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Heterogeneous digital biomarker integration out-
performs patient self-reports in predicting
Parkinson’s disease
Kaiwen Deng1,6, Yueming Li1,6, Hanrui Zhang1, Jian Wang2, Roger L. Albin3,4 & Yuanfang Guan 1,5✉

Parkinson’s disease (PD) is one of the first diseases where digital biomarkers demonstrated

excellent performance in differentiating disease from healthy individuals. However, no study

has systematically compared and leveraged multiple types of digital biomarkers to predict PD.

Particularly, machine learning works on the fine-motor skills of PD are limited. Here, we

developed deep learning methods that achieved an AUC (Area Under the receiver operator

characteristic Curve) of 0.933 in identifying PD patients on 6418 individuals using 75048

tapping accelerometer and position records. Performance of tapping is superior to gait/rest

and voice-based models obtained from the same benchmark population. Assembling the

three models achieved a higher AUC of 0.944. Notably, the models not only correlated

strongly to, but also performed better than patient self-reported symptom scores in diag-

nosing PD. This study demonstrates the complementary predictive power of tapping, gait/

rest and voice data and establishes integrative deep learning-based models for identifying PD.
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Parkinson’s disease (PD) is one of the first disorders for
which digital biomarkers were explored. The clinical fea-
tures of PD include movement abnormalities such as tre-

mors, bradykinesia, and rigidity1. Mobile devices and built-in
sensors like accelerometers and gyroscopes provide the ability to
convert the features into digital signals as quantitative surrogates
of PD symptoms. The success of distinguishing the person with
Parkinson’s (PwP) from otherwise healthy individuals in the
general population using the digital biomarkers will enable a
remote and more convenient way for symptom evaluations and
diagnosing, with minimal interruptions in the participants’ daily
life2,3.

A multitude of public datasets is available4 for analyzing various
types of digital biomarkers such as voice recordings2,5,6, movement
data2,7,8, the magnetic resonance imaging (MRI)9, and the hand-
writing patterns9,10. And the application of machine learning or deep
learning techniques like Support Vector Machine11,12 and the Con-
volutional Neural Network13 successfully build diagnostic models on
these biomarkers. For example, a community-based challenge
benchmarked algorithms using 30-s rest and gait data from cell
phones to differentiate self-reported PwP from healthy subjects14,15.

Despite a considerable number of studies using digital bio-
markers for PwP detection, prior studies on the movement data
have mainly focused on the evaluation of gross motor skills such as
walking and rest with medium sample sizes4. In addition to gross
motor function impairment, PwP typically experiences difficulty in
daily tasks requiring fine-motor skills, e.g., picking up objects,
buttoning, tying shoelaces, and writing16. Abnormalities of fine-
motor coordination are not only characteristic of PwP, but their
presence is often a more sensitive indicator of PwP than changes in
gait or balance, particularly in early phase PD. As a result, clinicians
often use qualitative analysis of simple fine movements, such as
finger tapping, to assess patients for possible parkinsonism. Addi-
tionally, assessment of fine movements is a component of standard
clinical severity rating scales for PwP research17. However, there
have been few digital biomarker studies focusing on fine-motor
skills, and the applications of state-of-the-field machine learning
techniques such as deep learning approaches only report a mod-
erate performance13. Instead, prior studies with better performances
mostly have focused on traditional signal extraction methods18–20.
In addition, there are no fair comparisons or integration of algo-
rithms across different types of motor assessments aimed at dif-
ferentiating PwP from healthy individuals.

In this study, we aim at addressing the above open question
with an innovative self-reported dataset collected by mPower2.
mPower is an APP designed for collecting data from PwP and
otherwise healthy individuals, including 20–30-s walking data,
10-s voice data, and 20-s finger tapping data. For a substantial

number of individuals (2729), all three data types are available,
allowing parallel evaluations of the performance of the models.

