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Robust data storage in DNA by de Bruijn
graph-based de novo strand assembly

Lifu Song 1,2, Feng Geng3, Zi-Yi Gong 1,2, Xin Chen4, Jijun Tang5,6,
Chunye Gong 7, Libang Zhou8, Rui Xia 7, Ming-Zhe Han 1,2, Jing-Yi Xu 1,2,
Bing-Zhi Li 1,2 & Ying-Jin Yuan 1,2

DNA data storage is a rapidly developing technology with great potential due
to its high density, long-term durability, and lowmaintenance cost. The major
technical challenges include various errors, such as strand breaks, rearrange-
ments, and indels that frequently arise during DNA synthesis, amplification,
sequencing, and preservation. In this study, a de novo strand assembly algo-
rithm (DBGPS) is developed using de Bruijn graph and greedy path search to
meet these challenges. DBGPS shows substantial advantages in handling DNA
breaks, rearrangements, and indels. The robustness of DBGPS is demonstrated
by accelerated aging, multiple independent data retrievals, deep error-prone
PCR, and large-scale simulations. Remarkably, 6.8 MB of data is accurately
recovered from a severely corrupted sample that has been treated at 70 °C for
70 days. With DBGPS, we are able to achieve a logical density of 1.30 bits/cycle
and a physical density of 295 PB/g.

DNA is the natural solution for the preservation of the genetic infor-
mation of all life forms on earth. Recently, million years old genomic
DNA of mammoths was successfully decoded, revealing its great
potential as a long-term data carrier under frozen conditions1. Owing
to its high density and low maintenance cost, revealed by recent stu-
dies, DNA has been considered as an ideal storagemedium tomeet the
emerging challenge of data explosion2–20. Frequently occurring errors
in DNA synthesis, amplification, sequencing, and preservation, how-
ever, challenge the data reliability in DNA. Efforts to solve these issues
led to the implementation of a codec system that requires two layersof
error correction (EC) codes. The outer layer codes handle the strand
dropouts and the inner layer codes deal with the intramolecular errors,
ensuring accurate data readouts21–25. The design of outer codes is
straightforward since strand dropouts can be well solved by sophisti-
cated erasure codes, e.g. Fountain or Reed-Solomon (RS) codes21–23. In
contrast, the design of an inner codec system is challenging due to the
complex errors and the unique feature of ‘data reputations’, i.e., the

noisy strand copies10,21,26. The traditional decoding process of inner
codes generally consists of two steps: clustering and strand
reconstruction23,26,27. Strand reconstruction from its error-richcopies is
a trace reconstruction problem introduced two decades ago28. Most
studies on trace reconstruction are motivated by the multiple-
alignment problem in computational biology23,28–34. The error types
of substitutions and indels have been widely investigated by previous
studies on trace reconstruction, which reveal the difficulties of hand-
ling indels23,28–34.

In practice, DNA breaks and rearrangements occur frequently
during the preservation of DNA molecules and polymerase chain
reaction (PCR) based data copying, threatening the robustness of DNA
data storage. Under certain conditions and in long-term storage, DNA
is subjected to hydrolysis and degradation which lead to DNA breaks.
This highlights the importance of data stability studies on the influ-
ences of harsh conditions, such as high temperature or UV exposure,
and methods of DNA protection21,35,36. Unspecific amplification, a
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typical problem with PCR, is the main source of DNA rearrangements,
which refer to the breakage and rejoining of DNA strands in DNA data
storage. People currently carefully design primers and optimize PCR
conditions to avoid unspecific amplification, and employ gel purifica-
tion to physically exclude rearranged strands from the data pool23. An
inner codec system that can tolerate fragmented and rearranged DNA
strands is nevertheless critical for enhancing the robustness of DNA
data storage. The clustering27,37 and multiple-alignment38–40 (CL-MA)
algorithms, however, are both incapable of dealing with DNA breaks
and rearrangements. Anewmechanismthat can efficientlyhandleDNA
breaks and rearrangements is highly desirable.

