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Computational purification of individual tumor
gene expression profiles leads to significant
improvements in prognostic prediction
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Abstract

Tumor heterogeneity is a limiting factor in cancer treatment and in the discovery of biomarkers to personalize it.
We describe a computational purification tool, ISOpure, which directly addresses the effects of variable
contamination by normal tissue in clinical tumor specimens. ISOpure uses a set of tumor expression profiles and a
panel of healthy tissue expression profiles to generate a purified cancer profile for each tumor sample, and an
estimate of the proportion of RNA originating from cancerous cells. Applying ISOpure before identifying gene
signatures leads to significant improvements in the prediction of prognosis and other clinical variables in lung and
prostate cancer.

Background
Cancer patients with similar clinical and pathological
characteristics can vary dramatically in their survival and
response to treatment. Much of this variation is asso-
ciated with differences in the molecular and cellular
architecture of their tumors, suggesting that treatment
decisions can be optimized based on molecular features
of each individual’s tumor [1]. Microarray and high-
throughput sequencing technologies can profile the rela-
tive abundance of thousands of RNAs in a tumor, thereby
providing a comprehensive snapshot of tumor state.
These snapshots can increase the precision of patient
categorizations that are traditionally based on type, size,
spread, and histology [2]. Gene signatures derived from
mRNA profiles have been used to identify cancer sub-
types [3-5], to predict patient prognosis [6-11] and
response to treatment [12,13], and to identify the site of
origin [14,15]. Some of these signatures are already in
routine clinical use [16-18] or undergoing trials [19].
Tumor samples drawn from patients usually exhibit

significant cellular heterogeneity [2]. The proportion of
healthy tissue in a sample can vary widely even among

samples pre-selected to have a high cancerous cell con-
tent using pathological estimates [20-23], thereby intro-
ducing variability into expression profiles that cannot be
removed by current computational pre-processing meth-
ods. This variability interferes with the development and
clinical application of gene signatures by reducing the
effective sample size of profiling studies, introducing con-
founding transcriptional signals even in moderately
impure samples [24], and restricting the clinical use of
gene signatures to tumor samples with sufficient cancer-
ous cell content.
Post-operative methods for sample purification, such as

laser capture micro-dissection or cell sorting, require
specialized equipment, are costly, delay the diagnostic
cycle, and cannot always be used. Furthermore, they may
not remove all contaminating tissue, and can induce arti-
ficial cellular responses [25], while degrading samples
and increasing the odds of sample confusion. A computa-
tional approach to purifying tumor profiles would
address these issues.
It is possible to purify a single tumor profile computa-

tionally by representing it as a weighted average of its con-
stituent (but hidden) cancer and non-cancerous ‘normal’
expression profiles, and then using statistical inference to
jointly estimate both the mixture weights and the two con-
stituent profiles. However, this is an under-determined
system of equations, as there are more parameters than
observations. Previous attempts to solve this problem can
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be viewed as different ways of regularizing these parameter
estimates to make the problem well-determined. Most
algorithms assume that multiple tumor samples in a col-
lection are to be simultaneously purified, and that each of
the tumor profiles in the collection is a mixture of a small
number of shared cancer and normal profiles (that is,
these algorithms constrain all normal and cancer expres-
sion profiles that constitute each tumor profile in the col-
lection to be the same), and these methods represent each
tumor profile only by their relative proportions of each
shared profile [14,20,21,26-32]. Another approach assumes
that the profile, hn, of the contaminating normal cells can
be measured separately for all cancer patients (whose
tumor profiles are indexed by n) [33,34], and thus fixes hn
to the observed value, and freely estimates the cancer pro-
file cn of each tumor profile n as well as the mixing pro-
portions. The former group of methods is not amenable to
downstream sample-specific analyses such as prognostic
prediction because they apply too strong regularization,
and estimate only a handful of patient-specific covariates.
The latter group of methods requires an accurate, separate
measurement of hn; these measurements are rarely avail-
able in archival datasets and are not always feasible to
obtain in a clinical setting. Furthermore, the sensitivity of
these methods to biological variability or measurement
noise in the provided profile for hn remains unclear and
has never been tested. However, it seems likely that the
sensitivity would be high, because the estimates of the can-
cer profiles cn are not regularized and therefore incorpo-
rate any noise or error in the provided normal profile hn.
In this paper, we describe a new approach to compu-

tational purification, called ISOpure, which, unlike pre-
vious approaches, is able to estimate a distinct cancer
profile for each tumor sample; this cancer profile is
robust to noise and does not require a matching normal
profile. Using a dataset of 834 lung and prostate tumors,
we found that ISOpure reduces inter-tumor variability
caused by non-cancerous tissue contamination, leading
to a significant increase in the power and accuracy of
clinical prediction models. Using ISOpure to preprocess
non-small cell lung adenocarcinoma expression profiles,
we produced a validated gene signature that is a statisti-
cally significant predictor of prognosis for all lung ade-
nocarcinoma tumors and for stage I tumors only.

Methods
The challenge of computational purification
The challenge of computational purification is to decom-
pose each tumor profile tn (a vector of length G) into its
component cancer profile (the vector cn), and normal
profile (the vector hn), and estimate a scalar, an, that
represents the fraction of the tumor sample RNA that
was contributed by cancer cells. This estimation is typi-
cally made using a procedure that sets the parameters

(cn, hn, and an) in order to minimize the reconstruction
error, represented here by the vector en:

tn = αncn + (1 − αn) hn + en (1)

Without further constraints on the parameters, equa-
tion (1) is an ill-defined problem because there are
2G+1 parameters to estimate (cn, hn, and an) but only G
observations (tn) so there is a continuum of solutions
that satisfy equation (1) with zero error, suggesting that
these solutions are over-fitting the problem. Computa-
tional purification methods apply different ‘hard’ and
‘soft’ constraints (also known as regularizations) to the
parameters to ensure a unique, interpretable solution.
Regularization strategies score the parameters based on
how well they reflect prior assumptions about their
likely values. For example, ISOpure assumes that the
vector hn is similar to one or more profiles of normal
tissue that are input into the algorithm. Because the
choice of regularization determines the solution to equa-
tion (1), the success of a computational purification
method depends on the suitability of the regularizations
that it applies. In the Results section, we evaluate ISO-
pure and other regularization strategies based on how
much they improve prognostic models applied to the
tumor profiles and how well they reproduce pathological
evaluations of the tumors. Typically, good regularization
strategies introduce a sufficiently strong bias into para-
meter estimation that they favor solutions to equation
(1) that have non-zero error and therefore avoid over-
fitting. Thus, assumptions about the distribution of en
also influence the solution to equation (1). Different
assumptions lead to different objective functions in the
estimation, and can lead to different optimization
procedures.
The following sections describe our ISOpure method in

detail. In brief, ISOpure is based on a statistical model
that represents the tumor profile as a sample from a mul-
tinomial distribution. The multinomial distribution is
parameterized by a discrete probability distribution
(represented by the vector x̂n ) that ISOpure attempts to
decompose into the cancer profile cn and the normal pro-
file hn. The reconstruction error en from equation (1) can
be interpreted as sampling noise from the multinomial
distribution, but it is not explicitly represented in the
ISOpure model. ISOpure makes two prior assumptions
to avoid over-fitting: it assumes that hn is a convex com-
bination of the normal profiles provided to the algorithm,
and that the cancer profiles c1, c2,..., cN in the cohort are
clustered together around a ‘reference cancer profile’, m,
which is also inferred from the data. The parameters of
the ISOpure model, which include the individual cancer
and normal profiles and the reference cancer profile, are
fit by maximum a posteriori (MAP) estimation in the
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statistical model (equations 3 to 9) that encodes the ISO-
pure assumptions.

ISOpure overview
Below we provide a brief overview of the major features
of the algorithm. The following sections contain a
description of the parameters of the ISOpure model, a
formal specification of this statistical model (equations 3
to 9) and a step-by-step guide to the inference proce-
dure that ISOpure uses to fit its model. Our notation is
as follows: lower case letters (for example, an) represent
scalar parameters or indices, bold lowercase letters (for
example, cn) represent column vectors (which could be
inputs or parameters), capital letters (for example, G)
represent scalar constants, and bold capital letters (for
example, B) represent matrices.
ISOpure inputs
In our comparisons, the following input data were
assumed to be available to ISOpure and other
algorithms:
a) t1, t2,..., tN is a set of N tumor profiles. Each profile

is represented by a vector of G non-negative (that is, 0
or greater) elements, where each element represents the
measured expression level of a transcript. G is typically
on the order of 10,000. Microarray intensities should be
normalized but not log-transformed before input into
ISOpure, as the algorithm interprets each element as a
normalized count of the number of copies of each tran-
script present in the sample.
b) b1, b2,..., bR is a set of R healthy profiles, defined as

above, that are ideally collected using the same protocol
as was used to collect the tumor profiles. Note that we
expect R to be less than N, and we do not require that
any of the healthy profiles be matched to a tumor.
ISOpure outputs
ISOpure estimates the following variables from the input
data:
a) c1, c2,..., cN is a set of cancer profiles, each of length

G, that represent the tumor profiles purified of normal
contamination. Cancer profile cn corresponds to input
tumor profile tn, where element g of the vector cn (c )
represents the estimate of the relative abundance of
transcript g in the cancer cell population of tumor n. In
ISOpure, each vector cn can be interpreted as a prob-
ability distribution over the transcripts; in other words,
the elements of cn are non-negative and sum to one,
and c
g if a random sample is taken from the population of
transcripts in the cancerous cell population in tumor n.
b) a1, a2,..., aN is a set of ‘tumor purity’ estimates, where

an is the estimated fraction of RNA in tumor sample n
that was contributed by the cancer cells. It can be inter-
preted as an estimate of the probability that a random

transcript from the nth (mixed) tumor cell population
(represented by tn) originated from a cancerous cell.
Summary of key features of ISOpure
ISOpure employs two main regularization strategies.
First, ISOpure assumes that each normal (that is,
healthy) profile hn can be represented by a weighted
combination of the available healthy tissue profiles b1,
b2,..., bR. In other words, ISOpure replaces equation (1)
with

tn = αncn +
∑R

r=1
θn,rbr + en, (2)

where θn,1, θn,2,..., θ are parameters fit by ISOpure.
It further requires that these new parameters are non-
negative and that

αn +
∑R

r=1
θn,r = 1.