We first applied the deep learning algorithms on the finger-
tapping accelerometer data. Then we construct the models on the
coordinates of the tapping positions, under the expectation that
PD patients exhibit worse coordination and slower motion during
the tapping task compared to healthy individuals. This will lead to
inaccurate and/or changing positions of the tapping contact
points. The tapping coordinate models outperformed the gait/rest
algorithm and the voice algorithm in differentiating PwP from
otherwise healthy individuals. We further integrated all three
types of models: finger tapping, voice, and rest/gait, and achieved
an AUC of 0.944 in diagnosing PD. Importantly, further eva-
luations with AUCs on the individuals with self-reported UPDRS
(The Unified Parkinson’s Disease Rating Scale) scores show that
our model can significantly outperform the symptom scores. The
AUC of our work is 0.949, and the AUCs of UPDRS scores are
0.823, and 0.935 when using the UPDRS motor experience part.

Results
The goal of this study is to explore and integrate digital bio-
markers of movement beyond the gross motor skills captured by
gait and rest evaluations. We will present the development of the
models for tapping records, followed by outlines of models for
voice and walking data. The latter have benchmarks established
by previous studies15,21,22. Finally, we will present the perfor-
mance of the integrated models and demonstrate the clinical
utility of the models by comparing with patient self-reports.

Model built on accelerometer data of tapping performs well in
identifying PD. The tapping data was obtained from the mPower
portal ([https://www.synapse.org/#!Synapse:syn5511439/tables/]).
Data included a total of 8,003 individuals. Among them, 6418
have self-reported diagnosis, and 1060 are self-identified as hav-
ing a professional diagnosis of PD (Table 1). We obtained a total
of 78,879 records (75048 of them have the self-reported diag-
nosis), ranging from 1 to 522 for each individual (the median
record number is 3; 75% of them have less than 6 records, and
95% of them have less than 30). On average, the individuals with
PD have 40.2 records, and the individuals without PD have 6.06.
Because each individual has multiple records, individual level,
instead of record-level cross-validation was carried out in all
analyses to prevent overestimation of the performance23,24. Spe-
cifically, in each round of cross-validation, 75% of the individuals
and all their records are used as the training set, and the
remaining 25% of individuals are used as the test set (Fig. 1a).

Table 1 Demographics of the individuals used in the tapping study.

Demographic type Demographic value Individual number of PD Individual number of Non-PD Total individual number

Gender Male 698 (13.9%) 4329 (86.1%) 5027
Female 359 (26.1%) 1014 (73.9%) 1373
Prefer not to answer 0 (0.0%) 6 (100.0%) 6
(Missing data) 3 9 12

Age ≤35 36 (0.95%) 3753 (99.04%) 3789
35–50 158 (13.3%) 1034 (86.7%) 1192
50–65 509 (56.2%) 397 (43.8%) 906
>65 352 (71.5%) 140 (28.5%) 492
(Missing data) 5 34 39

Smoke No 696 (17.4%) 3299 (82.6%) 3995
Yes 362 (16.6%) 1820 (83.4%) 2182
(Missing data) 2 239 241
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During the tapping task, participants were asked to alternately
tap two fingers of the dominant hand on the touchscreen of the
phone, placed flat on a table, within two contiguous squares
(Fig. 1b). Participants were asked to tap as quickly as possible for
20 s. Nearly 99% of the 75048 actual collected data have the
duration times located between 19.4 and 20.2 s. The average
duration time is 19.92 s, with a standard deviation 0.481 (Fig. 1c).
Two types of data are recorded. The first type is the
accelerometer, composed of [x, y, z] coordinate values sampled
at 100 Hz (Fig. 1d). The second type is the location of the tapping
on the screen, recorded as [x, y] coordinate values (Fig. 1e).

We first developed models that use accelerometer data to predict
PD. When participants tap on the screen, the tapping motion
induces acceleration of the phone. Thus, accelerometer data is
capable of capturing the magnitude, direction and speed for the
movement of the phone. A 1D deep learning network architecture
was implemented, where the only dimension is time. [x, y, z] values
were used as three channels of the input, analogous to color
channels in image analysis (Fig. 2a). Timewise perturbation,
magnitude augmentation, and spatial augmentation by rotating
the record reference frames progressively improved model
performance (Fig. 2b, Supplementary Table 1). As each individual
had multiple records, we took the maximal or average prediction
values across all records for each individual. Taking the maximal
values appeared to perform better than taking the average of all
records, as it ensures the PD individuals always have as high scores
as possible, and generates a good separation with the non-PD
individual scores (Fig. 2b). This likely reflects fluctuations in motor
performance in PwP with the maximal values capturing peak

abnormalities that are most predictive of PD. The performance
(mean AUC value) from 5-fold cross-validation is 0.8340 at the
record level, and 0.9174 at the individual level.