In this study, we propose a de novo assembly-based strategy to
handle the complex errors, especially the DNA breaks and rearran-
gements, in DNA data storage channel. Different from the CL-MA-
based methods, we first decompose all the strand sequences into k-
mers with the de Bruijn graph (DBG) theory41–44. Then, the low-
occurrence k-mers are excluded to omit huge errors. After that, the
strands are assembled straightforwardly through greedy path search
and path selection with the aid of the embedded redundancy codes.
Compared with the CL-MA-based methods, this DBG-based greedy
path search algorithm (DBGPS) shows substantial advantages in the
handling of errors, especially DNA breaks, rearrangements, and
indels. The effectiveness of DBGPS with large datasets is verified
through large-scale simulations up to 1 GB (Gigabytes, 109 Bytes). The
robustness of DBGPS is demonstrated by three harsh experiments of

accelerated aging,multiple data retrievals, and deep error-prone PCR
with 6.8 MB (Megabytes, 106 Bytes) input data. Remarkably, we are
able to precisely retrieve the entire 6.8 MB data from a DNA solution
that has been incubated at 70 °C for 70 days without any particular
protection using DBGPS. Besides the high data robustness, we were
able to achieve a high logical density of 1.3 bits per synthesis cycle
and a high physical density of 295 PB (Petabytes, 1015 Bytes) per gram
of DNA with DBGPS.

Results
Design of DBGPS: a de novo assembly-based strand recon-
struction algorithm
The DNA data storage channel is a complex channel with several types
of errors.Most previous studies have focusedon substitution and indel
errors28,32,36,45–48. In practice, however, DNA breaks and rearrangements
occur frequently during the preservation of DNA molecules and PCR-
based data copying, threatening the robustness of DNA data storage.
These two types of errors should be considered in the DNA data sto-
rage channel (Supplementary Fig 1a). However, DNA breaks and rear-
rangements can cause severe failures to the traditional EC algorithms.
To handle these issues, as illustrated in Fig. 1a, we focus on a distinct
route of de novo assembly which potentially takes advantage of the
“multi-copy” feature of DNA for accurate strand reconstruction. The
successful applications of de Bruijn graph (DBG) in genome
assembly41–43 prompted us to investigate its potential along this route.

Fig. 1 | Denovoassembly-based strand reconstruction forDNAdata storage. (a)
The issues of DNAbreaks and rearrangements inDNAdata storage and the proposed
de novo assembly-based strategy for dealing with them. (b) The two-stage de novo
assembly process of the proposed de Bruijn graph-based greedy path search algo-
rithm (DBGPS). The representative de Bruijn graph in stage 1 was constructed from

the nice error-rich sequence copies shown in Supplementary Fig 1a with a k-mer size
of four. The circles stand for the k-mer nodes. The numbers inside the circles are the
occurrences, i.e., coverages, of corresponding k-mers. The correct sequence is
represented by the path of green nodes. (c) The designed strand structure for the
DBGPS algorithm. (d) The workflow of the greedy path search and selection process.
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Since a DNA strand can be assembled only if the strand path is intact in
DBG, we ran simulations to estimate the integrity probability of a
strand path with variant strand copies containing various rates and
types of errors. Here, this probability was defined as the theoretical
maximal strand reconstruction rate (Sm) of DBG-based strand recon-
struction. Strand copies in a range of 3 to 25 were considered, and the
detailed simulation results are provided in Supplementary Data 1. As
shown by the representative results obtained with five and ten-strand
copies, the Sm values, as expected, are inversely related to the error
rates but are similar regardless of the error types at the same error
rates (Supplementary Fig 1c). Importantly, with merely ten sequence
copies, the sequence path in DBG shows high robustness even under a
high strand error rate of 5%, proving the feasibility of DBG-based
strand reconstruction. As illustrated in Fig. 1b, we then proposed the
DBGPS algorithm for error-free reconstruction of strands, which
comprises two stages as follows:

Stage 1, construction and simplification of DBG. The construc-
tion of DBG here refers to k-mer counting49,50. The connections
between the k-mers do not need to be constructed. The k-mer
counting data in a hash table is well-suited for the greedy path search
step in Stage 2. Massive errors could cause enormous noise k-mers in
DBG. The exclusion of noise k-mers is crucial for reducing the com-
puting complexity in Stage 2. The occurrences of specific errors are
low-probability events individually. Therefore, the occurrences, i.e.,
coverages, of noise k-mers are generally lower than those of the
correct ones. Monte Carlo simulations indicate that coverage is a
suitable indicator for the exclusion of noise k-mers (Supplementary
Fig. 2). The k-mer size is an important parameter for strand recon-
struction. With a specific k-mer size, there is a theoretical upper
boundary to the volume of data that can be decoded. For example,
only several bits of data can be decoded with a k-mer size of three. In
DBG theory, for each k-mer, the front k−1 bases were used for posi-
tioning, and the terminal base was used for path extension, i.e.,
encoding of fresh data. The greedy path search step in Stage 2
requires each front k−1 base combination to ideally be present once
in DBG to avoid path loops and forks. Based on this principle, the
decoding capacity of DBGPS with a k-mer size of 27 was estimated to
be around 1 TB (Terabytes, 1012 Bytes). The detailed choices of k-mer
sizes associated with data volumes ranging from 1 KB (Kilobytes, 103

Bytes) to 1 EB (Exabytes, 1018 Bytes) are listed in Supplementary
Table 1. More details of the estimation process are provided in the
Methods of the Supplementary Information.

Stage 2, strand reconstruction by greedy path search and path
selection. The strand reconstruction process is achieved by greedy
path search for strand candidates and path selection using the
embedded EC codes for the correct strand. To facilitate this process,
as shown in Fig. 1c, we designed a strand structure that contains 16 nt
index, 140 nt data payload, and 8 nt Cyclic Redundancy Check (CRC)
code, flanked by landing sites for sequencing primers. As illustrated
in Fig. 1d, six key steps are required to reconstruct the strand
sequence of a specific indexm. Step 1 (S1), encode the indexm into a
DNA string and calculate the initial k-mer. This initial k-mer is also the
first terminal k-mer. Step 2 (S2), check if there are connected k-mers
for each terminal k-mer. The terminal k-mers without connected k-
mers are marked as dead-ends. Strand reconstruction fails if all the
terminal k-mers are dead-ends. Step 3 (S3), connect all connected k-
mers to the corresponding terminal k-mers. Step 4 (S4), check if the
path lengthmatches the strand length. If not, go to S2. If so, go to S5.
Step 5 (S5), perform parity check for each path candidate using the
embedded CRC codes. Step 6 (S6), check if only precisely one path
passes the CRC check and select the only path as the correct path,
i.e., the strand sequence of index m. Strand reconstruction fails if
multiple or no paths pass the CRC check. DBGPS will continue to
assemble the next strand of index (m + 1) until all possible indexes are
processed.

