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We report a 23% asymptomatic severe acute respiratory syn-
drome coronavirus 2 (SARS CoV-2) Omicron carriage rate in 
participants being enrolled into a clinical trial in South Africa, 
15-fold higher than in trials before Omicron. We also found 
lower CD4 + T-cell counts in persons with human immunode-
ficiency virus (HIV) strongly correlated with increased odds of 
being SARS-CoV-2 polymerase chain reaction (PCR) positive.
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The emergence of the B.1.1.529 (Omicron) severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) variant, first 
identified in Botswana and South Africa [1] and now detected 
in over 165 countries, has led to a new global wave of coro-
navirus disease 2019 (COVID-19). In mid-November 2021, 
South Africa experienced a new rise in COVID-19 cases at 
a rate faster than any of the 3 previous waves [2], even in 
settings of ongoing mask mandates and high prevalence of 
prior infection [3, 4]. The early widespread dissemination of 
Omicron globally indicated a need to better understand the 
transmission dynamics of Omicron, including asymptomatic 
spread among immunocompetent and immunocompromised 
populations.

METHODS

On 2 December 2021, we began enrolling participants into the 
Ubuntu multicenter Phase 3 clinical trial in sub-Saharan Africa 
(with all sites initially enrolling located in South Africa) to as-
sess the relative risk of the COVID-19 mRNA vaccine mRNA-
1273 between study groups in persons (adults) with human 
immunodeficiency virus (HIV, PWH) or another comorbidity 
known to be associated with severe COVID-19 (CoVPN 3008, 
NCT05168813). A smaller number of HIV negative persons 
was also included. Previously vaccinated individuals were ex-
cluded. Baseline testing included HIV screening, CD4 + T-cell 
count and HIV viral load (if HIV positive), and collection of a 
nasal swab for SARS-CoV-2 reverse transcriptase polymerase 
chain reaction (RT-PCR) testing with the Abbott Real-Time 
SARS-CoV-2 assay (Abbott Laboratories, Abbott Park, IL, 
USA). The Assure Ecotest IgG/IgM Rapid Test (Assure Tech, 
Hangzhou, China) was used to determine baseline SARS-
CoV-2 antibody status at screening. TaqPath™ COVID 19 CE 
IVD RT PCR (ThermoFisher, Waltham, Massachusetts, USA) 
was used to amplify Orf and N genes. Study participants had 
to be clinically well with no signs/symptoms of COVID-19 to 
be vaccinated upon enrollment. Results from the Ubuntu trial 
were compared with results of participants in the Sisonke sub-
study and Ensemble 1 trials.

The Ubuntu, Sisonke, and Ensemble 1 trials were approved 
by the South African Health Products Regulatory Authority 
(SAHPRA) and by all local South African research ethics com-
mittees. Patient/participant consent was obtained, and the ap-
propriate institutional forms have been archived.

RESULTS

As of 20 January 2022, a total of 1172 adults were enrolled in 
the Ubuntu trial across eight South African provinces (see 
Supplementary Methods for list of clinical research sites). The 
median age of participants was 40 years (range 18–76 years), 
and 76% were assigned female sex at birth.

Baseline nasal swab data were available for 719/1172 (61.3%) 
enrolled participants: 162 (23%) of whom had asymptomatic 
SARS-CoV-2 infection by RT-PCR (Supplementary Table 1). 
Province-wide prevalence data can be found in Supplementary 
Table 2. SARS-CoV-2 infection was more frequent among 
SARS-CoV-2 seronegative (95/317) compared to seropositive 
(67/402) participants, regardless of baseline HIV status (30% 
vs 17%, P < .001) (Supplementary Table 2). SARS-CoV-2 in-
fection was detected among 51/153 (33%) of PWH with a 
CD4 + T-cell count <500 cells/mm3 vs 66/354 (19%) of PWH 
with counts ≥500 cells/mm3 (P < .001) (Figure 1A), an associ-
ation seen in both SARS-CoV-2 seropositive and seronegative 
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PWH (Supplementary Table 3). A 10-fold decrease in CD4 
count corresponded to a 3.2-fold higher odds of a positive PCR 
test, after adjusting for serostatus (95% confidence interval 
[CI]:1.16-3.03 fold higher, P = .003, Figure 1B). Although all 
SARS-CoV-2 cases were identified during the Omicron out-
break, 62 of the initial 72 infections underwent additional 
testing to evaluate S gene dropout, and the Orf and N genes 
were successfully amplified for 56 of these samples. All 56 had S 
gene dropout, suggestive of Omicron infection [5]. Sequencing 
was successful for 38 of these 56 samples, and all were con-
firmed as Omicron. The median RT-PCR cycle threshold (Ct) 
value was 25.8 (range 14.4–34.9), with Ct values <25 in 27/56 
(48%) and ≤20 in 10/56 (18%) of participants (Supplementary 
Figure 1; Supplementary Table 4).

Symptom data were available for 87/162 SARS-CoV-2 posi-
tive participants for the 7-day period following the positive PCR 
result: 52/87 (60%) remained without symptoms, of whom 18 
were seropositive and 34 seronegative (Supplementary Table 5).