Deep learning models based on tapping coordinate data pre-
dict PD accurately. The mPower tapping coordinate data is
composed of x, y positions on the cell phone screen, and the
timestamp of each tap. The average number of taps in a single
record is 153, ranging from 2 to 359. Before the deep learning
models, we made exploratory experiments on the machine
learning techniques using the time-series data feature extraction
algorithms. We extracted 1508 features for each record using the
Python package tsfresh25, and fit a LightGBM model26. The
dataset split and pulling methods are the same as those in the
deep learning models. The average AUC is 0.692, and the per-
formances are highly dependent on the training and test data,
ranging from 0.6 to 0.92 in the 5-fold cross-validation.

We imported these records into a 1D deep learning network. We
tested a variety of models including training models with or without
adding the timestamps (Supplementary Table 2; Supplementary
Fig. 1A), applying diverse augmentation and normalization
methods (Supplementary Table 3, 4; Supplementary Fig. 1B, 2),
and tuning the models with a series of hyperparameter settings
(Supplementary Table 2; Supplementary Fig. 1A). We found that
centering timestamp and coordinate data, and using Adabound
improved model performance (Fig. 3b). On the other hand, other
techniques, including normalizing the coordinates by subtracting
the button position and 2D-rotation with a random angle in a

Fig. 1 Summary of tapping data and preprocessing techniques. a Training and test data are separated by individuals to avoid contamination. b Participants
were asked to tap successively in turns on the screen of the phone for 20 s. Machine learning models are trained for accelerometer and coordinate data
separately. c Distribution of the length of the records (d, e) demonstrate the preprocessing and augmentation techniques for raw accelerometer and
coordinate data. Normalization/centering, random time scaling, rotation, and magnitude scaling were applied in a sequential order. At the last step,
magnitude scaling was applied to each channel of the accelerometer and coordinated data.
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specific range (−90° to 90° and 0°–360°), impaired performances
(Fig. 3b, Supplementary Fig. 2). During cross-validation, the AUC
was 0.9352, compared to 0.9174 using accelerometer data (p < 0.05
for the cross-validation performances).

Comparison of tapping models with voice and gait/rest models
for predicting PD. In order to compare the performance of the
tapping models and the fine-motor skills, voice, and gait and rest
(accelerometer) models for predicting PD. We identified a total of
2729 individuals (645 PwP) in the mPower dataset who had all
three types of data. We retested the above accelerometer and
coordinate models based on the tapping records of this set of
individuals by cross-validation.

Next, we retrained a model for gait and rest for this set of
individuals. This model follows Zhang et al.15, which was a top-
performing model in the DREAM Parkinson’s disease challenge.
Briefly, the accelerometer data of the cell phone during 20- or 30-s
walking and rest activities were input into a 1D deep learning
network of three channels, integrating spatial and time augmenta-
tion (Fig. 4). The models were trained separately for walking and
rest. Then, we took the maximal value of the predictions across all
records. The walking data achieved an average AUC of 0.8983.

Additionally, we trained a voice model, using a 1D deep
learning network of one channel. The voice data in the mPower
dataset are audio recordings of the participants saying ‘Ahh..’ for
10 s, sampled at a frequency of 44.1 kHz. We tested various
modeling techniques and found that time-wise and magnitude-

wise augmentation could improve the performance (Supplemen-
tary Fig. 3). The voice data achieved an average AUC of 0.8335 at
the individual level in this population.

We also trained the accelerometer and coordinate tapping
models with this population, which achieved average AUCs of
0.8983 and 0.9236. We assembled the two models by averaging
the prediction scores from the two machine learning models for
the same individual and predicted PwP status with the assembled
score (Fig. 3c). The assembled model produces better perfor-
mance than either of the single models, with an average AUC of
0.9333 (Fig. 4b). We found that tapping models significantly
outperformed voice and gait/rest models in this population
(p < 0.05 for both of the cross-validation performances, Fig. 4d).