Thus, θ can be interpreted as the proportion of the
transcripts in the nth tumor arising from the ‘tissue’
represented by profile br. (Note that to simplify nota-
tion, we occasionally indicate θn,1, θn,2,..., θ and an

using the vector θn of length R+1 whose rth element is
θ for r < R+1 and whose R+1st element is set to an.)
This regularization assumption reduces the number of
output parameters to R+G (an, θn,1, θn,2,..., θ -1, cn
our experiments, R was at most 50. Although the num-
ber of estimated parameters is still greater than the
number of observations (G) and, therefore, there still
remains a continuum of solutions to equation (2) that
have zero error, the large reduction in parameter num-
ber allows us to apply a weaker regularization to cn and
still avoid over-fitting. This strategy also ensures that
the contaminating normal profile hn, implicitly esti-
mated by the algorithm, is similar to the normal tissue
types represented by the input profiles br to the algo-
rithm. The other regularization strategy used in ISOpure
is that it favors solutions in which the values of c1, c2,...,
cN are clustered together. It encodes this using a scoring
function that encourages cn to be similar to an esti-
mated ‘reference cancer profile’, m. In other words, ISO-
pure assumes that the tumor samples in the same
collection have similar expression profiles except for
some sample-specific deviations that influence prognosis
and response to therapy; this assumption is more accu-
rate when the tumors are of the same subtype (for
example, adenocarcinomas of the lung [1]). The vector
m is a parameter of the algorithm that is estimated
from the tumor profile data, and itself has a regulariza-
tion applied to it to bias its estimate toward values that
are close to the normal profiles. This modeling choice
reflects an assumption that in general, profiles of can-
cerous tissue are similar (but not identical) to those of
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the tissue of origin of the tumor type. We have pre-
viously reported [14] that this assumption improves the
accuracy of tumor purity estimation.
Additional estimated parameters of ISOpure
Our regularization strategy incorporates the Dirichlet
probability density function into our scoring functions.
This choice allows us to use the statistical inference
method described below to estimate the parameter
values. The Dirichlet distribution is a continuous multi-
variate distribution over discrete probability distribu-
tions (that is, vectors of pre-determined size that
contain non-negative elements that sum to one). We
use the Dirichlet for both θn and cn because they are
both discrete probability distributions. The probability
density function associated with the Dirichlet has two
parameters (termed hyper-parameters because they are
the parameters of distributions over model parameters):
a mean vector (which determines the mean of the
Dirichlet distribution) and a scalar strength parameter
that controls how quickly the score decreases from the
mode of the Dirichlet distribution. We also estimate the
following hyper-parameters from the tumor data: ν, kn
(for n = 1 to N), k’, and ω. These additional parameters
are formally defined below in the statistical model pro-
vided in equations (3 to 9), but in brief ν represents
both the mean and strength of a Dirichlet distribution
over θn; kn represents the strength parameter of the
Dirichlet distribution over cn given m; k’ represents the
strength parameter of the Dirichlet distribution over m;
ω represents the weights on the normal profiles br used
to make the weighted combination that forms the mean
parameter vector for the Dirichlet distribution over m.

ISOpure algorithm
As mentioned above, the parameter estimates that
achieve the best score for a given regularization strategy
typically yield non-zero error (represented by en) in
reconstructing the tumor profile in equation (2). Regu-
larization strategies therefore must also determine the
optimal trade-off between decreasing the error en in
equation (2) and improving the scores of the parameters
(that is, cn and θn for all values of n) under the Dirichlet
distributions encoding our prior assumptions. We for-
malize the minimization of error en as the maximization
of the probability of a count vector xn (derived by dis-
cretization of tn) under a multinomial distribution
whose probability vector over transcripts is

x̂n = αncn +
∑R

r=1
θn,rbr

(that is, x̂n is a normalized reconstruction of the
tumor profile xn based on the model parameters). The
score of a given parameter setting is the product of
the score of the parameters under the Dirichlet prior

distributions and the probability of the discretized
tumor profiles under the multinomial distribution
defined by x̂n . Maximizing this score is equivalent to
MAP estimation under the statistical model described
below. Note that we estimate the parameters of all of
the tumor profiles simultaneously because some of the
model parameters (for example, m) depend on all tumor
profiles.
ISOpure pre-processing and data transformation
In this step, ISOpure applies some simple transforms to
the inputs in order to place them in an appropriate
form for the model.
The first transform is to discretize the tumor profiles

tn by rounding each element to the nearest non-negative
integer to make the count vector xn. The statistical
model underlying ISOpure interprets the elements of
the tumor profile as a count of the number of tran-
scripts of that type (gene or transcript isoform) observed
in the sample. Ideally, the tumor profiles should be
rescaled so that the total number of observations (that
is, the sum of the elements) after discretization is
approximately the same across all tumor profiles, in
order to balance the influence that each tumor profile
has on the shared parameters. In the tumor profiles we
used in our experiments, the sum of the elements in
each of the discretized profiles after robust multi-array
average (RMA) normalization was on the order of 107.
Profiles may need to be rescaled before discretization if
their sum is much less than this, to ensure adequate
precision in the discretization.
The second transform is to divide each normal profile br

by the sum of its elements. After this transformation, each
profile br sums to one, allowing them to be interpreted as
a discrete probability distribution over transcripts.
ISOpure statistical model
The full ISOpure model is defined as follows (the prob-
ability density and mass functions of the Dirichlet and
Multinomial distributions, respectively, are given in
Table 1).

B =
[
b1 · · · bR

]
(3)

x̂n = [ n] θn (4)

p (θn|ν) = Dirichlet (θn|ν) (5)

p (xn|B, θn, cn) = Multinomial
(
xn|x̂n

)
(6)

p (cn|kn, m) = Dirichlet (cn|knm) (7)

p
(
m|k′, B, ω

)
= Dirichlet

(
m|k′Bω

)
(8)
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where [ν w] indicates the matrix formed by horizon-
tally appending column vectors and/or matrices ν and w
and Mν indicates a matrix-vector product of M and ν.

θn (including an), cn, ν,m,
kn, k’, and ω using a two-step approach to maximize the
complete likelihood function of this model:

L = p
(
m|k′, B, ω

)∏N

n=1
p (cn|kn, m) · p (θn|ν) · p (xn|B, θ n, cn) (9)

Figure 1 shows a geometric interpretation of these two
steps. The corresponding probabilistic graphical model
illustrating equations (3 to 9) is shown in Figure 2. The
first step of ISOpure is similar to previous deconvolu-
tion algorithms, and is nearly identical to the ISOLATE

Table 1 Probability density and mass functions of
probability distributions used to define ISOpure.

Probability density/mass functiona, b

Dirchlet (x|a) =
�

(∑K
k=1 ak

)

∏K
k=1 � (ak)

K∏
k=1

xak−1
k

Multinomial
(
y|π)

=

(∑K
k=1 yk

)
!

∏K
k=1 yk!

K∏
k=1

π
yk

k

aThe parameters x, a, y, and π are all assumed to be vectors of length K. Note
that the canonical parameter of the multinomial distribution that represents
the number of trials is implicit here (that is, the number of trials here is
defined as the sum of all elements of y).
bΓ(a) is the gamma function of scalar a.

Step 1: estimate Step 2: estimate

expr. 
of mRNA 1

mRNA 2

mRNA 3

normal profile measured tumor

tumor-specific cancer

reference cancer

35%

29%

80%

αn,m

normal matched denoised tumor

Input

Legend

cn

mxn

x̂n

br
hn

cn,hn

α2=29%

α3=35%

α1=80%

(A) (B) (C)

Figure 1 Schematic of the ISOpure algorithm. ISOpure is a two-step algorithm for computational purification. (A) As input, it takes a set of
tumor profiles t1, t2,..., tN and a set of normal profiles b1, b2,..., bR. It then rounds the component values of each tn to compute profiles xn.
ISOpure uses the set of normal profiles (green triangle) to estimate the total possible variation in expression due to normal tissue contamination
in each tumor sample. (B) In Step 1, ISOpure estimates a shared, representative cancer profile m, and the proportion, an, of each tumor’s mRNA
contributed by the cancer cells. (C) In Step 2, ISOpure uses m as the mean of a common Dirichlet prior for each individual cancer profile cn
learned for each input tumor sample tn, and also estimates hn, the profile of the contaminating normal tissue in sample n.
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(Identification of Sites of Origin by Latent Variables)
[14] model we developed previously. The second step of
the algorithm is novel. The two regularization strategies
of ISOpure greatly reduce the effective number of para-
meters to be estimated, thereby transforming tumor-
specific computational purification into a statistically
well-defined estimation problem.
ISOpure Step 1: Estimate tumor purities a1,a2,...,aN and the
reference cancer profile m using the collection of tumor
profiles
In this step, ISOpure performs MAP estimation in the
statistical model. MAP estimation here is the numerical

optimization of a ‘complete likelihood’ function that is
determined based on the underlying statistical model
and defined by equation (9). To simplify the optimiza-
tion and focus on estimating a1,a2,...,aN and m, we initi-
ally force all cn values to be exactly equal to m (that is,
we set kn = ∞ for all n in Step 1). Because all cancer
profiles cn are forced to equal m throughout Step 1, the
estimation of m tries to simultaneously minimize the
reconstruction error en (from equation (2)) of all tumors
tn, and therefore the estimates of an depend on one
another and they are optimized as a group. Note that to
perform this estimation we must also estimate θn ,1,
θn,2,..., θ
Step 2. We also estimate the hyper-parameters (k’, ω,
and ν) that specify the Dirichlet distributions over m
and θn,1, θn ,2,..., θ and an. When doing this, we
require that k’ ≥ 1/min b (where b
gth element of br) to ensure that the corresponding
Dirichlet density function does not assign infinite den-
sity in the limit of one of the elements of m going
towards zero. To estimate our parameters in Step 1
(and Step 2), we run 35 iterations of an optimization
procedure that maximizes the complete likelihood func-
tion via block coordinate descent from a randomized
starting point (see the ISOpure implementation in Addi-
tional File 1). Each iteration of this optimization proce-
dure uses the Polak-Ribière conjugate gradient descent
method [35] to estimate variables of the same type
simultaneously (where we assign the same letter to vari-
ables of the same type in equations (3 to 9)) and cycles
through each variable type once per iteration. We found
that 35 iterations of this optimization procedure yielded
a relative change in log likelihood of less than 10-8

between the final two iterations. To find a good local
(and possibly global) maximum, we use multiple random
initializations (10 in our experiments) and take the one
that achieves the highest complete likelihood.
ISOpure Step 2: estimate individual cancer profiles cn for
each tumor profile
In this step, we fix a1, a2,..., aN and m to the values
estimated in Step 1, and use MAP estimation to esti-
mate the tumor-specific cancer profiles c1, c2,..., cN out-
put by the model, and to re-estimate θn,1, θn,2,..., θ
(for all n). We also estimate the hyper-parameters kn
and re-estimate ν; these hyper-parameters specify the
Dirichlet distributions over cn and θn,1, θn,2,..., θ (as
described above). Similar to Step 1, we require that kn ≥
1/ming mg for all n. The complete likelihood function
for this step is in equation (9), and is optimized using
the same algorithm as in Step 1.
ISOpure post-processing and data transformation
The main output of the ISOpure implementation in
Additional File 1 are the tumor purity estimates an and

υ

θn

xn

cn

N

m

κn κ′

ω

br
R

Figure 2 Graphical model representation of the ISOpure
model. This directed graph represents the joint probability
distribution over the input data (blue circles) and the estimated
model parameters (white circles), conditioned on the estimated
model hyper-parameters (white circles), in the ISOpure model
(equations 3 to 9). The conditional probability of each variable
depends only on its parents in the graph. To avoid explicitly
representing all N tumor profiles cn and R normal profiles br in the
graph (and other associated variables), we used ‘plate’ notation by
drawing one representative node per variable, and enclosing these
variables in a plate (rectangular box), where the total number of
instances of each enclosed variable is indicated by the fixed
constant in the upper right corner of the plate.
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the cancer profiles cn. To put the estimated profiles on
the same scale as the original tumor profiles, we multi-

ply cn by Sn =
∑G

g=1 tn,g .