The error handling capability and large data scale performance
of DBGPS
As shown in Fig. 2a–e, we ran simulations to estimate the error hand-
ling capability of DBGPS in comparison with the multiple-alignment
(MA) algorithm using twenty strand copies. Remarkably, as shown in
Fig. 2a and b, DBGPS shows high performance in handling DNA breaks
and rearrangements. In contrast, the strand decoding rate of MA
declined to zero rapidly with the introduction of only a small number
of DNA breaks and rearrangements. DBGPS also shows a clear advan-
tage in handling indels, especially when the error rate is high (Fig. 2c).
In the case of substitutions (Fig. 2d), DBGPS shows a decrease in strand
decoding rates when high rates of substitutions are introduced. It has
been reported that evenwith the low-quality synthesismethodof light-
directed synthesis, the overall error rate was estimated to be around
6%51. Thus, the slight deficiency of DBGPS in the handling of high rates
of substitutionswouldnot hamper its practical application inDNAdata
storage. Since the errors are mixtures of different types of errors in
practice, we then ran simulations with mixed errors, which include
substitutions, indels, DNA breaks, and rearrangements in a ratio of
1:1:2:1:1 respectively. As expected, compared with MA, DBGPS shows
substantial advantages in handling ofmixed errors, as shown in Fig. 2e.
Next, to investigate how the strand copy number affects the perfor-
mance of DBGPS and MA, we ran simulations with various strand
copies with a fixed error rate of 3% (1.5% substitutions, 0.75% inser-
tions, and 0.75% deletions). As shown in Fig. 2f, DBGPS achieves a
higher Sr value thanMA in general, except for the cases with extremely
low copy numbers below six. The strand reconstruction rates (Sr) of
DBGPS andMA both increase significantly by introducingmore strand
copies. With more strand copies introduced, the Sr value of DBGPS
increases more quickly and surpasses the value of MA at the point of
seven. This suggests that DBGPS utilizes the “multi-copy” featuremore
effectively than MA to enhance the data robustness.

To evaluate the performance of DBGPSwith large data volumes, a
series of simulations were performed with data sizes ranging from 1
MB to 1 GB. For each data size, three independent simulations were
performed using random seeds of 1, 2 and 3 for the generation of the
DNA droplets/strands. Preliminary simulations at the GB level showed
a significant increase in reconstruction time per strand, which was
caused by entanglements of strand paths in DBG, i.e., the repeated
presentation of k-mers in different strands. To solve this problem, a
strand filtering process, as illustrated in Supplementary Fig 3, was
designed and applied to filter out the entangled strands. The DNA
strand sequences after filtering were utilized for the generation of
error-rich copies. Error-rich strand sequences were simulated with a
copy number of 25 and an error rate of 3% (1.5% substitutions, 0.75%
insertions, 0.75% deletions). Counting of k-mer has previously been
demonstrated to be a linear problem49,50,52,53, and this finding was
confirmed in this study (Supplementary Fig. 4). For strand recon-
struction by DBGPS, the reconstruction time per strand increased
slowly when the data size scaled up from 1 MB to 1 GB (Fig. 2g). A time
complexity ofOðnlognÞ, wheren stands for data size, was revealed by a
fitting experiment (Supplementary Fig 5). Importantly, no significant
difference in decoding accuracy was observed with the data volumes
ranging from 1 MB to 1 GB (Supplementary Fig. 6a). The DBG-based
sequence reconstruction has been widely studied to solve the genome
assembly problem, and such studies reveal the challenge of accurate
sequence reconstruction by DBG41,42,54. It should be noted that the
sequence reconstruction problem in DNA data storage is significantly
different from the genome assembly problem. Rather than long
sequences, the DNA sequences in DNA data storage are short frag-
ments with a fixed length of 100-300bp. As illustrated in Fig. 2h, the
DBG constructed with short fragments shows substantial differences
in structure from those that are constructed with long sequences. The
nodes, i.e., the k-mers, of DBG derived from long sequences are
tightly connected. In contrast, the nodes in the DBG of short DNA
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sequences are spontaneously separatedby k-mer editingdistance. This
was proved by the analysis of the cross-linked strands with data
volumes ranging from 1MB to 1 GB, as shown in Supplementary Fig 6b.
Importantly, these cross-linked strands can be eliminated by the fil-
tering process illustrated in Supplementary Fig 3, enabling the high
efficiency of DBGPS with large datasets. Furthermore, the short
fragments in DNA data storage are indexed and are embedded with

EC codes, which guarantee the accurate assembly of the original
information.