We examined whether assembling the voice and gait/rest
models in conjunction with tapping data models can further
improve predictive performance (Fig. 4a). After averaging the
evaluation scores from the four models (walk, voice, acceler-
ometer tapping, and coordinate tapping) and using the assembled
score to predict disease status, the average AUC reached 0.944,
better than any single model (p < 0.05 for the cross-validation
performances, Fig. 4d). This suggests that the evaluation scores of
different models may have specific limitations and that
assembling all sources of information may alleviate the individual
limitations and obtain better performance (Fig. 4c, d).

Robust performance across demographic groups and compar-
ison to patient self-reports. Previous studies of Parkinson’s

Fig. 2 Augmentation and normalization improve the performance of the tapping accelerometer model. a represents the model structure for the
accelerometer data tapping model with seven convolutional layers, seven max-pooling layers, and 1 fully connected layer. b “Plain Model” represents the
model using raw data without augmentation or normalization. “Norm” represents the model with Z-score normalization. “Quaternion Rotation” (QR),
“Magnitude”, and “Time” denote the three types of augmentation methods. The data were pre-processed in sequential order of the methods shown above
the plot. “All record” indicates the performance evaluated on the record level; “Average” and “Maximum” represent the individual level performance by
using the average or the maximum prediction of all records of the same individual. The models with normalization and all augmentation methods showed
the top performance.
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Disease presented the relationships between the risk, symptom
and the demographics, such as the advancing age27,28,
gender29,30, and the smoking behavior31,32. We examined if the
performance is robust against these diverse demographic groups.
We found that the performance remains similar and strong for
different genders, smoking groups, and age groups, other than the
age group <= 35 years old (Fig. 5a–c). All of the AUCs of the age
groups older than 35 are higher than 0.85. We also evaluate our
assembling model on the individuals older than 45 (the average
individual number is 520), and have an average AUC of 0.885,
0.25 higher than the previous work on the same age group13. Age
group ≤35 has an average AUC of 0.8 in the tapping models, and
0.681 in the assembling models. Of note, only 0.8% of this
population has a positive PD diagnosis. Additionally, the pre-
diction values of PD and normal groups are well separated into
different demographic groups (Fig. 5d–f). As age increases, the
overall prediction values increase as expected, due to more PD
patients. Prediction values are independent of smoking status
(Supplementary Fig. 4).

We further compared the performance of the prediction
models against UPDRS (The Unified Parkinson’s Disease Rating
Scale) patient self-reports, when they are available. The AUC of
the combined deep learning model on these shared individuals is
0.9486. UPDRS directly evaluated on the binary label achieved an
AUC of 0.8232, and UPDRS part 2 (motor experience of daily
living) achieved an AUC of 0.9356 (Fig. 6a, Supplementary
Table 5). This result suggests that the digital biomarkers can make
more accurate predictions than patient self-reports. Additionally,
prediction values from the combined deep learning model

showed strong correlation with UPDRS scores and with UPDRS
part 2 scores (0.4240 and 0.5378, respectively, Fig. 6b, c,
Supplementary Fig. 5, Supplementary Table 6). This result
supports the clinical relevance and utility of the deep learning
model.

Discussion
In this study, we proved the ability of finger-tapping positions on
identifying the PwPs and the reported performances, an average
AUC of 0.935, support that digital biomarkers for diagnosing PD
can be developed beyond gross motor skills such as gait/rest, the
primary focus of prior literature33–35. We also identified a digital
biomarker approach that successfully predicts PwP status with
even higher accuracy. This digital biomarker approach is based
on integrative measurements of fine-motor skills and gross motor
skills. The combined model achieved an average AUC of 0.944, a
superior performance compared to patient self-reports. Com-
pared to previous studies, our work has the largest dataset4, and
presents the ability of deep learning techniques to retrieve a high
accuracy on predicting the PD diagnosis13. Our movement data
model also has a higher performance in AUC than the previous
works using traditional machine learning techniques11,12,36,37.