ISOpure summary
The novel contribution of ISOpure over models such as
ISOLATE is the ability to estimate per-tumor cancer
profiles. ISOpure is freely available as a MATLAB pack-
age (Additional File 1) that can also be run in the open-
source Octave environment with a small number of
modifications; the latest version is maintained here [36].
All ISOpure cancer profiles are available online (see
Additional File 2; see Additional File 3; see Additional
File 4; see Additional File 5).

The ISOpure-evenprior algorithm
We hypothesized that the key feature of ISOpure that
enables accurate deconvolution is the assumption that
the individual cancer profiles cn are clustered, as
encoded by the Dirichlet prior in equation (7). To test
this hypothesis, we designed another model, ISOpure-
evenprior, that is exactly the same as ISOpure (equa-
tions (3 to 9)) except that it replaces the prior defined
in equation (7) with one where all the components of m
are replaced with 1/G as follows, where 1 is a column
vector of ones of length G:

p (cn|kn, m) = Dirichlet
(
cn|kn

1
G 1

)
(10)

Application of the Clarke method for computational
purification
To benchmark the prognostic performance of ISOpure
against existing methods, we considered the Clarke [33]
and Gosink [34] methods because they are the only
existing methods that can be used to estimate per-
tumor cancer profiles. Because the Clarke method is
designed to be a robust version of the Gosink method,
we tested only the Clarke method.
We downloaded the source code for the method from

the web site of the authors of this method [37]. We
modified the code to implement the knee-finding algo-
rithm as presented in the original paper, as the available
code did not implement it, and confirmed using the
provided data that the knee-finding algorithm repro-
duced the same results as the original work. Because
none of the tumor datasets processed in this study
included matched normal profiles for each tumor, as
required by the Clarke method, we used Spearman rank
correlation to identify the most similar normal profile br
for each input tumor sample, and used that normal pro-
file as the matched normal for input into the method.
Finally, because the provided code only estimates the
tumor purity an for each tumor sample n, we estimated

a tumor-specific cancer profile cn as suggested by the
authors as follows

cn =
tn − (1 − αn) bf (n)

αn
(11)

where f(n) is the index of the selected matched nor-
mal. For our implementation of this algorithm, see
Additional File 6.
In our prediction benchmarks, we evaluated the

Clarke-based cancer profiles using exactly the same pro-
cedure we used to evaluate the ISOpure-estimated can-
cer profiles, as outlined below in the ‘Gene signature
identification and testing’ section.

Predicting prognosis using the matrix factorization
method
We also tested a matrix factorization-based approach to
determine whether mixture proportions estimated by
deconvolution algorithms (that cannot estimate indivi-
dual cancer profiles [14,20,21,26-32]) could still be useful
for prognostic prediction. In our prediction benchmarks,
we concatenated the mixture proportions estimated by
Step 1 of ISOpure for each tumor profile n (parameters
θn,1, θn, 2,..., θ , and an) into a ‘mixture proportion pro-
file’ vector, then evaluated these mixture proportion pro-
files for predictive performance in the same manner as
we evaluated the ISOpure cancer profiles, as described in
the ‘Gene signature identification and testing’ section
below.

Array data processing
Raw data from the Bhattacharjee study [22] were down-
loaded in the form of CEL files. These data were pre-pro-
cessed using the RMA algorithm [38] implemented in the
affy package (version 1.22.1) for the R statistical environ-
ment (version 2.9.2). Updated ProbeSet mappings to
Entrez Gene IDs were used [39] (hgu95av2hsentrezgcdf,
version 12.0.0), and only adenocarcinomas of the lung
were considered in this study (the predominant histologi-
cal subtype, and the same subtype represented in all
other patient cohorts used here). This dataset included
17 healthy samples, of which 14 were used for purifica-
tion with ISOpure and three were treated as blind control
samples (NL1179, NL1675, and NL1698). Of the 127
lung adenocarcinoma samples, 32 were annotated with
tumor cellularity estimates made by two pathologists in
the original dataset. For evaluation of ISOpure estimates
of tumor purity, we removed 12 samples for which the
pathologists’ estimates differed by more than one stan-
dard deviation (SD) of the differences in their estimates
(13.7%), leaving 20 samples for analysis. We did this
because the two pathologists differed by as much as 50%
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in their estimates of cancerous tissue content (see Addi-
tional File 7: Figure S1).
Raw data from the Beer [40] study was processed

using the same pipeline as the Bhattacharjee study,
except that we used ProbeSet mappings to Entrez Gene
IDs appropriate to the specific platform used in that
study (hu6800hsentrezgcdf version 12.0.0). This dataset
comprised 86 tumor samples and 10 healthy samples
that were used for purification with ISOpure.
Raw data from each of the four cohorts of the Direc-

tor’s Challenge dataset [41] were separately co-normal-
ized using the RMA algorithm with 49 healthy lung
samples profiled on the same platform by Landi and col-
leagues [42], using the affy package (version 1.24.2) for
the R statistical environment (version 2.10.1). Again,
updated ProbeSet mappings to Entrez Gene IDs were
used (hgu133ahsentrezgcdf version 12.1.0). Associated
survival data were downloaded from online supplemen-
tary files. From the original set of 443 patients, three
patients were removed from the prognostic prediction
analysis because of missing data for survival time (NCI_-
lung216_U133A) or stage (Moff-0683H and Moff-
0928E).
Raw data from the Wang study [21] were normalized

using the RMA algorithm implemented in the affy pack-
age (version 1.26.1) for the R statistical environment
(version 2.11.0). To map probe names to Entrez Gene
IDs, an updated CDF file was used (hgu133plus2hsen-
trezgcdf version 13.0.0). After normalization, ISOpure
was run on the 109 prostate tumor expression profiles,
using 32 biopsy and 13 autopsy samples as the healthy
tissue panel (both of which are reported as cancer-free).
Raw data from the Wallace study [43] were normal-

ized using the RMA algorithm implemented in the affy
package (version 1.26.1) for the R statistical environment
(version 2.11.0). To map probe names to Entrez Gene
IDs, an updated CDF file was used (hgu133a2hsen-
trezgcdf version 13.0.0). This dataset included 69 pros-
tate tumor profiles and 20 healthy profiles, though two
healthy profiles were removed because they were col-
lected using pooled RNA samples.

Gene signature identification and testing
Figure 3 outlines our overall strategy for gene signature
identification and testing for the prediction of prognosis
of lung cancer patients. In brief, for each benchmark,
we trained two elastic net-regularized Cox proportional
hazards (CPH) models on the tumor gene expression
profiles and the associated survival data. One of these
models was trained on unpurified profiles and the other
on profiles purified with ISOpure. We use the term ‘gene
signature’ to refer to a learned CPH model that consists
of a list of genes and their non-zero regression coeffi-
cients. Note that the elastic net regularization applies

only to the CPH model, and is separate from the regulari-
zation used in the purification procedure. For the lung
adenocarcinoma section, we ran two different bench-
marks. In the first, we grouped the four independent
cohorts of the Director’s Challenge dataset into a training
dataset of 254 patients (comprised of the HLM and MI
cohorts) and testing dataset of 186 patients (comprised of
the DFCI and MSKCC cohorts) as previously described
[41], using either the ISOpure cancer profiles or the ori-
ginal unpurified profiles. We first median-centered and
unit-normalized all gene expression measurements in the
training dataset to bring the profiles to the same scale, as
previously described [9]. Then, using the glmnet package
(version 1.3) [44] on an installation of R (version 2.11.0),
we ran five-fold cross-validation using the glmnetCV
command with default parameters and a = 0.1 to identify
the specific gene signature that maximized cross-valida-
tion performance on the training dataset. The identified
gene signature was re-run on the entire training dataset
to find its median risk score, to be used as a threshold for
identifying low-risk and high-risk patients in the testing
dataset. We then median-centered and unit-normalized
all gene expression measurements in the testing dataset,
and used the identified gene signature to independently
assess risk scores for each of the 186 patients in the test-
ing dataset. These risk scores were used to categorize
patients into low-risk or high-risk groups, dichotomized
using the median risk score computed on the training
dataset. We computed the stage-adjusted hazard ratios
and Wald test P-values by comparing the survival data of
the low-risk versus high-risk patients identified across
the testing dataset. Only the gene signature and median
risk score were carried over from the analysis of the
training dataset, making this testing dataset fully
independent.
For the second lung adenocarcinoma benchmark, we

used the Beer cohort [40] as a training dataset and all
four cohorts from the Director’s Challenge as a testing
dataset [41], pre-processed and evaluated as described
above.