Experimental verification of the robustness of DBGPS
As shown in Fig. 3a, ten digital pictures ofDunhuangmurals in a 6.8MB
zipped file (6,818,623 bytes, Supplementary Data 1) were encoded into
210,000 DNA strands of 200 bp (Supplementary Data 2) with a
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Fig. 2 | Error-handling capabilities of DBGPS in comparison withMA and large-
scale performance simulations.With twenty sequencecopies, the performanceof
DBGPS and MA in handling various rates of (a) DNA breaks, (b) DNA rearrange-
ments, (c) indels, (d) substitutions, and (e) mixed errors. The mixed errors com-
priseDNAbreaks, DNA rearrangements, substitutions, insertions, anddeletions in a
ratio of 1:1:2:1:1. f Strand reconstruction rates with various strand copies containing
3% error mixtures of substitutions (1.5%), insertions (0.75%), and deletions (0.75%).
g Strand reconstruction time by DBGPS with data scales ranging from 1MB to 1 GB.

The small bar chart at the top shows the fold changes in reconstruction time per
strand compared to that of the 1 MB scale. (h) Illustration of the differences
between the DBG constructed with numerous short sequences and that con-
structed with long sequence(s). The nodes with different colors stand for various k-
mers. Each node stands for a unique k-mer. Data are presented as mean values of
three independent simulations in figures a–g. The standard deviation (SD) values,
which are too small to be clearly visualized, are listed in the source data. Source
data are provided as a Source Data file.
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structure as shown in Fig. 1c. The strand redundancy was set to 7.8%,
which supports reliabledata recoverywhen the decoder receivesmore
than 95% of strands. The designed DNA strands were synthesized by
Twist Bioscience and the obtained oligos were dissolved in ddH2O to
generate a “master pool”. Three harsh experiments were performed
with this “master pool” to obtain low-quality sampleswith various rates
and types of errors. The low-quality samples obtained were then
sequenced on the Illumina sequencing platform. The raw reads gen-
erated were processed by DBGPS for strand reconstruction followed
by decoding using the outer fountain codes.

In silico simulation has shown that DBGPS handles high rates
of DNA breaks well. Accelerated aging experiments were per-
formed to further confirm its practical performance in tolerating
DNA degradation. The purified PCR products in elution buffer
were incubated at 70 °C for a prolonged period of 0, 28, 56, and
70 days. As shown by the Agilent 2100 Bioanalyzer analysis

(Supplementary Fig 7), the integrity of the DNA strands (200 bp)
has been severely damaged after incubation at 70 °C for merely
28 days, as confirmed by the sequencing results (Supplementary
Fig 8). Such a degree of degradation made it impossible to decode
the original information using CL-MA (Supplementary Table 2). By
contrast, DBGPS achieves high Sr values from all accelerated aging
samples, ensuring accurate data retrievals (Fig. 3b and Supple-
mentary Table 3). Notably, a high Sr value of 96.3% is even
obtained with the sample that has been treated at 70 °C for
70 days. Data retrievals from accelerated aged DNAs have been
reported21,35,55. In these studies, the authors tested the effects of
different methods for the preservation of DNA molecules, among
which embedment in silicon beads was shown to be the best,
allowing recovery of information after treatment at 70 °C for
1 week. According to the authors, this was thermally equivalent to
storing information on DNA at 9.4 °C for 2,000 years21. Based on

98%

99%

100%

100 independent retrievals

99.5% 99.1% 97.8% 96.5% 91.9% 76.6%

0%
2%
4%
6%
8%

40%

60%

80%

100%

#1 #2 #3 #4 #5 #6

99.8% 99.4% 99.0% 98.3%99.4% 98.9% 98.2% 96.3%

0

150

300

60%

80%

100%

0 days 28 days 56 days 70 days

Master pool
210,000 oligos

Taq PCR (30X)

10⁵ copies

Perfect decoding

Perfect decoding

Taq PCR (30X) 50 μL×100 reactions

Dunhuang murals  a

2  Multiple independent retrievals

1  Accelerated aging

1 μL/each

b

3

2

1

Taq PCR
50 μL/each

Synthesis

Oven 70°C

0 to 70 days

Perfect decoding (#1-4)

