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SUMMARY
Cellular conversion can be induced by perturbing a handful of key transcription factors (TFs). Replacement of direct manipulation of key

TFs with chemical compounds offers a less laborious and safer strategy to drive cellular conversion for regenerative medicine. Neverthe-

less, identifying optimal chemical compounds currently requires large-scale screening of chemical libraries, which is resource intensive.

Existing computational methods aim at predicting cell conversion TFs, but there are no methods for identifying chemical compounds

targeting these TFs. Here, we develop a single cell-based platform (SiPer) to systematically prioritize chemical compounds targeting

desired TFs to guide cellular conversions. SiPer integrates a large compendium of chemical perturbations on non-cancer cells with a

networkmodel and predicted known and novel chemical compounds in diverse cell conversion examples. Importantly, we applied SiPer

to develop a highly efficient protocol for human hepatic maturation. Overall, SiPer provides a valuable resource to efficiently identify

chemical compounds for cell conversion.
INTRODUCTION

The generation of desired functional cells by using cellular

conversion protocols is of clinical interest, providing a

valuable resource for cell transplantation and in vivo

cellular conversion as therapeutic strategies. It has been

observed that a handful of specific transcription factors

(TFs) is usually sufficient to trigger cellular conversion

(Morris and Daley, 2013). Indeed, researchers have devel-

oped experimental cell conversion protocols with forced

ectopic expression of specific sets of TFs in target cells (Co-

lasante et al., 2015; Takahashi et al., 2007). In contrast to

conventional cellular conversion by genetic methods,

many studies have revealed that chemical compounds

alone can induce cell fate conversion without manipula-

tion of genetic materials (Ye et al., 2016; Hou et al., 2013;

Cheng et al., 2015). Compared with TF-based protocols,

chemical compounds are more easily controlled by adjust-

ing the concentrations, durations, and combinations (Ye

et al., 2016) and are usually more cost effective and cell

permeable (Hou et al., 2013; Cao et al., 2016). In addition,

they can avoid risks related to genetic manipulations such

as unwanted long-term expression of the delivered TFs, in-

flammatory responses, and the possibility for insertional

mutagenesis (Cie�slar-Pobuda et al., 2017). However, a ma-

jor drawback of chemical compounds is that they usually
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act on cellular signaling networks, which could lead to un-

desired, potentially detrimental activation/inactivation of

downstream TFs, while researchers have revealed that the

regulation of specific TFs is essential for the generation of

desired cell types (Treutlein et al., 2016; Morris et al.,

2014). Thus, ideally one wishes to perturb a specific set of

target TFs using chemical compounds, while minimizing

the effect on non-target TFs. Nevertheless, this is a chal-

lenging task, as downstream target TFs of each small mole-

cule in each cell type are largely unknown. Currently,

chemical-induced cellular conversion protocols rely on

large-scale screening of small molecules, which is ineffi-

cient and resource intensive. In this regard, computational

guidance can be of great help prioritize chemical com-

pounds for cellular conversion. Nevertheless, existing

computational methods, which are designed to identify

cellular conversion TFs (Cahan et al., 2014; D’Alessio

et al., 2015; Ribeiro et al., 2021), do not provide informa-

tion on chemical compounds targeting these TFs.

To date, some computational methods, such as Connec-

tivity Map (CMap) (Lamb et al., 2006; Subramanian et al.,

2017) and DECCODE (Napolitano et al., 2021), have

been designed to predict chemical compounds on the basis

of the similarity between pre-compiled transcriptional

changes before and after perturbations and query gene sig-

natures. Although these methods have an advantage in
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making accurate predictions for chemical compounds pre-

sent in the compendium, they are unable to predict com-

pounds that do not exist in the compendium and conse-

quently their top predictions may be suboptimal. In

addition, these methods rely on differentially expressed

genes (DEGs), which are not optimal for recognizing small

differences in cell conversion TF cocktails that result in

distinct cell types or phenotypes. Furthermore, the current

existing compendia of gene expression profiles analyzed af-

ter cell perturbations consist mostly of cancer cells (Lamb

et al., 2006; Subramanian et al., 2017), which are known

to possess signal transduction pathways and transcrip-

tional logics that are significantly different from those of

non-cancer cells (Sharma and Petsalaki, 2019; Pawson

and Warner, 2007). Therefore, the compendia are not suit-

able for identifying chemical compounds for cellular con-

versions on normal cells.

Here, we present SiPer (signaling proteins and chemical

perturbagens), a single-cell RNA sequencing (scRNA-seq)-

based computational platform that identifies signaling pro-

teins and chemical perturbagens (including small mole-

cules, drugs, and cytokines) for targeting desired sets of

TFs to induce conversion of cell populations. SiPer inte-

grates an initial cell-specific network model with a manu-

ally collected compendium of 5,591 experimentally gener-

ated transcriptional signatures of non-cancer cells within

6 h before and after chemical perturbations. The applica-

tion of SiPer correctly identifies perturbagens and their cor-

responding protein targets of known chemical-induced cell

conversion examples, including cellular phenotypic state

conversion and cell type conversion. Furthermore, we

apply SiPer to identify chemical compounds for driving

the differentiation of hepatic progenitors into functional

human induced hepatocytes (hiHeps), which resemble pri-

mary hepatocytes (PHs) in cell identify and functionality.

Finally, we demonstrate that the approach followed by

SiPer, which relies on targeting cellular conversion TFs,

generates more accurate predictions for chemical com-

pounds than the existing methods (Subramanian et al.,

2017; Napolitano et al., 2021).