Prediction of extra-prostatic extension in prostate tumors
As another prediction task, we used prostate tumor
expression profiles to predict extra-prostatic extension
(EPE) of the prostate tumors, which is a strong predictor
for recurrence [45]. Clinically annotated gene expression
profiles for 69 prostate tumor and 18 healthy prostate
samples were downloaded [43], normalized with RMA,
and pre-processed and purified by ISOpure as described
in the previous section. EPE is a binary outcome indicat-
ing whether or not extension has occurred, therefore,
prediction of EPE in prostate tumors is a classification
problem. We trained elastic net-regularized logistic
regression classifiers using either the original expression
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profiles, the cancer expression profiles estimated by ISO-
pure, the estimates of sample composition made by
matrix factorization, or the cancer expression profiles
estimated by the Clarke method. We used glmnetCV
(version 1.3) [44] on R (version 2.11.0) to train each
model and to measure the 10-fold cross-validation accu-
racy. To set the two regularization parameters we con-
ducted a grid search, evaluating each combination of
parameters using 10-fold cross-validation on the training
set. For each of the 100 l values selected by glmnet by

default, we tried all values of a between 0.1 and 0.9,
inclusive, with step size of 0.1. We then trained a model
using the entire training set with the regularization para-
meters that led to the highest training accuracy during
the grid search. To reduce the effect of fold selection,
and allow pairwise comparisons of prediction accuracy
between each purification method, each method was
trained with identical fold divisions. The entire procedure
was repeated 10 times, and the mean accuracy on the
held-out folds is reported.
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Figure 3 Pipeline for tumor purification and subsequent identification and testing of gene expression-based prognostic models.
(A) Gene signature identification stage. First, profiles from tumor samples and healthy tissue are co-normalized together using the robust multi-
array average (RMA) method, then input into ISOpure to estimate the purified cancer profiles cn. The purified cancer profiles are used as
covariates to train an elastic net-regularized Cox proportional hazards (CPH) model (the gene signature) to predict survival data associated with
each tumor sample. The trained parameters of the CPH model are used later in model testing. (B) Gene signature testing stage. First, new (test-
set) tumor profiles are co-normalized with healthy tissue profiles and purified using ISOpure. Each purified cancer profile is then used to
compute a risk score for the corresponding patient, using the CPH model parameters learned in the training stage. Patients in a test cohort are
then divided into low-risk and high-risk groups based on their risk score, and the hazard ratio is calculated to evaluate the low- and high-risk
classifications.
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Measuring prognostic performance as a function of
training cohort size
To measure gene signature performance as a function of
training cohort size, we repeated the gene signature testing
procedure described above using the first lung adenocarci-
noma benchmark (that consists of separate training and
testing datasets from the Director’s Challenge cohorts),
except that we sub-sampled (without replacement) tumor
samples from the training dataset. For each training cohort
size tested, we constructed prognostic models on 1,000
random subsets of the full training dataset, and evaluated
model performance on the 186 patients in the test-set
cohort. We tested training cohort sizes of 50 to 250
patients, in increments of 10 patients. We used linear
interpolation between tested cohort sizes to estimate
model performance on other training cohort sizes.

Results
The ISOpure algorithm is outlined in Figure 1. To evalu-
ate ISOpure, we compared the predictive performance of
prognostic models (gene signatures) generated from the
original unpurified microarray expression profiles with
models generated from the cancer profiles estimated by
ISOpure and the Clarke methods, and the mixture pro-
portion profiles from matrix factorization. Figure 3 and
Methods outline our procedure for tumor purification,
identification of a prognostic gene signature on a training
cohort, and testing the gene signature on an independent
patient cohort. We selected two tumor types for this eva-
luation (prostate and non-small cell lung adenocarcino-
mas) based on the availability of large cohorts [41], and
because these tumor types do not yet have established
sub-types. We selected prognostic prediction as the clini-
cal task, because in both diseases, treatment escalation/
de-escalation is of immediate clinical relevance. The
majority of intermediate-risk prostate cancer patients are
over-treated, and current therapies such as prostate
removal result in serious morbidities. It is predicted that
up to a quarter of patients with non-small cell lung can-
cer would derive benefit from treatment escalation but
do not receive it, whereas a similar number of patients
classified as stage II are thought to be over-treated [9,46].

Computational purification improves prognostic gene
signatures for lung and prostate cancer
We compared the predictive performance of the unpuri-
fied and the ISOpure cancer profiles on the Director’s
Challenge [41] benchmark of 440 lung adenocarcinomas
collected in four cohorts from four different institutions
(Figure 4). This benchmark used two of the cohorts
(N = 254 patients) as a training set, and two other
cohorts (N = 186 patients) as a held-out, independent
test set. We identified separate gene signatures (CPH
models) on the unpurified profile and the ISOpure

cancer profile training sets, and used them to classify
test-set patients into low-risk and high-risk groups.
Model performance was measured by the hazard ratio
(HR; that is, the relative hazard of death for samples clas-
sified in the high-risk group), with a higher value indicat-
ing better performance. The ISOpure-based signature
(HR = 2.92, P = 3.47 × 10-5, Wald test) was significantly
better at predicting patient outcome (P = 0.001, likeli-
hood ratio test) than the unpurified profile-based signa-
ture (HR = 2.01, P = 0.006, Wald test). Note that the
unpurified profile-based signature is an extremely strong
baseline for comparison: none of the eight groups in the
Director’s Challenge generated a gene signature that was
significantly better than random. Purifying tumor profiles
using representatives of existing expression deconvolu-
tion methods (the Clarke method [33] and a matrix fac-
torization-based method [14]) degraded performance
compared with the unpurified profiles (HRclarke = 1.83,
HRmf = 1.09) (see Additional File 8: Figure S2).
To introduce technical variability into the tumor pro-

files, as may arise in clinical conditions, we repeated our
evaluation procedure using a training set [40] collected
on a different platform and in a different study from
that of the test-set data [41] (Figure 5). This also
allowed us to use the full Director’s Challenge cohorts
(one of the largest lung adenocarcinoma datasets avail-
able) as a test set. Again, we found the test-set perfor-
mance of the ISOpure-based signature of 110 genes
(ISOpure-sig; HR = 1.87, P = 4.7 × 10-6, Wald test) was
significantly better (P = 2.77 × 10-4, likelihood ratio test)
than the 82-gene signature based on the unpurified pro-
files (unpurified-sig; HR = 1.48, P = 0.004, Wald test).
These two signatures (see Additional File 9: Table S1;
see Additional File 10: Table S2) have a significant over-
lap of 48 genes (P = 2.0 × 10-61, Fisher’s exact test),
all of which are in agreement about whether their
expression increases or decreases the hazard for death.
Note that the larger number of genes in ISOpure-sig is
not an indication of bias in favor of that method; the
size of each signature is selected automatically by a
cross-validation procedure that attempts to maximize
training-set performance (see Methods). Expanding the
size of the unpurified-sig gene signature to 110 genes
decreased its test-set performance (HR = 1.41, P =
0.011, Wald test). The improved performance of ISO-
pure is due to the novel regularization used in the sec-
ond step of the algorithm: the ISOpure-evenprior
model, which replaces the Dirichlet prior for cn used in
the second step of ISOpure with a different, commonly
used Dirichlet prior, performs comparably to unpuri-
fied-sig (HR = 1.51, P = 0.004, Wald test).
Of the 440 test-set samples, 70 were classified differently

by ISOpure-sig and unpurified-sig. These 70 samples are
significantly enriched for stage IB tumors (P = 0.011,
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Bonferroni-corrected hypergeometric test) (see Additional
File 11: Figure S3). When the testing cohort was restricted
to stage IB tumors, ISOpure-sig provided an even greater
benefit over unpurified profiles (HRISOpure-sig = 2.33, HRun-

purified-sig = 1.58, P = 0.003, likelihood ratio test) (Figure 5).
In non-small cell lung adenocarcinomas, the predicted
prognosis of early-stage tumors influences the decision of
whether to perform adjuvant therapy [46], so these
improvements in prognostic prediction for early-stage
tumors are relevant to improving patient care. Note also
that stage I tumors in this cohort had significantly lower
predicted cancer content than those of later stages (see
Additional File 12: Figure S4), which may explain the lar-
ger difference in performance. We further verified that our
ISOpure-sig model was a significant predictor of outcome
across all patients with stage I cancer (HR = 1.73, P =
0.005, Wald test) (see Additional File 13: Figure S5).
Next, we evaluated ISOpure on prostate tumor data.

In prostate cancer, the presence of EPE is a strong

predictor for recurrence [45], and also indicates the
need for post-operative radiotherapy to maximize survi-
val [47]. Current guidelines for the evaluation of EPE
are subjective [48] and can only be applied post-opera-
tively. Accurate, objective assessment of EPE based on
biopsies would contribute to optimal patient treatment
by prioritizing patients for prostate removal.
Gene expression data from the Wallace study [43] for

69 tumor and 18 normal prostate samples were purified
using ISOpure, then used to predict EPE. Because of the
small number of samples in the dataset, and the lack of
a separate test dataset, we used 10 rounds of 10-fold
cross-validation to assess relative performance (Table 2).
Classifiers trained on the ISOpure cancer profiles were
significantly more accurate than classifiers trained using
the original unpurified profiles, the Clarke cancer pro-
files, or the matrix factorization mixture estimates (all
pairwise P-values < 0.005, Wilcoxon signed rank test).
Additionally, prediction accuracies were not significantly
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different between the three non-ISOpure methods (all
pairwise P-values > 0.4).

ISOpure tumor purity predictions correlate with
pathologist estimates
Several tumor datasets provide pathologist estimates of
tumor cellularity. We used these estimates as a benchmark
for the ISOpure estimate of tumor purity. Note that under

accurate purification, we expect tumor purity and tumor
cellularity to be correlated but not equal, as tumor purity
is an estimate of the proportion of mRNA in the sample
contributed by cancerous cells, whereas tumor cellularity
is based on area and cell counts. Both cell size and the
amount of mRNA per cell can vary considerably between
cancer and normal cells [49]. Furthermore, pathologists
typically assess a slide of the tumor adjacent or proximal
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Figure 5 Test-set performance of CPH models on all four cohorts of the Director’s Challenge. Plots show Kaplan-Meier survival curves as
in Figure 4, using CPH models trained on the Beer [40] cohort. Test-set performance of (A) ISOpure-sig classification of the ISOpure cancer
profiles from the Director’s Challenge cohorts and of (B) unpurified-sig classification of the unpurified profiles from the Director’s Challenge
cohorts. (C) Same as (A), but the performance is measured only for patients with stage IB cancer. (D) Same as (B), but the performance is
measured only for patients with stage IB cancer.
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to the sample processed for molecular analysis, whereas
ISOpure assesses the purity of the sample processed for
molecular analysis [21,22].
On a dataset of 20 lung adenocarcinomas and three

blinded control samples from Bhattacharjee and

colleagues [22] (see Methods), the ISOpure estimates
were well correlated (Spearman’s r = 0.51; P = 0.013)
with the average of two pathologists (Figure 6A; see
Additional File 14: Table S3), although the correlation
was lower when the three control samples (that are cor-
rectly assigned zero cellularity by ISOpure) were removed
(Spearman’s r = 0.26; P = 0.28). Computational purifica-
tion reduced the inter-tumor variance of all 8,193 gene
expression levels in the Bhattacharjee dataset, as expected
(Figures 6B, C; see Additional File 15: Figure S6) (P <
2.2x10-16, Wilcoxon signed rank test).
We also found high correlation between ISOpure and

a pathologist on a dataset of 109 prostate samples
(Figure 6D, Spearman’s r = 0.75; P = 1.2 × 10-20; see
Additional File 16: Table S4), although there was a
number of samples for which either ISOpure or the
pathologist estimated zero cancerous content but the

Table 2 Accuracya of elastic net-regularized models for
the prediction of extra-prostatic extension (EPE).