3  Deep error-prone PCR 

#1 #2 #3 #4 #5 #6

10⁵ copies

10⁵ copies

6.8 MB

30 cycles/each

Sm

Sr

Sm

Sr

Sm

Sr Er
ro

r r
at

e
Av

er
ag

e l
en

gth
 (b

p)
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DBGPS. A 6.8 MB zipped file of Dunhuang mural pictures was recorded by
oligo synthesis, generating an ssDNA “Master Pool”with 210,000 unique types
of ssDNA strands. Experiment 1, accelerated aging to verify the robustness
with DNA degradations (breaks). Experiment 2, multiple data retrievals with
intended unspecific amplifications to verify the robustness with strand rear-
rangements. Experiment 3, deep error-prone PCR to introduce errors. b Data

retrieval details of the three experiments. Sm stands for maximal strand
recovery rate. Sr stands for strand recovery rate. The green curve shows the
average fragment lengths of the accelerated aging samples. The purple curve
shows the error rates of the deep error-prone PCR samples. The strand
reconstruction details of the three experiments are provided in Supplemen-
tary Table 3, 4 and 5 respectively. The Dunhuang mural pictures were obtained
from Dunhuang Academy (http://www.dha.ac.cn/) with permission for this
study. All rights reserved for other uses.
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this estimation, the DBGPS algorithm can retrieve data accurately
from DNA solutions preserved at 9.4 °C without any protection for
20,000 years.

Copying and retrieval of data stored in DNAs require PCR-based
amplification. As a typical biological process, unspecific amplification
occurs occasionally, leading to DNA rearrangements. To demonstrate
the effectiveness of DBGPS in the handling of DNA rearrangements,
100 independent data retrievals with PCR-amplified products were
performed (Fig. 3a), inwhich unspecific amplificationswere intendedly
introduced. The CL-MA-basedmethod shows low Sr values of less than
12% with three representative samples (Supplementary Table 2). In
contrast, high Sr values ranging from 98.8% to 99.1% were obtained
with DBGPS, which ensure perfect data recovery in all retrievals
(Fig. 3b, Supplementary Table 4).

A series of six error-prone PCR (ePCR) amplifications were per-
formed to introduce large numbers of base errors at various rates. All
ePCR reactions were performed for 30 thermal cycles. Although the
rough amplification conditions introducedmassive errors as expected,
strikingly high Sr values in a range of 96.6% to 99.5%were obtained for
ePCR#1-4, ensuring accurate data recovery (Fig. 3b, Supplementary
Table 5). More errors are expected to introduce more branch paths in
DBG, raising the necessary cutoff for noise k-mer elimination. Conse-
quently,morecorrect k-merswereconsequentlydiscardedbymistake,
resulting in lower Sr values. As expected, declines in Sr were observed
as more rounds of ePCR were performed. Although the data retrievals
with ePCR#5 and ePCR#6 failed, the total 120 cycles of amplification
performed in ePCR#1-4 can already guarantee sufficient reliable data
copies.

Discussion
DNA data storage technology maintains the order of information
through defined sequences of nucleic acid chains. Different from the
traditional plane media, which require a surface to maintain the
information order, the nucleic acid chains can be detached from the
writing surface and distributed in a three-dimensional space without
affecting the data integrity. This gives DNA data storage a huge
increase in data density. However, the chain issues of breakages and
incorrect linkages, i.e., DNA breaks and rearrangements, need to be
addressed. As illustrated in Supplementary Fig 9, in a radical view,
substitutions and indels can also be regarded as special cases of “DNA
rearrangements”, which implies the importance of these fundamental
issues.However, DNAbreaks and rearrangements aredifficult to tackle
using traditional EC codes. In this study, we developed DBGPS, a de
novo assembly-based strand reconstruction algorithm based on DBG
theory, which takes advantage of the unique “multicopy” feature for
the error-free reconstruction of strand sequences. We verified the
effectiveness of DBGPS in the handling of DNA breaks and rearrange-
ments, as well as substitutions and indels, through both dry and wet
experiments. With this algorithm, we were able to reconstruct DNA
strands accurately from error-rich strand copies that were mixed
together without a clustering step.

