the docetaxel resistance
in TNBC cell lines overexpressing BCL-2 using cytology
experiments. Furthermore, using a new technology the drug is
encapsulated in poly lactic-co-glycolic acid nanoparticles (NPs)
to accumulate drugs in xenograft TNBC tumors and exert
effective anti-tumor effects, thus providing a good foundation
for successful drug targeting to human breast tumors in the
future to avoid systemic side effects (42, 43). It is worth
mentioning that Navitoclax has passed phase I of a clinical
trial in refractory chronic lymphocytic leukemia, and the
optimal drug concentration has also been further explored in a
phase II clinical trial. In breast cancer treatment, Navitoclax has
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been proven to enhance the effectiveness of epidermal growth
factor receptor (EGFR)-targeted antibody-drug conjugates for
TNBC treatment in animal experiments. In addition, recent
studies have also revealed the inherent drug resistance of
TNBC to Navitoclax. Therefore, it is necessary to evaluate the
specific value of the drug in conjunction with TNBC genomic
research (44–46). The combination of a-TOS and high-dose
tamoxifen can effectively inhibit the proliferation activity of
TNBC, and improve the anti-cancer effect of pterostilbene in
breast cancer xenograft mice. In a recent study, pluronic polymer
(P123) was modified into ortho ester End-capping (P123-OE)
and bridged with a-TOS to form a copolymer (POT), and then
doxorubicin-loaded POT micelles (POT-DOX) were used in
breast cancer animal models, which effectively increased the
accumulation of drugs in multi-drug-resistant breast cancer
cells and enhanced the drug’s anti-cancer effects, potentially
providing alternative clinical treatment options (47–49).
Myeloid cell leukemia-1 (MCL1) is another typical anti-
apoptotic protein belonging to the BCL-2 family (50). The
myelocytomatosis oncogene (MYC), a proto-oncogene, encodes
a transcription factor involved in cancer cell proliferation and
apoptosis (51, 52). The mRNA and protein levels of these two
molecules were co-amplified in paclitaxel-resistant breast cancer
cell lines. MYC and MCL-1 mediate the enrichment of breast
cancer stem cells(CSCs) (53, 54). Among them, MCL2 has also
been confirmed to be located in the mitochondrial matrix to
enhance mitochondr ia l ox idat ive phosphory la t ion
(mtOXPHOS), which in turn increases the ROS generation,
activates hypoxia stress, and causes drug resistance-mediated
FIGURE 1 | A diagram of the relationship between key molecules in the microenvironment of drug-resistant breast cancer tumors and mitochondria, and the
mechanism of the relevant drugs. CAV‐1, caveolin‐1; MCT4, monocarboxylate transporter 4; ROS, reactive oxygen species; SOD2, superoxide dismutase 2;
AS‐IV, astragaloside IV; NO, nitric oxide.
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CSC enrichment (53, 55). Therefore, drugs that inhibit HIF-1a,
such as N-acetylcysteine, oligomycin and digoxin, may provide
direction in the treatment of drug-resistant breast cancer
(56–58).