In summary, SiPer is a valuable resource for funneling ef-

forts toward the establishment of high-quality chemical

cellular conversion protocols, enabling the design of new

experimental strategies in regenerative medicine. SiPer is

freely available as a web application at https://siper.uni.lu.
RESULTS

Overview of SiPer algorithm

SiPer is designed to prioritize chemical perturbagens and

their corresponding protein targets in the intracellular

signaling network (signaling proteins) that have high pos-
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sibilities to activate/inhibit desired sets of query TFs for en-

gineering cell populations (Figure 1A). The algorithm of

SiPer is composed of three major stages (Figure 1B; experi-

mental procedures). First, SiPer pre-selects candidate

signaling proteins from the built-in perturbation database

focusing on non-cancer cells, which is called non-cancer

cell perturbation compendium (NCPC). NCPC is

composed of two parts, Perturb-reTFs and Perturb-targets

(Figure 1C). Perturb-reTFs is a compendium of response

transcriptional signatures (differentially expressed TFs

[DETFs]) to each signaling perturbagen (supplemental

experimental procedures), and Perturb-targets is a compen-

dium of the protein targets of each signaling perturbagen

(supplemental experimental procedures). NCPC contained

5,591 transcriptional profiles in response to chemical per-

turbations across 134 different types of non-cancer cells

from three species, human, mouse, and rat (Table S1).

These profiles were derived from 2,386 unique signaling

perturbagens, which covered 2,072 TFs in both activation

(up) and inhibition (down) directions. In particular, we

counted the frequencies of TFs that are known to be impor-

tant for developmental processes (developmental TFs) and

pioneer transcription factors (PFs), as these TFs carry the

ability to alternate cell fates and should be contained in

NCPC in sufficient amounts. The definitions of develop-

mental TFs and PFs were obtained from Huilgol et al.

(2019) and from Ribeiro et al. (2021) and Sunkel and Stan-

ton (2021), respectively. Except for the three TFs (HMGN1,

DEC1, and DEC2) that are not defined as TFs in our TF list,

all the developmental TFs were observed multiple times in

both activation and inhibition directions and all the PFs

were observed multiple times (Table S2). In fact, the devel-

opmental TFs and PFs are significantly more frequently

observed in NCPC than the other TFs (Figure S1). Thus,

the presented evidence suggests that NCPC contains a suf-

ficient number of each of the TFs that are important for cell

conversion. Second, the candidate signaling proteins iden-

tified by stage 1 donot consider the initial state of the query

cell type. In stage 2, SiPer further filters out the signaling

proteins predicted from stage 1 that are not specific to the

query cell type. SiPer combines scRNA-seq data of the

initial cell population and the prior knowledge network

(PKN) (supplemental experimental procedures) to priori-

tize signaling proteins that are specific to the initial cellular

state (Figure 1B). The PKN consists of two layers, the up-

stream signaling network and downstream TF-TF interac-

tions. These two layers of networks are combined by inter-

face TFs, which mediate the signal transduction from

cytoplasm to the nucleus. This resulted in complete PKNs

including 6,633 genes and 96,137 interactions for human

and 6,825 genes and 109,789 interactions for mouse and

rat (Table S3). Finally, SiPer divides the final set of predicted

signaling proteins from stage 2 into different functional

https://siper.uni.lu
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Figure 1. Schematic outline of SiPer
(A) The workflow of SiPer. The input of SiPer includes the initial scRNA-seq and desired TFs provided by the user. Given input, SiPer
identifies chemical perturbagens and corresponding signaling protein targets (SPs) to different kinds of cellular conversions, including
conversions between cell types, cell subtypes and phenotypic states.
(B) SiPer contains three major stages: (1) pre-selection of candidate signaling proteins from the built-in NCPC by using query TFs, (2)
network-based modeling to predict initial cellular state-specific signaling proteins targeting the query set of TFs using scRNA-seq of initial
cell type/state, and (3) identification of perturbagens targeting the predicted signaling proteins.
(C) NCPC is composed of two compendia, Perturb-reTFs and Perturb-targets. Perturb-reTFs contains perturbagens and their response TFs
identified by transcriptomics data collected from GEO, ArraryExpress and LINCS L1000. Perturb-targets contains perturbagens and their
signaling protein targets from Drugbank, STITCH, CLUE Repurposing, and manually curated ligand-receptor interactions.
groups on the basis of Reactome signaling pathways. For

each group of signaling proteins, SiPer identifies optimal

perturbagens on the basis of the similarity between their

target proteins and the predicted signaling proteins (Fig-

ure 1B). In addition, SiPer annotates the functional mech-

anism of perturbagens and automatically separates pertur-

bagens into different groups on the basis of their

similarities in target proteins, which allows users to design

an optimal combination of perturbagens targeting distinct

functional groups.