The most significant contribution of this work is the strategy that
addresses the data reliability issues caused by DNA degradation. The
importance of the DNA degradation problem in DNA data storage has
been well discussed in a recent review36. Different from the previous
studies, which focused on protecting the DNA molecules from
corruption21,35,36,55, here we focused on the implementation of a com-
putational process to reconstruct the strand sequences even if the
strands are broken into small fragments of dozens of bases. As proved
by the accelerated aging experiment, we effectively addressed the data
robustness issue caused by DNA degradation with DBGPS. It is worth
noting that the encoded information from a DNA solution that has
been incubated at 70 °C for 70 days without any particular protection
canbe accurately recoveredwith our algorithm. The degree of damage
to DNA under this heating condition was estimated to be equivalent to
that under 9.4 °C for more than 20,000 years21. This period is already
longer than the oldest written record of human civilization, the
Cuneiform, which dates back about 5,500 years ago56. Such unprece-
dented robustness highlights the importance of our method and
suggests the great potential of our DBGPS algorithm in DNA data
storage. DBGPS is presumably compatible with a variety of DNA pre-
servation methods, e.g., silicon beads21, nanoparticles55 and alkaline
salts35, to further enhance data stability. Altogether, it is reasonable to
believe that DNA data storage technology would allow us to preserve
human civilizations for a very long time, even after the unavoidable
destruction of mankind in the distant future. Another significant
contribution of this study is the efficient handling of unspecific
amplification. Retrieval of DNA data requires PCR-based amplification
of strands. As a typical biological process, PCR has stochastic feature
naturally. This stochastic feature frequently leads to unspecific
amplification, threatening the robustness of DNA data storage. With
DBGPS, we were able to achieve reliable data retrieval even when
unspecific amplification occurs, as proved by the 100 independent
data retrievals with severe unspecific amplification intentionally
introduced.

Based on traditional information theory, redundancy data in the
form of “repetition” is unfavorable since the production of additional
data copies on traditional media is cost-ineffective and time-
consuming. By contrast, data repetition in the form of DNA strand
copies can be obtained inexpensively and speedily. Thus, the authors
believe that the traditional definitionof “coding efficiency”needs to be
adapted to the DNA data storage channel. With current technologies,
producing a single molecular copy of DNA data is not even achievable.
It has been reported that serial dilutions to reduce the copy numbers
of information-bearing DNA strands till the average copy number is
below ten result in massive strand dropouts, making reliable data
retrieval impractical46. Even if a single molecular copy of DNA data is
obtainable, it may be damaged due to DNA degradation under certain
conditions or during long-term storage. Taken together, the design for
DNA storage should be based on reality and necessity, allowing for the
presence of more than one copy of DNA strands and not too many
copies to maintain high information density. In other words,

Table 1 | Key achievements of this work in comparison with prior DNA storage studies

Church et al.3 Goldmanet al.24 Grass et al.21 Erlich
et al.22

Organick et al.23 Leon et al.57 Antkowiak et al.26 This work

Data size (MB) 0.53 0.74 0.08 2.14 200.2 6.42 0.1 6.8

Total oligos 54,898 153,335 4991 72,000 13,400,000 217,000 16,383 210,000

Logical density
(Bits/cycle)

0.6 0.19 0.86 1.19 0.81 1.52 0.94 1.30

Physical density (PB/g) NA NA NA 215 NA 5.9 NA 295

Long-term stabi-
lity (9.4 °C)