Classifier input Average accuracy, %

Unpurified expression profiles 61.76 ± 1.64

ISOpure cancer expression profiles 69.12 ± 0.90

Matrix factorization estimates 62.94 ± 0.57

Clarke cancer expression profiles 62.50 ± 1.06
aThe average accuracy and standard error of the mean over ten 10-fold cross-
validation runs are reported for logistic regression classifiers trained using
either the original unpurified profiles, ISOpure cancer profiles, matrix
factorization mixing proportions, or Clarke cancer profiles.
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Figure 6 Comparison of ISOpure-predicted and pathologist reported percentage cancerous tissue. (A) Scatter plot of ISOpure predictions
against the average pathologist estimates on a subset of 20 lung tumors and three blinded healthy lung tissues from the Bhattacharjee dataset.
The size and color of each point indicate the difference between the pathologists’ estimates. The blue region indicates where the ISOpure
predictions were within 13.7% of the average pathologist estimate. (B) Median-centered expression levels of a random selection of 100 genes in
50 patients of the Bhattacharjee dataset, before ISOpure purification. (C) Same genes and patients as in (B), but expression levels were from the
ISOpure cancer profiles. (D) Scatter plot of ISOpure predictions against a single pathologist on the Wang dataset of 109 prostate tumor samples.
The black dashed line indicates the linear regression model that minimizes the sum of squared errors. (E) Correlation of ISOpure estimates and
the average of the two pathologists’ estimates on the same 23 samples as in (A), depicted as a function of the number of normal samples made
available to ISOpure. Each point represents a random selection of normal samples of the given size. (F) Same as in (E), but correlation was
measured for the 109 samples in the Wang dataset.
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other estimated non-negligible (> 20%) cancerous con-
tent. However, predictions made by an independent com-
putational method seemed to be consistent with ISOpure
for the tumor samples assigned zero cellularity by ISO-
pure (see Figure S1B in Wang et al. [21]). Furthermore,
all of the samples assigned zero cellularity by the patholo-
gist were from surgically removed prostates that were
initially diagnosed as cancerous; these assessments of
zero cellularity may result from field effects [50] or from
the tumor-adjacent slides having negligible cancer con-
tent in low-cellularity tumors. As we observed in the lung
adenocarcinoma dataset, ISOpure reduced the inter-patient
variance in expression for all genes (P < 2.2 × 10-16,
Wilcoxon signed rank test; see Additional File 17: Figure
S7).
For both lung and prostate cancer, having a larger set

of normal profiles available for purification improved
correlation between ISOpure and pathologist cellularity
estimates (Figures 6E, F). Correlation for both tumor
types saturated at approximately 10 normal profiles.
Even with only one normal profile, the ISOpure median
correlation was still higher than that of the Clarke
method on both the lung (Spearman rISOpure = 0.45,
rClarke = 0.35) and the prostate (Spearman rISOpure =
0.38, rClarke = 0.19) datasets. Note that matched normal
samples were not available for every tumor, as assumed
by the Clarke method, so instead we matched each
tumor with its most highly correlated normal sample.

Discussion
Computational purification of tumor expression profiles
by ISOpure improves the accuracy of subsequent prog-
nostic models for lung and prostate cancer by reducing
inter-sample variation in the amount and type of gene
expression signal in the tumor profile that is due to nor-
mal tissue contamination. Purifying tumor profiles using
other algorithms did not yield classification performance
significantly better than the original unpurified profiles
(see Additional File 8: Figure S2). Appropriate regulariza-
tion, embodied by ISOpure priors, was a key factor in this
improvement in accuracy; we observed decreased prog-
nostic accuracy with both an unregularized purification
method (Clarke) and a modified version of ISOpure with a
standard (but inappropriate) prior (see Additional File 18:
Figure S8). This modified version of ISOpure used the
same tumor purity estimates as ISOpure, and therefore
this result indicates that accurate prediction of tumor pur-
ity alone is not sufficient for improving prognostic accu-
racy. Note that although computational purification is
related to the well-studied area of expression deconvolu-
tion, standard expression deconvolution algorithms do not
support profile-specific purification because the only pro-
file-specific information they generate is the tumor purity
(more specifically, the proportions of a handful of inferred

or provided cell-type specific profiles) [14,20,21,26-32],
and these proportions are not strong prognostic indicators
in either prostate or lung cancer (Table 2; see Additional
File 8: Figure S2). We designed ISOpure as a mixture
model that models each tumor sample as a mixture of
sample-specific normal and cancer profiles (with some
constraints implied by the representative cancer profile
and the healthy profiles). Thus, despite substantial efforts
in this area, ISOpure is the first validated expression
deconvolution algorithm that satisfies a set of reasonable
requirements for clinical use of computational purification
(Table 3).
During preparation of the final revision of our manu-
script, we were introduced to the disease-specific geno-
mic analysis (DSGA) algorithm [51], which could, in
theory, be adapted to computational purification. DSGA,
like ISOpure, models hn as a linear combination of a set
of provided normal profiles but, unlike ISOpure, does
not regularize its estimate of cn. Thus, we suspect that
its performance on our benchmarks would be similar to
that of ISOpure-evenprior.
Note that the ISOpure regularization strategy is a

compromise between previous methods that either over-
regularize (and assume all tumor samples are composed
of the same small number of cancer and normal cells)
or do not regularize (and therefore attempt to solve an
ill-posed statistical problem). However, regularization
entails making specific assumptions about the nature of
the purified cancer expression profiles, and purification
quality would probably be reduced if the regularization
assumptions were violated.
ISOpure makes two key assumptions. First, it assumes

that the set of provided normal profiles contains repre-
sentative samples of the profiles of the contaminating
normal tissue. This assumption could be violated if the
set of provided normal profiles does not contain suffi-
cient samples of the type of tissue contaminating the
tumors, or if uncorrected batch effects lead to systema-
tic differences in expression between the set of normal
profiles and the set of tumor profiles that are not due to
cancer. The normal profiles used in the current study
were selected to minimize batch effects and we have not
evaluated batch-correction procedures with ISOpure.
Note, however, that we did not require the profiled nor-
mal tissue samples to be from the same patient, and
most of the tumor samples we used did not have match-
ing normal profiles available. For prostate and lung, pur-
ification using between 10 and 30 normal profiles
seemed sufficient; correlation with pathologist estimates
of tumor cellularity stopped improving after 10 samples
for both tumor types, although the predictive perfor-
mance of lung cancer prognostic models continued to
improve until 30 profiles of normal lung tissue were
used (see Additional File 19: Figure S9). The accuracy of
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the prediction of EPE increased steadily with the num-
ber of normal samples available for purification, even
when we reached 18 normal samples, the maximum
number available (see Additional File 20: Figure S10).
These results suggest that collection of more normal
samples may have further improved prediction of EPE,
although only two normal samples were required to
improve EPE prediction significantly above the baseline.
In general, our observations suggest that just one or a
small number of normal samples will inadequately
represent the biological variability in normal gene
expression, and collecting as many as 30 normal sam-
ples may be necessary to adequately capture normal
variation.
ISOpure also assumes that the tumor-specific cancer

profiles are similar to the representative cancer profile,
m, estimated in the first step. This assumption is appro-
priate for sets of tumor profiles without strong expres-
sion sub-types, such as the prostate and lung datasets
we used, but may be violated and lead to decreased per-
formance for cancers with distinct expression sub-types,
such as breast cancer. For these cancers, we recommend
grouping the tumor profiles by subtype and purifying
each group separately. Note that it is possible to extend
ISOpure to consider multiple sub-types in the cohort by
allowing multiple clusters of cancer profiles. However,
doing so would require the estimation of a different ‘m’
vector for each cluster, so in order to avoid over-fitting,
the number of inferred sub-types must be much smaller
than the number of tumor profiles in the dataset.
The performance of ISOpure is relatively robust

against small perturbations in its inputs. With respect to
correlation of ISOpure tumor purity estimates with
pathologists, the median correlation of ISOpure

estimates decreases by 0.01 when using 12 versus 13
normal samples for purifying the lung dataset, whereas
the median correlation actually increases by 0.006 when
using 43 versus 44 normal samples for purifying the
prostate dataset. In terms of prognostic prediction per-
formance, the median accuracy of the ISOpure cancer
profiles decreases by 0.015 when using 17 instead of 18
samples for the prostate tumors.
ISOpure-sig is the first validated prognostic signature

for the well-studied Director’s Challenge benchmark,
and it is also prognostic for patients with stage I cancer
alone, a group for which good prognostic models are
urgently needed for clinical application. The excellent
performance of ISOpure for this sub-group may result
from the significantly lower cancer content of stage I
tumors compared with later stage tumors. This suggests
that ISOpure would have similar performance gains on
other samples with low cancer content. In addition to
improving accuracy for a given patient cohort size, ISO-
pure can be used to increase the effective size of a
patient cohort by reducing inter-patient variability due
to contamination. This reduces the cost of cancer bio-
marker studies and, crucially, enables gene signature
identification and application for tumor types for which
fewer tumor samples are available (see Additional
File 21: Figure S11). We have shown the utility of ISO-
pure for 834 samples derived from five datasets of two
entirely different tumor types. Nevertheless, it is possible
that unique features of other diseases or data types will
change performance characteristics in different situa-
tions, and therefore additional and on-going validation
in emerging large datasets [52,53] will be essential.
Our analysis demonstrated approximately 10% improve-

ment in prediction of EPE when using ISOpure cancer

Table 3 Evaluation of the suitability of ISOpure and other expression deconvolution methods for clinical use.a.b

Method Estimates individual cancer
profiles

Uses unmatched normal
tissues

Requires minimal additional
data

Tested on clinical
data

ISOpure Yes Yes Yes Yes

ISOLATE [14] No NA Yes No

Erkkila [28] No NA Yes No

Lahdeskmaki
[27]