SiPer accurately predicts perturbagens for various

cellular conversions

SiPer was first applied to the conversion between different

phenotypic states of the same cell type, where the conver-

sion chemical cocktails are experimentally validated (Fig-

ure 2A; Table S4). Predicted signaling proteins exhibited

high specificity to the respective query TFs (Figure 2B)

and allowed the identification of perturbagens that target
these proteins. For example, for the conversion of lineage

primed embryonic stem cells (ESCs) to a more plastic naive

state in both human and mouse, SiPer was able to predict

both perturbagens and signaling proteins. In particular,

the two classical inhibitors (2i) CHIR99021 and

PD0325901 (Ying et al., 2008; Zimmerlin et al., 2016)

were correctly identified. In addition to these two inhibi-

tors, SiPer predicted LIF in both mouse ESCs (mESCs) and

human ESCs (hESCs), which is an important cytokine

required for sustaining ESC self-renewal (Niwa et al.,

1998). Furthermore, as the 2i is not sufficient to maintain

a stable naive state of hESCs (Zimmerlin et al., 2017), addi-

tional chemical compounds for the maintenance of the

ground state of naive hESCs, such as forskolin (Park et al.,

2018) and WH-4-023 (Theunissen et al., 2014), were iden-

tified by SiPer as well. Moreover, Theunissen et al. (2014)

showed that activin A enhanced the efficiency of naive

hESCs conversion from the primed state, which was also

predicted by SiPer (Theunissen et al., 2014). SiPer network
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visualization of the underlying putative signaling cascades

(supplemental experimental procedures) also identified

CTNNB1 (Figure 2C), the central effector of WNT signaling

stimulated by CHIR99021 (Zimmerlin et al., 2016). In addi-

tion, FOXO1 and SMAD2 that are essential for mediating

the signal to the query TFs were also predicted (Figure 2C),

consistent with their key role in maintaining pluripotency

(Sakaki-Yumoto et al., 2013; Zhang et al., 2011). We further

investigated the predictive power of SiPer in broad cell type

conversions with reported chemical conversion cocktails,

including cell reprogramming and differentiation (Fig-

ure 2A; Table S4). Specifically, given the conversion TFs

for GABAergic neurons from human fibroblasts reported

by (Colasante et al., 2015), multiple essential chemical

compounds and corresponding protein targets reported

in previous study were also captured by SiPer, including

CHIR99021, Pifithrin-a, LDN193189, and forskolin (Dai

et al., 2015). Moreover, a NOTCH-independent role of

RBPJ in the neuronal specialization into GABAergic neu-

rons has been reported, which was recapitulated by SiPer

network visualization where RBPJ acts as a key regulator

of the target TFs in the absence of NOTCH (Figure 2D)

(Hori et al., 2008; Komine et al., 2011). Next, we applied

SiPer to identify perturbagens and key signaling proteins

in the context of cellular differentiation (Table S4). The

chemical compound cocktails composed of 3-isobutyl-1-

methylxanthine, indomethacin, dexamethasone, and in-

sulin have been shown to induce the adipogenic differenti-

ation of humanMSCs (Pittenger et al., 1999). The signaling

protein targets of these four chemical compoundswere pre-

dicted by SiPer, including ADORA1 and CFTR for

3-isobutyl-1-methylxanthine, NR3C1 andNR3C2 for indo-

methacin, IGF1R for insulin and PTGS1 for dexametha-

sone. In agreement with this, dexamethasone and a COX

inhibitor DUP-697 were identified as perturbagens. Besides

the predicted proteins, SiPer network visualization further

identified several pro-adipogenic genes, such as CTNNB1

(Chen et al., 2020), RAC1 (Kunitomi et al., 2020),
Figure 2. Application of SiPer to different kinds of cellular conve
(A) Number of experimentally validated perturbagens predicted by S
validated perturbagens that are directly predicted. Blue, perturbagens
perturbagens with similar function are predicted. Gray, perturbagens
(B) SiPer’s efficiency score matrix denoting the regulatory potential
represents the average efficiency score of top 20 predicted signa
‘‘phESC_nhESC’’ means primed hESC converts to naive hESC. Abbrevi
nmESC, naive hESC/mESC; hNES, human neuroepithelial; hProgFPM,
embryonic fibroblast; iN, induced GABAergic neuron; iCM, induced ca
fibroblast; iBA, induced brown adipocyte; iPSC, induced pluripotent ste
progenitor; Mono, monocyte; Macro, macrophage.
(C–E) SiPer network visualization of putative signaling cascades betw
protein targets (yellow diamond), intermediate signaling proteins (w
conversion of primed ESCs to naive ESCs. (D) Reprogramming into GAB
(F) Adjusted p value of Fisher’s exact test for 200 benchmarking data
PPP1CB (Cho et al., 2015), and CREB1 (Zhang et al.,

2004) (Figure 2E), indicating that they might regulate the

differentiation TFs in a coordinated fashion.

We performed Fisher’s exact test to examine whether

SiPer’s predictions were significantly enriched for correct

perturbagens in comparison with the total number of

predicted perturbagens and to the total number of correct

perturbagens, which resulted in a significant p value

(<2.7 3 10�11). Note that to compensate for the small

numbers of correct perturbagens and example cases, the

test was carried out by aggregating all the examples. It is

also important to emphasize that this p value was

computed under the assumption that all unknown ones

were false positives. However, many perturbagens had

similar functions or protein targets as the correct ones

and are potentially novel hits that have not been reported

previously (e.g., light blue bars in Figure 2A). Therefore, the

enrichment for true hits is likely higher.

Taken together, these results demonstrate that the cur-

rent challenge of replacing TFs with chemical compounds

in cellular conversion protocols, especially conversions be-

tween phenotypic states and cell subtypes, could be poten-

tially addressed by SiPer.