– – ~2000 years – – – – ~20,000 years

The long-termstabilitywas estimatedbasedon the results shown in Fig. 3 and the study byGrass et al.21. Primerswere considered in thecalculation of logical density (bits per synthesis cycle). Strand
reconstruction details of the high-density storage study in this work is provided in Supplementary Table 6.
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“multicopy” is crucial for the robustness of DNA data storage and
should ideally be maintained in a reasonable range. Data robustness,
physical density, and economy together determine the technical
advancements of a storage medium. By taking advantage of the
“multicopy” feature, thiswork significantly improved the robustness of
DNA data storage while maintaining high physical and logical density.
The latter is an important indicator highly related to writing costs. As
detailed in Table 1 and Supplementary Table 6, we achieved a physical
density of 295 PB/g and a logical density of 1.30 bits/cycle at a data
scale of 6.8MB. Recently, Anavy et al. have reported a logical density of
1.53 bits/cycle using composite DNA letters at a scale of 6.4 MB.
However, a low physical density of 5.9 PB/g is reported due to the high
coverage required by composite DNA letters57. Compared to the study
of Anavy et al., we achieve much higher physical density and data
robustness at the cost of a slight decrease in logical density. It’s worth
mentioning that we obtained a strand dropout rate of 1.79% at a scale
of 6.8 MB, which is significantly lower than the reported dropout rate
of 3.60% at a scale of 2.14 MB by Erlich et al., revealing the technical
advances of DBGPS.

Although the mechanism of low coverage k-mer exclusion works
well with most of the data retrievals in this study, we observed a sig-
nificant decrease in strand reconstruction rate when more and more
errors are introduced (Fig. 3b, Supplementary Table 5). Future incor-
poration of redundancycodes that canhelp to identify andexclude the
noise k-mers is expected to further improve the efficiency of DBGPS,
which is particularly important in the extreme case of high error
rates26,51. The recent study by Antkowiak et al. revealed the potential of
low-quality synthesis methods, e.g., photolithographic, and electro-
chemical synthesis, in reducing the writing cost of DNA data storage.
However, due to the high error rate of DNA synthesis, a low strand
recovery rate of 83% was reported using the CL-MA method26. Inter-
estingly, DBGPS combined with a simple mechanism of inserting one
error-checking base every few bases (block checking codes)58 could be
a potential solution to this problem.With block lengths ranging from 3
to 10, simulation tests of this strategy on the sequencing data from the
study of Antkowiak et al.26 revealed high strand reconstruction rates
ranging from 98.3% to 99.6% (Supplementary Table 7), suggesting a
potential strategy in low-cost, inaccurate DNA synthesis technologies
for data storage.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The sequencing data gen-
erated in this study havebeendeposited in thefigsharedatabase under
the following DOI links:

Accelerated aging samples of 70 °C for 0 and 28 days. https://doi.
org/10.6084/m9.figshare.17193170.v2 Accelerated aging samples of
70 °C for 56 and 70 days. https://doi.org/10.6084/m9.figshare.
17192639.v1 Three samples of the 100 independent retrievals. https://
doi.org/10.6084/m9.figshare.18515078.v1 Error-prone PCR 1st and 2st
rounds. https://doi.org/10.6084/m9.figshare.16727122.v2 Error-prone
PCR 3st and 4st rounds. https://doi.org/10.6084/m9.figshare.17193128.
v1 Error-prone PCR 5st and 6st rounds. https://doi.org/10.6084/m9.
figshare.18515045.v1 High density storage − 295PB/g. https://doi.org/10.
6084/m9.figshare.17183081.v1 Sourcedata areprovidedwith this paper.

Code availability
All the original algorithms proposed in this study were implemented
with Python and the source codes are released on Zenodo at https://
doi.org/10.5281/zenodo.683378459. A compiled C implementation of
DBGPS is available at https://doi.org/10.5281/zenodo.683374760. The

source codes of the C version can be obtained for academic usage
upon request to the authors.
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