No NA Yes No

Venet [26] No NA Yes No

Tolliver [31] No NA Yes No

Ghosh [29] No Yes No No

Shen-Orr [30] No NA No No

Bar-Joseph [32] No NA No No

Wang [21] No NA No No

Stuart [20] No NA No No

Gosink [34] Yes No Yes No

Clarke [33] Yes No Yes No
aMethods require minimal additional data if they do not require mixing proportions of normal and cancer cells for each input tumor sample for deconvolution.
bNA, not applicable; No, negative assessment; Yes, positive assessment.
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profiles compared with the unpurified profiles. EPE pre-
diction is a challenging problem, and we note that without
purification, the predictive model performance was only as
accurate as simply picking the majority class, so the 10%
improvement was actually an increase from zero benefit of
considering unpurified expression profiling data. Prostate
cancer is the most common malignancy in men, and treat-
ment is often determined entirely by risk groups assigned
using pre-treatment prostate-specific antigen levels,
biopsy-based Gleason scores, and T category. As a result,
improved prediction of EPE from biopsies (that is,
improved estimates of T category) could provide benefit
when combined with these other risk predictors.
Two requirements must be met in order for ISOpure to

be applicable in the clinic. First, collection of gene
expression profiles for each patient’s tumor sample must
become part of the medical diagnosis pipeline. To that
end, gene sequence or expression profiling is already
being used to inform treatment decisions for multiple
cancer types, including breast, gastric, lung, and colorec-
tal cancer [54]. Second, ISOpure relies on expression
profiles of normal tissue samples to remove contamina-
tion from tumor samples. In the Gene Expression Omni-
bus (GEO), the number of tumor datasets with associated
normal samples is a small subset of the total number of
tumor datasets. Collection of a database of normal sam-
ples from multiple tissue sites will be needed to use ISO-
pure; however, as shown by our deconvolution of the
Director’s Challenge cohort of 443 samples, deconvolu-
tion can even use existing datasets of normal samples, if
the collection protocol and platform are sufficiently
similar.
Although our analysis here focuses on microarray

expression profiles, we speculate that ISOpure could be
applied directly to abundance estimates from sequencing
(RNA-seq) data. Many methods for analyzing RNA-seq
transform the reads into a vector of fixed length, whose
elements represent abundance estimates, such as RPKM
(reads per kilobase per million mapped reads) for genes
[55], transcripts (including splice isoforms) [56], or indivi-
dual exons and exon-exon junctions [57]. These abundance
estimates could be directly input into ISOpure as if they
are microarray expression profiles, possibly after rescaling
them to increase the precision of the discretization of these
profiles into count vectors. ISOpure is, however, currently
unable to take advantage of data on somatic genetic var-
iants that may help to distinguish reads from normal and
tumor RNA. The value of this genetic data may increase
with increasing read lengths because the chance that an
individual read will cover a polymorphic region will also
increase. Future extensions of ISOpure could include these
data either as priors on estimates of tumor cellularity or
directly as part of the generative model.

Although in this work we focused on addressing inter-
tumor heterogeneity due to normal tissue contamination,
another source of tumor expression variability is intra-
tumor heterogeneity. We expect that when individual
tumors contain more than one cancer cell state, the esti-
mated cancer profile of ISOpure would be a weighted
average of the different cancer cells contributing to the
provided expression profile. However, typical dataset
sizes make estimation of even a single cancer profile per
tumor sample extremely challenging, and was the focus
of ISOpure development. We expect that until multiple
samples from each individual tumor can be obtained in a
widespread manner, it will not be feasible to address the
problem of estimating multiple cancer profiles for each
tumor sample because of the small sample sizes. None-
theless, even with multiple samples per tumor, normal
contamination will still be a problem, necessitating the
use of tools such as ISOpure. We further suggest that
removing the influence of normal contamination may
make it easier to distinguish expression patterns unique
to sub-clonal populations within the purified profile.
Sample purification increases the number of patients

that can benefit from prognostic models by rescuing
samples that otherwise would be discarded because of
low cellularity. We and others [20-23,43] have found
that tumor samples selected for gene expression analysis
vary widely in their cancerous tissue content (Figure 7;
see Additional File 14: Table S3; see Additional File 16:
Table S4), so a large number of patients stand to gain
from improved sample purification. By using ISOpure
for purification, prognostic predictions can be made
immediately after molecular profiling, at minimal mar-
ginal cost. ISOpure can also play an important supple-
mental role to pathological evaluation of tumors by
providing an independent assessment of cancerous RNA
content.

Conclusions
We report a computational purification tool, ISOpure,
which mitigates the effects on gene expression profiles
of normal tissue contamination in tumor samples and
leads to significant improvement in the prediction of
patient prognosis and other clinical variables in lung
and prostate cancer. The purification, gene signature
identification, and testing procedures presented here are
fully automated and unbiased, and require only tumor
and healthy tissue samples, and associated clinical data
(for example, survival or progression indicators). Our
procedure can therefore complement any gene signature
identification method for any solid tumor, possibly also
including those focusing on RNA-seq, protein abun-
dance, or DNA copy-number variation. Although we
have chosen here to build upon the architecture of the
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existing deconvolution algorithm ISOLATE using one
particular regularization strategy, other regularization
strategies and deconvolution methods may be extended
to provide purified, per-tumor cancer expression profiles
as well. Although ISOpure has demonstrated success for
the analysis of lung adenocarcinoma and prostate tumor
samples, future development may be needed to incorpo-
rate the possibility of multiple sub-types in a single patient
cohort. Nonetheless, we have shown that computational
purification methods can improve downstream analyses of
tumor expression profiles. We therefore conclude that
more exploration of intermediate-strength regularization
strategies such as ISOpure may yield significant improve-
ment in downstream analyses of tumor samples and other
situations in which biological samples are composed of
mixtures of cell types.

Additional material

Additional File 1: ISOpure MATLAB code (ZIP format).

Additional File 2: ISOpure cancer profiles from the Beer and
Bhattacharjee cohorts, and part of the Shedden cohorts (ZIP
format).

Additional File 3: ISOpure cancer profiles from part of the Shedden
cohorts (ZIP format).

Additional File 4: ISOpure cancer profiles from part of the Shedden
cohorts (ZIP format).

Additional File 5: ISOpure cancer profiles from the Wallace cohort
(ZIP format).

Additional File 6: Implementation of Clarke’s method for estimating
tumor purity (R code file).

Additional File 7: Figure S1: Comparison of percentage cancerous
tissue made by each pathologist on the Bhattacharjee dataset (PDF
file). The dotted line indicates the y = x axis, and the blue region
indicates where the difference between the estimates of the two

pathologists is less than 13.7% (one standard deviation of their overall
differences).

Additional File 8: Figure S2: Test-set performance of CPH models
on the MSKCC and DFCI cohorts of the Director’s Challenge (PDF
file). We followed the pipeline presented in Figure 3 to train and test
gene signatures. We used the Director’s Challenge training and testing
cohorts as defined in the original study. Illustrated are the test-set
performances of CPH models based on (A) ISOpure cancer profiles, (B)
original, unpurified tumor profiles, (C) Clarke cancer profiles, and (D)
matrix factorization mixing proportions (the 50 mixing weights of the
cancer and normal profiles estimated by ISOpure Step 1). Performance is
adjusted for pathological stage.

Additional File 9: Table S1: Entrez ID and weight of each gene in
the 82-gene signature derived from the original, unpurified lung
tumor profiles of the Beer cohort (unpurified-sig) (XLS file).

Additional File 10: Table S2: Entrez ID and weight of each gene in
the 110-gene signature derived from the ISOpure lung cancer
profiles of the Beer cohort (ISOpure-sig) (XLS file).

Additional File 11: Figure S3: Stage-wise stratification of the
patients who were differentially and similarly classified by ISOpure-
sig and unpurified-sig (PDF file). (A) Plot shows the stratification of the
70-patient sub-group classified differently (’diff’) by ISOpure-sig and
unpurified-sig, and the entire group (’all’). The number of patients in
each category is shown above each bar. (B) Same as (A), but showing
those 370 patients similarly classified between the two signatures
(’same’).

Additional File 12: Figure S4: Distributions of percentage cancerous
tissue for patients with stage I cancer versus all other stages,
computed over all three lung adenocarcinoma datasets (PDF file). N
indicates the number of samples plotted in each box. Six samples were
excluded because of missing stage information.

Additional File 13: Figure S5: Test-set performance of CPH models
on the 277 stage I patients from the Director’s Challenge (PDF file).
In these prediction experiments, the prognostic models are trained on
the Beer cohort, and tested on the stage I patients from the Director’s
Challenge cohorts. Performance of the prognostic models is based on
(A) the original unpurified profiles and (B) the ISOpure cancer profiles.

Additional File 14: Table S3: Estimates of percentage cancerous
tissue made by ISOpure on all three lung adenocarcinoma
(Bhattacharjee, Beer, Shedden) datasets (XLS file).
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Figure 7 ISOpure percentage cancerous tissue estimates for 656 lung adenocarcinomas from three datasets. The median percentage
cancerous tissue is shown as a red solid line. (A) The Beer dataset (N = 86); (B) the Bhattacharjee dataset (N = 127); (C) the four cohorts from
the Director’s Challenge dataset (N = 443).
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Additional File 15: Figure S6: Inter-patient variance of expression
levels for 8,193 genes in the Bhattacharjee dataset, before and
after ISOpure purification (PDF file). The red dashed line is the y = x
line (no change in variance).

Additional File 16: Table S4: Estimates of percentage cancerous
tissue made by ISOpure on the Wang prostate dataset (XLS file).

Additional File 17: Figure S7: Inter-patient variance of expression
levels for 18,185 genes in the Wang dataset, before and after
ISOpure purification (PDF file). The red dashed line is the y = x line
(no change in variance).

Additional File 18: Figure S8: Test-set performance of a CPH model
based on either the unpurified profiles, ISOpure cancer profiles, or
ISOpure-evenprior cancer profiles (PDF file). ISOpure-evenprior cancer
profiles are generated using the same model as ISOpure, except that the
Bayesian prior over each individual cancer profile is replaced by a prior
whose mean vector is the uniform distribution. (A) Test-set performance
of a CPH model trained using the Beer cohort and tested on the entire
Director’s Challenge dataset, when using the original, unpurified tumor
profiles. (B) Same as (A), but using the ISOpure cancer profiles. (C) Same
as (A), but using the ISOpure-evenprior cancer profiles. (D) Test-set
performance of a CPH model trained using the HLM and MI cohorts
from the Director’s Challenge and tested on the MSKCC and DFCI
cohorts from the Director’s Challenge, when using the original,
unpurified profiles. (E) Same as (D), but using the ISOpure cancer profiles.
(F) Same as (D), but using the ISOpure-evenprior cancer profiles.
Performance was adjusted for pathological stage.

Additional File 19: Figure S9: CPH model performance as a function
of the number of normal samples for the Director’s Challenge
dataset (PDF file). We followed the pipeline presented in Figure 3 to
train and test a gene signature, using the Beer and Director’s Challenge
datasets as training and testing cohorts, respectively. The full Beer
dataset contains 10 normal samples and the full Director’s Challenge
dataset contains 49 normal samples from the Landi study. The x-axis
indicates the maximum number of normal samples available to ISOpure
for purifying the tumor samples from the training and testing cohorts.
Each box shows the distribution of performance for 49 prognostic
signatures, each trained with profiles that were purified using a random
subset of normal profiles of the indicated size. Because the training
cohort only had 10 normal samples, after x = 10 we used all 10 normal
samples for purification of the training cohort. The y-axis indicates the
significance of the improvement in performance over the CPH model
trained and tested on the unpurified profiles, as measured by the P-value
from a likelihood ratio test.