Statistical evaluation of SiPer performance

Next, we performed a large-scale statistical assessment

of SiPer’s predictive accuracy toassess SiPer’s general applica-

bility beyond the example cases above. To this end,

we collected 200 benchmarking datasets in which the per-

turbagen and signaling protein targets of the perturbagen

are known and the scRNA-seq data of initial cellular

state is available (supplemental experimental procedures;

Table S1). Note, these datasets are not necessarily related to

cell identity conversion (e.g., differentiation, reprogram-

ming) but can also be related to phenotypic changes, such

as cell activation or disease treatment. The performance of

signaling protein prediction by SiPer was examined using

Fisher’s exact test for both individual datasets and the
rsion
iPer in different cellular conversion cases. Orange, experimentally
that are not predicted directly, but their protein targets or the other
are not predicted in either way.
of signaling proteins to downstream TFs. Each cell in the heatmap
ling proteins to corresponding conversion TF sets. For example,
ations for (A) and (B): phESC/pmESC, primed hESC/mESC; nhESC/
human floor plate midbrain progenitor; HEF/MEF, human/mouse
rdiomyocytes; iNSC, induced neural stem cell; HDF, human dermal
m cell; MSC, mesenchymal stem cell; ADP, adipocyte; PP, pancreatic

een predicted perturbagens (orange rectangle), predicted signaling
hite ellipse), and query TFs (blue hexagon). (C) Phenotypic state
Aergic neurons from HEFs. (E) differentiation of MSCs to adipocytes.
sets in the prediction of signaling proteins.
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aggregation of the 200 datasets. The p values for the individ-

ual examples were corrected for multiple testing using the

Benjamini-Hochberg method. The result revealed that 100

of the 200 datasets had adjusted p values% 0.05, with ame-

dian adjusted p value of 0.043 (Figure 2F). As each of the 200

datasets has only one correct perturbagen, we could not

calculate the enrichment p value for individual datasets

and only the aggregation of all the datasets was considered

for the enrichment of perturbagen prediction. The resultant

p value was significant (<2.23 10�16). Thus, our large-scale

benchmarking corroborates that SiPer preferentially pre-

dicts both correct signaling proteins and perturbagens.

Experimental validation of predicted perturbagens for

hepatic maturation

Having evaluated the predictive abilities of SiPer, we applied

SiPer to cellular conversion from hepatic progenitors to

functional hepatocytes. We previously established a two-

step lineage reprogramming strategy to generate functional

human hepatocytes (Xie et al., 2019): human fibroblasts

were first reprogrammed into hepatic progenitors and

then, in a second step, induced into functional hiHeps by

a two-chemical combination of forskolin and SB431542

(2C). However, in the established protocol, hiHeps cultured

long term on the basis of the hepatocyte culture medium

gradually show excessive accumulation of lipid droplets

(Figure S2A), while the widely used Williams’ E medium

does not lead to abnormal lipidmetabolism but cannot sup-

port fullmaturationofhiHeps (FigureS2B).Thus,weapplied

SiPer to predict additional perturbagens that may activate

key hepatic TFs and enhance functional maturation of hi-

Heps from hepatic progenitors in the Williams’ E medium.

From a list of key TFs associated with functional maturity

in PHs, a set of eight DETFs in PHs compared with hepatic

progenitors (log2 fold change > 4) were selected (supple-

mental experimental procedures) as query TFs for SiPer

analysis (Figure 3A). scRNA-seq of hepatic progenitor cells

together with eight hepatic key TFs were used as input for

the SiPer analysis. Notably, the predicted candidates

included an adenylyl cyclase activator and a TGFb inhibi-

tor, which are the two pathways targeted in our 2Cmatura-

tion medium by forskolin and SB431542 respectively.

Moreover, additional thirteen chemical compounds of

ten different functional mechanism groups were identified

(Figure S2C; Table S5).

To promote hiHeps maturation on the basis of Williams’

E medium with 2C (W2C), we performed ‘‘W2C+1’’ test of

the thirteen candidates to evaluate their effect on hiHeps

maturation. qPCR results showed that seven candidates tar-

geting five pathways: hydrocortisone and dexamethasone

(glucocorticoid activators), Bio (a GSK3 inhibitor), proges-

terone (a progesterone receptor agonist), trichostatin A

(TSA) and valproic acid (VPA) (HDAC inhibitors), and
136 Stem Cell Reports j Vol. 18 j 131–144 j January 10, 2023
U0126 (a MEK inhibitor) could upregulate the expression

of hepatic TFs and functional genes compared with W2C

(Figure 3B). The combined effect of adding the five com-

pounds targeting five different pathways (hydrocortisone,

progesterone, Bio, U0126, and TSA) to W2C further

enhanced expression of key hepatic genes (Figure S2D).

To find the essential combination of the seven compounds,

omitting each factor determined TSA to be dispensable for

hepatic functional gene expression (Figure S2E). Thus, the

identity and function of hiHeps cultured in W2C together

with hydrocortisone, progesterone, Bio and U0126 (W6C)

were further evaluated.

First of all, morphological examination revealed that

W6C-cultured hiHeps showed typical hepatocyte

morphology, without presenting signs of abnormal lipid

metabolism (Figure 3C). Global hierarchical clustering re-

vealed that W6C-cultured hiHeps were clustered closely

with PHs, while separately from hepatic progenitors and

W2C-culturedhiHeps (Figure3D).Moreover, the expression

levels of hepatic TFs and key hepatic functional gene sets

involved in glucose, lipid cholesterol, fatty acid, and drug

metabolism (Table S5) were similar between W6C-cultured

hiHeps and PHs (Figure 3E), which were further validated

by qPCR analysis (Figure 3F). Besides, we confirmed the up-

regulation of protein expression of ALB, drug- metabolizing

enzymesCYP3A4andCYP1A2,andglutaminesynthetase in

W6C-cultured hiHeps by immunostaining (Figure S2F).