Mitochondrial Dynamics and Breast
Cancer Drug Resistance
Mitochondria are highly dynamic organelles that change their
shape, size, and distribution to adapt to changes in different cell
states via the coordinate action offission and fusion (59). Dynamin-
related protein 1 (Drp1), a classical mitochondrial fission protein,
can cause mitochondria to divide into two to form a small circular
mitochondrial fragment network. Mitochondrial fusion protein
(MFN) and optic atrophy 1(OPA1), can elongate or cluster
together through fusion (59–61). A study of tamoxifen-resistant
breast cell lines found that the drug-resistant cell lines have a more
fragmentedmitochondrial network. In these cell lines, serine 637, an
essential phosphorylation site of DRP1, was activated, while serine
616, another vital phosphorylation site, was not, which increased the
mitochondrial fission activity of DRP1, causing mitochondrial
fragmentation. Based on this, changes in mitochondrial dynamics
that are closely related to breast cancer drug-resistance can be
improved (62). Current research on drugs targeting mitochondrial
dynamics is mostly focused on breast cancer growth and
proliferation rather than breast cancer drug resistance (63–65).
Mitochondrial transplantation is a new type of biological
technology that gradually extends from animal models to human
clinical applications (66). Using this technology, exogenous healthy
mitochondria are transplanted into cells with damaged
mitochondria to achieve the treatment purpose (67). A study on
Frontiers in Oncology | www.frontiersin.org 4
mitochondrial transplantation in breast cancer cell lines found that
the protein levels of MFN2 and OPA1 in the cells significantly
increased after the transplantation of exogenous healthy
mitochondria into breast cancer cells, while the protein level of
drp1 dramatically decreased. Interestingly, the morphology of the
mitochondria in the cell was mostly elongated to tubular, while the
fragmented mitochondria were obviously inhibited. In addition, the
resistance of breast cancer cells to the anticancer drugs doxorubicin
and paclitaxel was also significantly reduced (68). Recent studies
have also suggested that mitochondrial transplantation can change
the tumor microenvironment to combat breast cancer, and
demonstrated the therapeutic effect of mitochondrial
transplantation on breast cancer in animal models (69). In these
studies, we observed that while mitochondrial transplantation
brings about changes in mitochondrial morphology, it also
regulates functions, such as oxidative respiration. The morphology
and function of mitochondria are inextricably linked (68, 69).
Mitochondrial transplantation is a new approach for the
treatment of drug-resistant breast cancer.

Mitochondrial DNA and Breast Cancer
Drug-Resistance
Mitochondrial DNA(mtDNA), a double-stranded circular DNA,
contains 37 genes encoding rRNA, tRNA, and oxidative
phosphorylation complex-related proteins (70). A variety of
treatments that target mitochondrial gene expression have
been explored in a variety of diseases, including breast cancer,
with proven therapeutic benefits (71). The link between
mitochondrial gene copy number and breast cancer treatment
resistance has attracted increasing attention (72, 73). Metformin
FIGURE 2 | A diagram of some mechanism of mitochondria involved in apoptosis-mediated breast cancer drug resistance and related drugs. BH3, BCL-2
homology domain 3.
March 2021 | Volume 11 | Article 629614

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li and Li Mitochondria and Breast Cancer Drug-Resistance
can stunt breast cancer progress by inhibiting complex I encoded
by the electron transport chain gene in mtDNA (74, 75). The
decrease in BTB and CNC homology 1(BACH1), a hemin-
binding transcription factor, can promote the expression of the
electron transport chain(ETC) genes to increase the sensitivity of
breast cancer to metformin. The specific degradation of BACH1
by panhematin (an FDA-approved drug) can effectively enhance
the sensitivity of breast cancer cells to metformin treatment in
vitro and in vivo (76). Not long ago, another extraordinary study
found that cancer-related fibroblast-derived exosomes with
complete genomic mitochondrial DNA can be obtained by
breast stem cell-like cancer cells and display mtOXPHOS-
dependent breast cancer endocrine-resistant therapy (77).
Hitherto, drugs that target mtDNA, such as vitamin K3
(menadione), are often used in combination with other drugs
in the treatment of breast cancer (78, 79). However, whether they
improve resistance to breast cancer treatment remains unclear.
This is worth exploring in future studies.
CONCLUSIONS

The problem of drug resistance in the comprehensive treatment
model of breast cancer has been extensively investigated, and
Frontiers in Oncology | www.frontiersin.org 5
mitochondria have been found to play a subtle role in the process
of breast cancer drug resistance. Exploration of the role of
mitochondria in breast cancer drug resistance in the tumor
microenvironment and cancer cell interior indicates that: 1)
numerous molecules in the tumor microenvironment can mediate
the production of a variety of metabolites to induce drug resistance
through the action of mitochondria, 2) mitochondria can regulate
cell apoptosis and affect breast cancer resistance, 3) morphological
and functional changes in the mitochondria can promote breast
cancer resistance, and 4) the expression level of mtDNA can
mediate breast cancer resistance. These studies have proposed the
use of effective molecular targeted drugs or new treatments to
sensitize breast cancer cells to drugs, and some drugs are already
used in clinical research. Exploring the role of mitochondria in
breast cancer chemoresistance is expected to open up novel ways for
breast cancer treatment.
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