Additional File 20: Figure S10: Improvement in extra-prostatic
extension (EPE) predictive performance as a function of the number
of normal samples (PDF file). Predictive power improvement was
measured as the difference in accuracy between classifiers trained using
the original expression profiles and the ISOpure cancer profiles. For each
size of the subset of normal profiles tested, 18 random subsets were
drawn from the full set of normal profiles.

Additional File 21: Figure S11: CPH model performance as a
function of the training cohort size for the Director’s Challenge
dataset (PDF file). The Director’s Challenge cohorts were divided into
the same 254-patient training cohort and 186-patient testing cohort
used in the original study. Subsets of different sizes of the training
cohort were sampled to generate smaller training cohorts, which were
then used to identify gene signatures that were evaluated on the full
186-patient testing cohort, as outlined in Figure 3. Results were averaged
over 1000 random subsets of each training cohort size and, along with
the standard error, are shown for both the ISOpure cancer profiles and
the original unpurified profiles. The dotted line indicates the training
cohort size required (N = 212) for the CPH model based on ISOpure
cancer profiles, to achieve the same performance as that achieved by
the CPH model based on the original unpurified profiles at a training
cohort size of 250 patients. Performance is measured by the hazard ratio
(HR), where higher HR is better.

Abbreviations
DSGA: disease-specific genomic analysis; EPE: extra-prostatic extension; HR:
hazard ratio; ID: identifier; ISOLATE: Identification of Sites of Origin by Latent
Variables; MAP: maximum a posteriori; RMA: robust multi-array average;
RPKM: reads per kilobase per million mapped reads; SD: standard deviation;
CPH: Cox proportional hazards;

Competing interests
The authors have filed for intellectual property protection on the lung
cancer prognostic signature ISOpure-sig.

Authors’ contributions
GQ, PCB, and QM conceived the project and designed the experiments. GQ,
AC, and QM designed the ISOpure model. SH, AGD, and PCB collected and
pre-processed the gene expression and clinical indicator data. GQ, SH, AGD,
and PCB carried out the experiments. All authors analyzed the data and
wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This study was funded by a Natural Sciences and Engineering Research
Council (NSERC) operating grant and an Early Researcher Award from the
Ontario Research Fund to QM, a NSERC PGS Doctoral fellowship to GQ, and
a NSERC Julie Payette Scholarship to AGD. This study was conducted with
the support of the Ontario Institute for Cancer Research to PCB through
funding provided by the Government of Ontario.

Authors’ details
1Department of Computer Science, University of Toronto, 10 King’s College
Road, Room 3302, Toronto, ON, Canada, M5S 3G4. 2Informatics and
Biocomputing Platform, Ontario Institute for Cancer Research, 101 College
Street, Suite 800, Toronto, ON, Canada, M5G 0A3. 3Computer Laboratory,
University of Cambridge, 15 JJ Thomson Avenue, Cambridge, United
Kingdom, CB3 0FD. 4Edward S. Rogers Sr. Department of Electrical and
Computer Engineering, University of Toronto, 10 King’s College Road, Room
SFB540, Toronto, ON, Canada, M5S 3G4. 5Division of Engineering Science,
University of Toronto, 40 St. George Street, Suite 2110, Toronto, ON, Canada,
M5S 2E4. 6Department of Medical Biophysics, University of Toronto, 610
University Avenue, Room 7-411, Toronto, ON, Canada, M5G 2M9.
7Department of Molecular Genetics, University of Toronto, 1 King’s College
Circle, Room 4396, Toronto, ON, Canada, M5S 1A8. 8The Donnelly Centre,
160 College Street, Room 230, Toronto, ON, Canada, M5S 3E1. 9Current
address: Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA.

Published: 28 March 2013

References
1. Herbst RS, Heymach JV, Lippman SM: Lung cancer. New Engl J Med 2008,

359:1367-80.
2. Liotta L, Petricoin E: Molecular profiling of human cancer. Nat Rev Genet

2000, 1:48-56.
3. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP,

Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES:
Molecular classification of cancer: class discovery and class prediction by
gene expression monitoring. Science 1999, 286:531-7.

4. Ishibashi Y, Hanyu N, Nakada K, Suzuki Y, Yamamoto T, Yanaga K,
Ohkawa K, Hashimoto N, Nakajima T, Saito H, Matsushima M, Urashima M:
Profiling gene expression ratios of paired cancerous and normal tissue
predicts relapse of esophageal squamous cell carcinoma. Cancer Res
2003, 63:5159-64.

5. Korkola JE, DeVries S, Fridlyand J, Hwang ES, Estep AL, Chen YY, Chew KL,
Dairkee SH, Jensen RM, Waldman FM: Differentiation of lobular versus
ductal breast carcinomas by expression microarray analysis. Cancer Res
2003, 63:7167-7175.

6. Boutros PC, Lau SK, Pintilie M, Liu N, Shepherd FA, Der SD, Tsao MS,
Penn LZ, Jurisica I: Prognostic gene signatures for non-small-cell lung
cancer. P Natl Acad Sci USA 2009, 106:2824-2828.

7. Chibon F, Lagarde P, Salas S, Perot G, Brouste V, Tirode F, Lucchesi C, De
Reynies A, Kauffmann A, Bui B, Terrier P, Bonvalot S, Le Cesne A, Vince-

Quon et al. Genome Medicine 2013, 5:29
http://genomemedicine.com/content/5/3/29

Page 18 of 20

http://www.biomedcentral.com/content/supplementary/gm433-S15.???
http://www.biomedcentral.com/content/supplementary/gm433-S16.???
http://www.biomedcentral.com/content/supplementary/gm433-S17.???
http://www.biomedcentral.com/content/supplementary/gm433-S18.???
http://www.biomedcentral.com/content/supplementary/gm433-S19.???
http://www.biomedcentral.com/content/supplementary/gm433-S20.???
http://www.biomedcentral.com/content/supplementary/gm433-S21.???


Ranchere D, Blay JY, Collin F, Guillou L, Leroux A, Coindre JM, Aurias A:
Validated prediction of clinical outcome in sarcomas and multiple types
of cancer on the basis of a gene expression signature related to
genome complexity. Nat Med 2010, 16:781-787.

8. Korkola JE, Houldsworth J, Feldman DR, Olshen AB, Qin LX, Patil S,
Reuter VE, Bosl GJ, Chaganti RS: Identification and validation of a gene
expression signature that predicts outcome in adult men with germ cell
tumors. J Clin Oncol 2009, 27:5240-5247.

9. Lau SK, Boutros PC, Pintilie M, Blackhall FH, Zhu CQ, Strumpf D,
Johnston MR, Darling G, Keshavjee S, Waddell TK, Liu N, Lau D, Penn LZ,
Shepherd FA, Jurisica I, Der SD, Tsao MS: Three-gene prognostic classifier
for early-stage non small-cell lung cancer. J Clin Oncol 2007,
25:5562-5569.

10. Van ‘t Veer LJ, Dai H, Van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL,
Van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM,
Roberts C, Linsley PS, Bernards R, Friend SH: Gene expression profiling
predicts clinical outcome of breast cancer. Nature 2002, 415:530-536.

11. Vermeulen J, De Preter K, Naranjo A, Vercruysse L, Van Roy N, Hellemans J,
Swerts K, Bravo S, Scaruffi P, Tonini GP, De Bernardi B, Noguera R,
Piqueras M, Canete A, Castel V, Janoueix-Lerosey I, Delattre O,
Schleiermacher G, Michon J, Combaret V, Fischer M, Oberthuer A,
Ambros PF, Beiske K, Benard J, Marques B, Rubie H, Kohler J, Potschger U,
Ladenstein R, et al: Predicting outcomes for children with neuroblastoma
using a multigene-expression signature: a retrospective SIOPEN/COG/
GPOH study. Lnacet Oncol 2009, 10:663-671.

12. Zhu CQ, Ding K, Strumpf D, Weir BA, Meyerson M, Pennell N, Thomas RK,
Naoki K, Ladd-Acosta C, Liu N, Pintilie M, Der S, Seymour L, Jurisica I,
Shepherd FA, Tsao MS: Prognostic and predictive gene signature for
adjuvant chemotherapy in resected non-small-cell lung cancer. J Clin
Oncol 2010, 28:4417-4424.

13. Khambata-Ford S, Garrett CR, Meropol NJ, Basik M, Harbison CT, Wu S,
Wong TW, Huang X, Takimoto CH, Godwin AK, Tan BR, Krishnamurthi SS,
Burris HA, Poplin EA, Hidalgo M, Baselga J, Clark EA, Mauro DJ: Expression
of epiregulin and amphiregulin and K-ras mutation status predict
disease control in metastatic colorectal cancer patients treated with
cetuximab. J Clin Oncol 2007, 25:3230-3237.

14. Quon G, Morris Q: ISOLATE: a computational strategy for identifying the
primary origin of cancers using high-throughput sequencing.
Bioinformatics 2009, 25:2882-2889.

15. Varadhachary GR, Talantov D, Raber MN, Meng C, Hess KR, Jatkoe T, Lenzi R,
Spigel DR, Wang Y, Greco FA, Abbruzzese JL, Hainsworth JD: Molecular
profiling of carcinoma of unknown primary and correlation with clinical
evaluation. J Clin Oncol 2008, 26:4442-4448.

16. Bueno-de-Mesquita JM, Van Harten WH, Retel VP, van’t Veer LJ, Van
Dam FS, Karsenberg K, Douma KF, Van Tinteren H, Peterse JL, Wesseling J,
Wu TS, Atsma D, Rutgers EJ, Brink G, Floore AN, Glas AM, Roumen RM,
Bellot FE, Van Krimpen C, Rodenhuis S, Van de Vijver MJ, Linn SC: Use of
70-gene signature to predict prognosis of patients with node-negative
breast cancer: a prospective community-based feasibility study (RASTER).
Lnacet Oncol 2007, 8:1079-1087.

17. Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC, Bakx N, Lahti-
Domenici JS, Bruinsma TJ, Warmoes MO, Bernards R, Wessels LF, Van’t
Veer LJ: Converting a breast cancer microarray signature into a high-
throughput diagnostic test. BMC Genomics 2006, 7:278.

18. Monzon FA, Lyons-Weiler M, Buturovic LJ, Rigl CT, Henner WD, Sciulli C,
Dumur CI, Medeiros F, Anderson GG: Multicenter validation of a 1,550-
gene expression profile for identification of tumor tissue of origin. J Clin
Oncol 2009, 27:2503-2508.