We further characterized the functionality of W6C-

cultured hiHeps. Results showed that W6C supported bet-

ter glycogen synthesis and lipoprotein uptake in hiHeps

(Figure 4A) and increased bile acid synthesis activity (Fig-

ure 4B). Importantly,W6C enabled long-term culture of hi-

Heps up to at least 28 days with stably maintained albumin

secretion at levels similar to PHs (Figure 4C), good hepato-

cyte morphology, and cell survival, whereas W2C-cultured

hiHeps showed low albumin secretion with gradual cell

death (Figure S2G). In addition, W6C-cultured hiHeps pre-

sented similar levels of drug-metabolizing activity of

CYP3A4 and CYP1A2, key hepatocyte functions compared

with those of PHs (Figure 4D).

To investigate the engraftment ability of W6C-cultured

hiHeps in vivo, we transplanted them into the Tet-uPA (uro-

kinase-type plasminogen activator)/Rag2�/�/gc�/� liver

injury mouse model. The secreted human albumin levels

in mouse serum 6 weeks post-transplantation were exam-

ined. We found that the human albumin levels were com-

parable between mice transplanted with W6C-cultured hi-

Heps and PHs (Figure 4E). Importantly, the mature

hepatocyte markers ALB, CYP3A4, and CYP2C9 were de-

tected by immunostaining in mouse livers transplanted

with W6C-cultured hiHeps (Figure 4F).

At last, expression levels of query TFs were also verified to

be upregulated in W6C-cultured hiHeps, along with other
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Figure 3. Generation of hiHeps by applying SiPer predicted chemical perturbagens
(A) Expression fold change of top differentially expressed hepatic TFs (DETFs) in primary human hepatocytes (PHs) versus hepatic pro-
genitors (blue columns), and PHs versus hiHeps (gray columns). The top 8 DETFs were used as query TFs for SiPer analysis.
(B) Heatmap of gene expression of key hepatocyte markers in hiHeps cultured inW2C and ‘‘W2C+1’’ condition in which all predicted candidates
were screened at two different concentrations (c1 and c2) by qPCR analysis. Seven hits targeting 5 pathways are indicated in the black box.
(C) A representative bright field image and oil-red staining image of lipid synthesis and accumulation in hiHeps cultured in W6C. Scale bar,
50 mm.
(D) Hierarchical clustering of global gene expression of hepatic progenitors, hiHeps cultured in W2C and W6C, PHs, and adult liver tissues
(ALs) by RNA-seq analysis.
(E) Heatmap of gene expression profile of hepatic transcription factors and functional hepatocyte genes involved in drug metabolism, fatty
acid metabolism, glucose metabolism, and lipid cholesterol metabolism. Panel of genes analyzed listed in Table S5.
(F) qRT-PCR analysis of gene expression of key hepatocyte markers. Relative expression was normalized to hiHeps_W2C. n = 2 technical
replicates. Data are mean ± MSE.
key hepatic TFs (Figure S3A), which corroborated that SiPer

predicted chemical compounds targeting desired TFs.

Through SiPer’s network visualization, the intermediate

signaling proteins connecting the predicted perturbagens

and query TFswere illustrated, including knownnuclear re-
ceptor proteins such as PPARA, RXRA, and AHR, key regu-

lators of hepatocyte metabolic network, suggesting their

importance as effectors of hepatic maturation (Figure S3B).

Collectively, these results showed that SiPer effectively

identified perturbagens to induce hiHeps maturation in a
Stem Cell Reports j Vol. 18 j 131–144 j January 10, 2023 137



Figure 4. Functional characterization of the W6C-cultured hiHeps
(A) Analysis of key hepatic functions of hiHeps cultured in W2C and W6C: PAS staining of glycogen synthesis (upper panel) and low-density
lipoprotein (LDL) uptake staining (lower panel). Scale bar, 50 mm.
(B) Bile acid secretion of PHs (n = 6 independent experiments) and hiHeps (n = 3 independent experiments) cultured in W2C and W6C. Data
are mean ± MSE.
(C) ALB secretion of PHs (n = 6 independent experiments) and hiHeps (n = 3 independent experiments) cultured in W2C and W6C at days 7
and 28 of culture. Data are mean ± MSE.
(D) UPLC/MS/MS (ultra performance liquid chromatography-tandem mass spectrometer analysis) of drug-metabolizing activity of CYP3A4
and CYP1A2. n = 3 independent experiments. Data are mean ± MSE.
(E) Human ALB secretion level in mouse serum after 6 weeks of transplantation of hiHeps cultured in W2C (n = 2 independent experiments)
and W6C (n = 8 independent experiments), and PHs (n = 8 independent experiments) in URG mice.
(F) Immunofluorescent staining of human specific hALB, hCYP3A4, and hCYP2C9 in mouse liver transplanted with hiHeps cultured in W6C.
Arrows indicte the enlarged area. Scale bar, 100 mm.
Williams’ E medium. Importantly, the new formulation

was identified through a very simplified, straightforward

experimental process because of the integration of SiPer

in the workflow.