Nasal swab sampling at the initial vaccination visit has 
been used in several COVID-19 vaccine efficacy trials to de-
fine persons infected at the time of study entry [6–9]. Studies 
conducted before Omicron consistently exhibited asympto-
matic carriage of pre-Omicron variants in <2% of participants 
at such visits [6, 7, 9] (Supplementary Table 1), including a 
1227 PWH subgroup in the Ensemble 1 study [7], largely en-
rolled during the Beta outbreak in South Africa. In addition to 
these studies, the Sisonke study [8], conducted exclusively in 
South Africa between June and August 2021 during the Beta 
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Figure 1. A, Percent of PWH positive for SARS-CoV-2 PCR (blue) among those with CD4 + T-cell counts ≥500 and <500 cells/mm3. Error bars show 95% CI. Actual num-
bers of individuals in each group are displayed on the bar graphs. B, Probability of PCR positivity by CD4 + T-cell count among PWH. Dots display observed data in baseline 
seronegative (purple) and seropositive (green) asymptomatic study participants. Positive and negative PCR results are plotted around 1 and 0 with a small vertical offset by 
serostatus for clarity. Lines and shaded regions display the estimated probability of positive PCR and corresponding 95% CIs, respectively. Logistic regression was used to 
model the probability of PCR positivity by CD4 count, adjusting for baseline serostatus. Abbreviations: CI, confidence interval; PCR, polymerase chain reaction; PWH, people 
with human immunodeficiency virus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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and Delta outbreaks, demonstrated an asymptomatic carriage 
rate of 2.4% in the subgroup sampled on day of vaccination. Of 
the 577 participants of the Sisonke subgroup resampled from 
mid-November to 7 December 2021, at the 6-month follow-up 
visit (time of Omicron outbreak), 91/577 (16%) participants 
had SARS-COV-2 detected in their nasal swab sample despite 
prior vaccination (Supplementary Table 6). In this cohort, the 
frequency of PCR positivity with Omicron was similar between 
PWH (27/169: 16%) and HIV negative participants (62/405: 
15.3%).

DISCUSSION

The prevalence of asymptomatic infection seen in our study 
(23%) strongly suggests that Omicron has a much higher rate 
of asymptomatic carriage than other variants of concern (VoC). 
Studies prior to Omicron have shown that 30-40% of SARS-
CoV-2 infections are asymptomatic [10, 11]. Our data suggest 
that a much higher proportion of Omicron infections may be 
asymptomatic; data consistent with the pattern of milder di-
sease seen with Omicron in general. Importantly, many of these 
asymptomatic carriers identified in our study and others had 
high nasal viral titers, as indicated by the relatively low RT-PCR 
Ct values [12]. The high prevalence of cryptic carriage of 
Omicron helps explain its widespread dissemination globally, 
presenting a substantial challenge to many current infection 
control strategies, including symptom-triggered testing, contact 
tracing, and masking policies.

Our findings that large numbers of PWH could be at elevated 
risk of shedding Omicron and that lower CD4 + T-cell counts 
may be associated with an increased likelihood of being PCR 
positive for SARS-CoV-2 are both provocative and perhaps con-
ceptually obvious. The data are provocative because the cutoff 
point was seen at the relatively high level of <500 cells/mm3, 
although more data are needed to validate this finding. Prior 
studies largely conducted during ancestral strain time periods 
have not found an increased prevalence of SARS-CoV-2 among 
PWH compared to HIV-uninfected people [13–16]. VoC that 
exhibit levels of resistance to the immunodominant epitopes 
associated with immune protection may be a factor in these 
differences [17]. Our findings do not differentiate whether 
PWH with CD4 counts <500 cells/mm3 have a greater risk of 
acquiring SARS-CoV-2, or whether their high subclinical prev-
alence of Omicron infection is related to impaired clearance 
of the virus. Persistent viral replication is of significant public 
health importance both in terms of transmission risk as well 
as the risk of viral evolution and generation of further VoC. 
Studies of viral persistence and viral variation among PWH are 
needed. Persistent SARS-CoV-2 viral shedding may not simply 
be limited to individuals off treatment and with the most ad-
vanced HIV disease but could also impact many PWH on anti-
retroviral therapy (ART) with more controlled disease.

Study limitations include unclear generalizability outside of 
South Africa, particularly to places with lower SARS-CoV-2 se-
roprevalence. Furthermore, the interpretation of positive SARS-
CoV-2 serology tests was limited by the fact that they could not 
differentiate between which strains led to the antibodies (eg, 
Delta, Omicron) or when the infections took place—including 
potentially ongoing infections.

The widespread asymptomatic carriage found with Omicron 
indicates that investment in second-generation vaccines to pre-
vent infection, not only disease, and enhanced surveillance with 
rapid testing paired with real-time whole genome sequencing 
should be explored. These data also highlight the urgent need for 
larger studies to better characterize how immunocompromise 
influences infection acquisition and clearance. The rapid dis-
semination of Omicron related to this high rate of subclinical 
infection has highlighted our interconnectedness, and research 
that helps us protect at-risk populations will also serve to pro-
tect us all.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding author.
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