19. Trial watch: Adaptive BATTLE trial uses biomarkers to guide lung cancer
treatment.. Nat Rev Drug Discov 2010, 9:423.

20. Stuart RO, Wachsman W, Berry CC, Wang-Rodriguez J, Wasserman L,
Klacansky I, Masys D, Arden K, Goodison S, McClelland M, Wang Y,
Sawyers A, Kalcheva I, Tarin D, Mercola D: In silico dissection of cell-type-
associated patterns of gene expression in prostate cancer. P Natl Acad
Sci USA 2004, 101:615-620.

21. Wang Y, Xia XQ, Jia Z, Sawyers A, Yao H, Wang-Rodriquez J, Mercola D,
McClelland M: In silico estimates of tissue components in surgical
samples based on expression profiling data. Cancer Res 2010,
70:6448-6455.

22. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C,
Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES,

Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M: Classification
of human lung carcinomas by mRNA expression profiling reveals
distinct adenocarcinoma subclasses. P Natl Acad Sci USA 2001,
98:13790-13795.

23. West NP, Dattani M, McShane P, Hutchins G, Grabsch J, Mueller W,
Treanor D, Quirke P, Grabsch H: The proportion of tumour cells is an
independent predictor for survival in colorectal cancer patients. Brit J
Cancer 2010, 102:1519-1523.

24. Bachtiary B, Boutros PC, Pintilie M, Shi W, Bastianutto C, Li JH, Schwock J,
Zhang W, Penn LZ, Jurisica I, Fyles A, Liu FF: Gene expression profiling in
cervical cancer: an exploration of intratumor heterogeneity. Clin Cancer
Res 2006, 12:5632-5640.

25. Okaty BW, Sugino K, Nelson SB: A quantitative comparison of cell-type-
specific microarray gene expression profiling methods in the mouse
brain. PLoS One 2011, 6:e16493.

26. Venet D, Pecasse F, Maenhaut C, Bersini H: Separation of samples into
their constituents using gene expression data. Bioinformatics 2001,
17(Suppl 1):S279-87.

27. Lahdesmaki H, Shmulevich L, Dunmire V, Yli-Harja O, Zhang W: In silico
microdissection of microarray data from heterogeneous cell populations.
BMC Bioinformatics 2005, 6:54.

28. Erkkila T, Lehmusvaara S, Ruusuvuori P, Visakorpi T, Shmulevich I,
Lahdesmaki H: Probabilistic analysis of gene expression measurements
from heterogeneous tissues. Bioinformatics 2010, 26:2571-2577.

29. Ghosh D: Mixture models for assessing differential expression in
complex tissues using microarray data. Bioinformatics 2004, 20:1663-1669.

30. Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM,
Hastie T, Sarwal MM, Davis MM, Butte AJ: Cell type-specific gene
expression differences in complex tissues. Nat Methods 2010, 7:287-289.

31. Tolliver D, Tsourakakis C, Subramanian A, Shackney S, Schwartz R: Robust
unmixing of tumor states in array comparative genomic hybridization
data. Bioinformatics 2010, 26:i106-14.

32. Bar-Joseph Z, Siegfried Z, Brandeis M, Brors B, Lu Y, Eils R, Dynlacht BD,
Simon I: Genome-wide transcriptional analysis of the human cell cycle
identifies genes differentially regulated in normal and cancer cells. P
Natl Acad Sci USA 2008, 105:955-60.

33. Clarke J, Seo P, Clarke B: Statistical expression deconvolution from mixed
tissue samples. Bioinformatics 2010, 26:1043-1049.

34. Gosink MM, Petrie HT, Tsinoremas NF: Electronically subtracting
expression patterns from a mixed cell population. Bioinformatics 2007,
23:3328-3334.

35. Polak E, Ribiere G: Note sur la convergence de méthodes de directions
conjuguées. ESAIM-Math Model Num 1969, 3:35-43.

36. ISOpure download site.. [http://morrislab.med.utoronto.ca/software.html].
37. Clarke deconvolution method download site.. [http://biomed.miami.edu/?

p=484&pid=185&m=facultyph&mid=1&item=328].
38. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries

of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31:e15.
39. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE,

Myers RM, Speed TP, Akil H, Watson SJ, Meng F: Evolving gene/transcript
definitions significantly alter the interpretation of GeneChip data. Nucleic
Acids Res 2005, 33:e175.

40. Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L,
Chen G, Gharib TG, Thomas DG, Lizyness ML, Kuick R, Hayasaka S, Taylor JM,
Iannettoni MD, Orringer MB, Hanash S: Gene-expression profiles predict
survival of patients with lung adenocarcinoma. Nat Med 2002, 8:816-824.

41. Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL,
Eschrich S, Jurisica I, Giordano TJ, Misek DE, Chang AC, Zhu CQ, Strumpf D,
Hanash S, Shepherd FA, Ding K, Seymour L, Naoki K, Pennell N, Weir B,
Verhaak R, Ladd-Acosta C, Golub T, Gruidl M, Sharma A, Szoke J,
Zakowski M, Rusch V, Kris M, Viale A, et al: Gene expression-based survival
prediction in lung adenocarcinoma: a multi-site, blinded validation
study. Nat Med 2008, 14:822-827.

42. Landi MT, Dracheva T, Rotunno M, Figueroa JD, Liu H, Dasgupta A,
Mann FE, Fukuoka J, Hames M, Bergen AW, Murphy SE, Yang P, Pesatori AC,
Consonni D, Bertazzi PA, Wacholder S, Shih JH, Caporaso NE, Jen J: Gene
expression signature of cigarette smoking and its role in lung
adenocarcinoma development and survival. PLoS One 2008, 3:e1651.

43. Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG,
Stephens RM, Caporaso NE, Loffredo CA, Ambs S: Tumor

Quon et al. Genome Medicine 2013, 5:29
http://genomemedicine.com/content/5/3/29

Page 19 of 20

http://morrislab.med.utoronto.ca/software.html
http://biomed.miami.edu/?p=484&pid=185&m=facultyph&mid=1&item=328
http://biomed.miami.edu/?p=484&pid=185&m=facultyph&mid=1&item=328


immunobiological differences in prostate cancer between African-
American and European-American men. Cancer Res 2008, 68:927-936.

44. Friedman J, Hastie T, Tibshirani R: Regularization Paths for Generalized
Linear Models via Coordinate Descent. J Stat Softw 2010, 33:1-22.

45. Stephenson AJ, Scardino PT, Eastham JA, Bianco FJ Jr, Dotan ZA,
DiBlasio CJ, Reuther A, Klein EA, Kattan MW: Postoperative nomogram
predicting the 10-year probability of prostate cancer recurrence after
radical prostatectomy. J Clin Oncol 2005, 23:7005-7012.

46. Subramanian J, Simon R: Gene expression-based prognostic signatures in
lung cancer: ready for clinical use?. J Natl Cancer I 2010, 102:464-474.

47. Thompson IM, Tangen CM, Paradelo J, Lucia MS, Miller G, Troyer D,
Messing E, Forman J, Chin J, Swanson G, Canby-Hagino E, Crawford ED:
Adjuvant radiotherapy for pathological T3N0M0 prostate cancer
significantly reduces risk of metastases and improves survival: long-term
followup of a randomized clinical trial. J Urology 2009, 181:956-962.

48. Magi-Galluzzi C, Evans AJ, Delahunt B, Epstein JI, Griffiths DF, Van der
Kwast TH, Montironi R, Wheeler TM, Srigley JR, Egevad LL, Humphrey PA:
International Society of Urological Pathology (ISUP) Consensus
Conference on Handling and Staging of Radical Prostatectomy
Specimens. Working group 3: extraprostatic extension, lymphovascular
invasion and locally advanced disease. Modern Pathol 2011, 24:26-38.

49. Montanaro L, Trere D, Derenzini M: Nucleolus, ribosomes, and cancer. Am
J Pathol 2008, 173:301-310.

50. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Grönberg H, Drake CG, Nakai Y,
Isaacs WB, Nelson WG: Inflammation in prostate carcinogenesis. Nat Rev
Cancer 2007, 7:256-69.

51. Nicolau M, Tibshirani R, Børresen-Dale A-L, Jeffrey SS: Disease-specific
genomic analysis: identifying the signature of pathologic biology.
Bioinformatics 2007, 23:957-65.

52. Integrated genomic analyses of ovarian carcinoma.. Nature 2011,
474:609-15.

53. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, Speed D,
Lynch AG, Samarajiwa S, Yuan Y, Gräf S, Ha G, Haffari G, Bashashati A,
Russell R, McKinney S, Langerød A, Green A, Provenzano E, Wishart G,
Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A,
Børresen-Dale A-L, Brenton JD, Tavaré S, Caldas C, et al: The genomic and
transcriptomic architecture of 2,000 breast tumours reveals novel
subgroups. Nature 2012, 486:346-52.

54. Nowak F, Soria J-C, Calvo F: Tumour molecular profiling for deciding
therapy-the French initiative. Nat Rev Clin Oncol 2012, 9:479-86.

55. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008,
5:621-8.

56. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ,
Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by
RNA-Seq reveals unannotated transcripts and isoform switching during
cell differentiation. Nat Biotechnol 2010, 28:511-515.

57. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ: Deep surveying of alternative
splicing complexity in the human transcriptome by high-throughput
sequencing. Nat Genet 2008, 40:1413-5.

doi:10.1186/gm433
Cite this article as: Quon et al.: Computational purification of individual
tumor gene expression profiles leads to significant improvements in
prognostic prediction. Genome Medicine 2013 5:29.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Quon et al. Genome Medicine 2013, 5:29
http://genomemedicine.com/content/5/3/29

Page 20 of 20


	Abstract
	Background
	Methods
	The challenge of computational purification
	ISOpure overview
	ISOpure inputs
	ISOpure outputs
	Summary of key features of ISOpure
	Additional estimated parameters of ISOpure

	ISOpure algorithm
	ISOpure pre-processing and data transformation
	ISOpure statistical model
	ISOpure Step 1: Estimate tumor purities α1,α2,...,αN and the reference cancer profile m using the collection of tumor profiles
	ISOpure Step 2: estimate individual cancer profiles cn for each tumor profile
	ISOpure post-processing and data transformation
	ISOpure summary

	The ISOpure-evenprior algorithm
	Application of the Clarke method for computational purification
	Predicting prognosis using the matrix factorization method
	Array data processing
	Gene signature identification and testing
	Prediction of extra-prostatic extension in prostate tumors
	Measuring prognostic performance as a function of training cohort size

	Results
	Computational purification improves prognostic gene signatures for lung and prostate cancer
	ISOpure tumor purity predictions correlate with pathologist estimates

	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