Comparison with existing methods for the prediction

of chemical compounds

To date, no existingmethods are designed to predict chem-

ical compounds for cellular conversion on the basis of a

handful of desired TFs. The existing predict chemical com-

pounds solely on the basis of DEGs between initial and

target cell types by using CMap database methods (Subra-
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manian et al., 2017; Napolitano et al., 2021). However,

DEGs usually contain many non-conversion TFs that are

more commonly expressed in other cell types and targeting

all DEGs could lead to the identification of chemical com-

pounds that do not act on the desired cell conversion TFs.

Moreover, these methods have the requirement of mini-

mumnumber of input genes. Therefore, we cannot modify

the input by using the small number of conversion TFs.

Nevertheless, a comparison was performed between SiPer

and other two computational methods, CMap query (Sub-

ramanian et al., 2017) and DECCODE (Napolitano

et al., 2021) using DEGs (supplemental experimental
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Figure 5. Comparison with existing methods and robustness evaluation of SiPer
(A) Comparison between SiPer and two existing computational methods for the prediction of chemical compounds in five cellular con-
version cases. Orange, experimentally validated perturbagens that are directly predicted. Blue, perturbagens that are not predicted
directly, but their protein targets or the other perturbagens with similar function are predicted. Gray, perturbagens are not predicted.
(B) Robustness analysis of SiPer in terms of average sensitivity tested by removing NCPC datasets with same cell type as test dataset (cell
type removed), removing NCPC datasets with same perturbagen as test dataset (perturbagen removed), random removal of 10% in-
teractions in PKN (network randomization), randomly selecting same number of TFs as the number of test DETFs (DETF randomization), and
replacing the NCPC compendium with the CMap database (SiPer [CMap]).
(C) The fraction of datasets correctly clustered to their corresponding class (i.e., normal or cancer) (one-sided Wilcoxon test,
p < 2.22 3 10�16).
(D) Evaluation of SiPer by replacing the scRNA-seq data of initial cellular state with bulk RNA-seq data.
(E) Robustness evaluation of SiPer with respect to input cell number by randomly selecting cells from the input scRNA-seq data.
(F) Robustness evaluation of SiPer with respect to DETF number by splitting the benchmarking datasets into different subsets on the basis
of the number of DETFs.
procedures). Among all the cellular conversion cases pre-

sented in Table S4, five had the gene expression profiles

of both initial and target cell types. We applied both

CMap and DECCODE to these five examples by using their

DEGs as input to predict the chemical compounds for the

respective conversions.We examined the number of exper-

imentally used perturbagens that were predicted by each

method and SiPer showed overall better performance
than the other two methods (Figure 5A). Specifically, SiPer

predicted not only the perturbagens identified by CMap

and DECCODE but also the ones that were not predicted

by them, including LCK/SRC inhibitor, HMG-CoA reduc-

tase inhibitor and Wnt antagonist (Table S6). These results

indicate that SiPer generated more accurate predictions for

chemical compounds than those inferred by the existing

computational methods that rely on DEGs.
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As the cell conversion examplesmentioned above are rela-

tively small in size, we further performed the comparison

analysis using the 200 benchmarking datasets described

above. The result revealed that both CMap and DECCODE

had only two datasets with correct perturbagen prediction,

whereas SiPer had 123. This huge performance difference

was partly because the former twomethods are not designed

topredict protein ligandperturbagens and their prediction is

limited to only chemical perturbagens.However, evenwhen

only considering the 92 datasets inwhich the correct pertur-

bagen is a chemical compound, SiPer correctly predicted 30

datasets (Fisher’s exact p < 2.2 3 10�12) compared with 1

and 2 datasets for DECCODE and CMap, respectively

(Fisher’s exact p > 0.99). These results suggest that SiPer

significantly outperforms bothmethods in chemical pertur-

bagen prediction.

Robustness evaluation of SiPer

SiPer first predicts signaling proteins from stage 1 and

stage 2 and then predicts the chemical compounds tar-

geting these predicted signaling proteins in stage 3.

The parameters including features in initial gene expres-

sion profile, NCPC and background network only have

effects on the prediction of signaling proteins. Therefore,

the robustness of SiPer to these different parameters for

the prediction of signaling proteins were assessed by us-

ing the 200 benchmarking datasets (supplemental exper-

imental procedures). The average sensitivity (supple-

mental experimental procedures) in identifying the

direct protein targets of the correct perturbagens across

all the datasets was evaluated to assess the robustness

of SiPer. We showed that SiPer was robust to the change

in the PKN, the cell types in NCPC and the number of

cells (Figures 5B and 5E). However, when NCPC was re-

placed with the cancer datasets (Subramanian et al.,

2017), the performance of SiPer significantly decreased

(Figure 5B). To investigate the reason for this decreased

performance, we performed a hierarchical clustering

analysis on the basis of DETFs of 1,956 perturbagens

(Table S1), by which both non-cancer and cancer cell

types were stimulated (supplemental experimental pro-

cedures). The fraction of cells correctly clustered to their

respective class (i.e., non-cancer or cancer) was signifi-

cantly higher than mis-clustered ones (one-sided Wil-

coxon test, p < 2.22 3 10�16) (Figure 5C). This result in-

dicates the responses between non-cancer cells are

similar than those between cancer and non-cancers un-

der same perturbation. Therefore, it is essential to

construct a perturbation compendium focusing on

non-cancer cells, such as NCPC, for accurate prediction

of signaling perturbagens when targeting non-cancer

cells. We also showed that the performance of SiPer

consistently decreased when using bulk RNA-seq data
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of initial cellular state instead of using scRNA-seq data

(Figure 5D). In addition, to validate the efficiency of us-

ing the gene profiles of the initial cell type for the predic-

tion of perturbagens, we compared the performance

of SiPer between the true scRNA-seq data and randomly

selecting the scRNA-seq data from benchmarking data-

sets. Only 72 of 200 datasets whose true positive

perturbagens were predicted in the randomly selected

scRNA-seq data, while the perturbagen of 123 datasets

were predicted using their corresponding true scRNA-

seq data. These results show that it is essential to

consider the initial cellular state for the prediction.

Moreover, we also showed that the predictions of SiPer

are specific to query TFs (Figure 5B) and the overall per-

formance was maintained across datasets with numbers

of query TFs less than 100 (Figure 5F), which is presum-

ably because of the lack of specificity of target signaling

proteins affecting a large number of downstream TFs.

Altogether, these systematic assessments demonstrate

that SiPer is a robust platform for the changes in its pa-

rameters and able to obtain the predictions that are spe-

cific to query TFs.
DISCUSSION

Studies have shown that the cellular conversion can be

induced by the perturbation of a handful of key TFs.

Instead of direct manipulation of these cellular conversion

TFs, using chemical compounds targeting signaling path-

ways and in turn inducing the expression change of desired

TFs is a safer and less laborious strategy. Therefore, in this

study, we have developed a computational platform to

identify chemical compounds targeting desired TFs for

cellular conversions. However, the inference of the exact

signaling pathways acting on specific TFs remains a chal-

lenge because of the scarcity of protein activity data, such

as protein phosphorylation measurements. Thus, instead

of predicting exact signaling pathways, SiPer infers

signaling proteins from the pre-compiled perturbation

compendium, whose perturbations were shown to result

in the dysregulation of similar sets of TFs to the query

TFs. Although a similar strategy has been taken in previous

studies (Lamb et al., 2006; Schubert et al., 2018; Subrama-

nian et al., 2017), their compendia were derived mainly

from cancer cells, whose signaling pathways has exhibited

significant rewiring from the normal counterparts (Sharma

and Petsalaki, 2019). Therefore, NCPC provides a valuable

resource for research focusing on non-cancer cells. More-

over, SiPer integrates NCPC with a network model by tak-

ing advantage of scRNA-seq data that reveals the heteroge-

neity and asynchrony of individual cells. This allows SiPer

to be applied to any novel cell populations identified by



scRNA-seq. Indeed, many known signaling proteins and

chemical compounds were correctly identified by SiPer

for conversion between different cell types and closely

related cell populations. Because of the scarcity of available

cellular conversion cases for method validation, we further

collected 200 benchmarking datasets which are not neces-

sarily related to cell identity conversion but related to

phenotypic changes. We showed that the predictions by

SiPer targeting specific TFs were more accurate than those

generated by other computational methods on the basis

of DEGs. Indeed, DEGs may not include cell conversion

TFs, and usually contain many non-conversion TFs that

are more commonly expressed in other cell types. For this

reason, targeting all DEGs could lead to the identification

of chemical compounds that do not act on the desired

cell conversion TFs. Moreover, although we demonstrated

the importance of initial scRNA-seq data on the basis of

benchmarking datasets, the in-silico validation to demon-

strate the efficiency of identifying different chemical com-

pounds for cellular conversion cases depending on the

initial cellular state-specific signaling proteins is still lack-

ing. This is because no clearly true negative chemical com-

pounds (the chemical compounds used in one case are not

suitable in another case) in the cellular conversion are

available to evaluate the performance currently. Overall,

further validation on the basis ofmore benchmarking data-

sets and cellular conversion cases can be carried out as the

development of data in the future.

Moreover, we applied SiPer for the development of a

novel protocol for human hepatic maturation. A recently

reported protocol has enabled the successful generation

of hiHeps (Xie et al., 2019). However, this protocol uses

an unspecified culture medium, and long-term cultured hi-

Heps in this condition showed excessive lipid accumula-

tion, which hinders its use for practical applications,

including drug screening and cell transplantation. To this

end, the application of SiPer successfully predicted useful

perturbagens, facilitating the formulation of a newmatura-

tion medium to generate functional hiHeps from hepatic

progenitors in the definedWilliams’ E medium. The result-

ing new medium formulation, comprising rationally

guided additives in a fully specified basal medium that

were identified after only two rounds of qPCR assays, is

able to induce functional hiHeps that are similar to PHs

in terms of molecular identity and functionality without

abnormal lipid accumulation (Figures 4D–4K). Notably,

integrating SiPer predictions into the workflow dramati-

cally simplified the experimental design, ultimately result-

ing in a straightforward, streamlined experimental process.

SiPer is designed to predict chemical compounds in one

step from initial to target cell type given the desired target

TFs. However, many long-term cellular conversions are

induced by more than one transition waves, which nor-
mally requires precise manipulation of the cell fate transi-

tion in a stepwise manner (Zhao et al., 2015; Touboul

et al., 2016; Guan et al., 2022). In this scenario, SiPer can

be also generalized to apply in each conversion step only

if users have prior knowledge about intermediate stages

and the target TFs for each stage.

In summary, SiPer constitutes a valuable computational

platform to facilitate the design of cell conversion proto-

cols using chemical compounds, which holds great prom-

ise for both basic cell research and regenerative medicine.

Users can easily apply SiPer to any cellular systems of their

interest by accessing the web interface.
EXPERIMENTAL PROCEDURES

Resource availability

Corresponding author

Further information and requests for resources and reagents

should be directed to and will be fulfilled by the corresponding

author, Antonio del Sol (antonio.delsol@uni.lu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

Bulk RNA-seq data and scRNA-seq data generated in this study

have been deposited at Gene Expression Omnibus (GSE162908

and GSE162909, respectively).

SiPer was implemented in R, and the code repository is available

from Gitlab (https://git-r3lab.uni.lu/menglin.zheng/SiPer). The

web applicationwas developed with PAWS framework and is avail-

able at https://siper.uni.lu.
Algorithm of SiPer

Stage 1: Identification of candidates of signaling proteins from

NCPC

SiPer first selects candidates of signaling proteins from NCPC on

the basis of a set of query TFs with the expression direction infor-

mation (i.e., up- or down-regulation). SiPer calculates the similarity

between query TFs and each reference in Perturb-reTFs of NCPC by

a modified Jaccard similarity coefficient (supplemental experi-

mental procedures), which ensures SiPer to consider the number

as well as the effects of common TFs between the query and refer-

ence. The perturbagens with the modified Jaccard index larger

than 2 Z score were selected (supplemental experimental proced-

ures). The signaling proteins of these selected perturbagens are

then ranked by their frequency and the ones ranked in top 40%

are retrieved as candidate signaling proteins whose perturbations

could affect the query set of TFs. The details of the parameter opti-

mization and selection are described in supplemental experi-

mental procedures. The ‘‘activation’’ sign is assigned to candidate

signaling proteins when more activation effects are reported in

NCPC than inhibition effects and vice versa. The ‘‘unknown’’ ef-

fect is assigned if all reported effects are unknown.

Stage 2: Prediction of signaling proteins with network model

Candidate signaling proteins identified from NCPC are further

filtered to predict the final set of signaling proteins by taking into
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account the gene expression state of starting cells and PKN among

signaling proteins and TFs. The algorithm consists of two major

steps as following. First, SiPer simulates the signal transduction

from candidate signaling proteins from stage 1 to initial response

TFs and calculates an efficiency score EFs/t defined as

EFs/t = Rs/t � inverted Ss/t ;

where the Rs/t is the reachability score (supplemental experi-

mental procedures) measured by the weighted shortest path

from signaling protein to a response TF t and reverted Ss/t is the

specificity score (supplemental experimental procedures) quanti-

fied by the inverse of signaling entropy to measure the certainty

of the signal transmitting along with the shortest path. The effi-

ciency score quantifies both the strength and specificity with

which a signaling protein acts on a downstream TF. Second, SiPer

also ensures that the predicted signaling proteins specifically act

on the query set of TFs and have a minimized effect on non-query

ones by computing Jensen-Shannon divergence (JSD) for each

signaling protein

JSDðP;QÞ =
1

2
DðP;MÞ+1

2
ðQ;MÞ;

where P; Q are the observed and ideal efficiency score vectors,

respectively, and M = 1
2 ðP +QÞ and D is Kullback-Leibler diver-

gence (supplemental experimental procedures). The lower JSD

value indicates that the signaling protein can more specifically

target the query TFs, which implies that the phenotypic response

would also be closer to our expectation. Once JSD value is calcu-

lated for all candidate signaling proteins inferred from NCPC,

the signaling proteins with JSD value not equal to 1 are selected

as final candidates.

Stage 3: Identification of perturbagens targeting predicted

signaling proteins

SiPer further predicts the perturbagens targeting predicted

signaling proteins. SiPer first performs over-representation analysis

on predicted signaling proteins to first divide the proteins into

different functional groups on the basis of Reactome signaling

pathways. Then for each group of signaling proteins, SiPer iden-

tifies perturbagens by calculating the similarity between their

target proteins and predicted signaling proteins with another

modified Jaccard index (supplemental experimental procedures),

which ensures SiPer to identify the perturbagens targeting pre-

dicted signaling proteins with consistent modes as predicted.

Finally, SiPer further merges the top predicted perturbagens on

the basis of their target similarity. This allows users to design

optimal combination of chemical compounds fromdifferent func-

tional groups. The details of stage 3 are described in supplemental

experimental procedures.
Ethical statement
The present study was approved by the Clinical Research Ethics

Committee of China-Japan Friendship Hospital (approval number

2009-50) and Stem Cell Research Oversight of Peking University

(SCRO201103-03), and it was conducted according to the princi-

ples of the Declaration of Helsinki.
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Cell culture
The methods for culturing primary human hepatocytes and hi-

Heps have been described previously (Xie et al., 2019). The details

are described in supplemental experimental procedures.

Measurements of drug-metabolizing activity of

CYP450s
Cells were incubated with indicated substrates (testosterone for

CYP3A4, phenacetin for CYP1A2), and the level of products was

then analyzed by ultraperformance liquid chromatography-tan-

dem mass spectrometry (UPLC/MS/MS) (supplemental experi-

mental procedures).

Transplantation
Tet-uPA/Rag2�/�/gc�/� (URG)mice on a BALB/c backgroundwere

purchased from Beijing Vitalstar Biotechnology. Cells for trans-

plantation were suspended into single cells in HCM medium;

2 3 106 cells in 200 mL suspension were injected into the spleen

of the mice. The detection of human albumin secretion and

CYP450 expression in mouse liver are described in supplemental

experimental procedures.

RNA sequencing and bioinformatics analysis
The details of generation and pre-processing for bulk RNA-seq and

scRNA-seq data for the hepatic maturation are described in supple-

mental experimental procedures.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/

10.1016/j.stemcr.2022.10.013.
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