However, lacking the information about how the diagnoses are
determined, and the reliability of the self-reported conditions, our
model can be influenced by the biases from different diagnostic
criteria and the false-positive self-identifications. Besides, our
models still have two potential limitations. First, the number of
records per patient is different and the guideline allows the par-
ticipant to submit data at any time they want. These lead to

Fig. 3 Model design for tapping coordinate data. a depicts the model structure for the coordinate data tapping model (inputs: x, y coordinates and
timestamp). The model contains six convolutional layers, six max-pooling layers, and one fully connected layer. b Experiments were designed to search for
the optimal data processing methods and network hyperparameters, including the normalization strategy on the coordinates and the timestamps,
augmentations with 2D-rotation and time scale, and the network optimizer. Best performing models by augmentation and centering groups are enclosed in
squares. c A combined model is generated by averaging the prediction scores from accelerometer and from coordinates.
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potential biases in analysis. We select the maximum scores for
each individual to maximize the PD detection, but it may impair
the classification for the non-PDs. Second, we include the data
with abnormal tapping durations and tapping times. Although
only less than 0.1% of the data have these abnormalities, it is
possible for the model to learn the biases from them.

PD is characterized by motor abnormalities, specifically tremor
and bradykinesia, with an impaired performance of fine-motor
skills as a common early manifestation of PD. Micrographia, for
example, is often present before the development of overt changes
in gait, posture, or voice. Subtle changes in motor performance
likely precede the emergence of overt PD38. Although the tradi-
tional motor-based diagnosis of PD, like the UPDRS, has already
achieved a high accuracy, an easily accessible and robust method
differentiating PwP from controls would be useful for screening
the population, potentially including identification of prodromal
PD. A complete MDS-UPDRS test requires the participant to fill a
33-page survey39, which is time consuming and hard especially
for a PD patient with motor disorder. Our work provides a
possible solution for the convenient, in-home PD assessment and
progression follow-up. It also may provide useful biomarkers for
the evaluation of interventions.

These methods might also be useful for evaluating more
advanced PD subjects. Identification of digital biomarkers inde-
pendent of walking/rest data is a potentially useful approach for
evaluating important motor functions in more advanced PD
patients. As PD progresses, patients often lose their ability to
think and reason, along with walking, but will maintain the ability
to carry out tapping tests for much longer.

In summary, our results indicate an integrative digital bio-
marker approach with several potential applications for PD
detection and monitoring of disease activities. Our study also
emphasizes the advantages of utilizing different types of bio-
markers. Previous studies have indicated the relationships
between the PD and the other modalities like the rapid eye
movement (REM) sleep behavior disorder (RBD)40, the
genotypes41, and their abilities on PD predictions42,43. Combin-
ing the digital biomarkers from these sources may further
improve the accuracy of the models4, and may help distinguish
PD with other types of tremulous movement disorders like
SWEDD (Subjects Without Evidence of Dopaminergic
Deficit)44–46. Possible future work also include a collection of
long-term follow-up data to evaluate the model ability of pre-
dicting PD before diagnosis, and a collection of other movement
disorders data like the cerebellar ataxia47, and the Alzheimer’s
disease-associated movement disorders48, for distinguishing PD
from them. Our work can easily transfer to these classification
tasks with the transfer learning strategy49.

Methods
Ethics. The study data was downloaded from the mPower portal ([https://
www.synapse.org/#!Synapse:syn5511439/tables/]). mPower study participants have
agreed with secondary analysis of the data when signing on the APP. Additionally,
all researchers that have access to the data in this study have obtained mPower
permission.

General mPower participant guideline. The data collection was opened to the
individuals diagnosed with PD as well as anyone interested in participating as a
control2. They must be 18 years of age or older, living in the United States, and

Fig. 4 Combining tapping, voice and gait/rest data improves performance in diagnosing PD. a A total of 2729 individuals (645 PD) who had all three
types of data were split into the same cross-validation folds and to train gait/rest, voice, and tapping models. The models are combined together by
averaging the prediction scores from each model. b Assembling accelerometer and coordinate tapping data models exceeds the performance of either
single model. (c) and (d) depict the comparison among gait/rest, voice, tapping, and assembled models. The combined model achieves the best
performance.
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comfortable reading and writing on an iPhone in English. Participants needed to
take a quiz of the study aims, participants right and data sharing, and were required
to complete an e-consent process and sign. They were also asked for an email for
verification.

Participants can submit their records three times a day. Participants with PD
were asked to finish the tests in three scenarios: (1) immediately before taking their
medication; (2) after taking their medication (when they are feeling at their best);
(3) at some other time. And those with non-PD can complete at any time.

Deep learning architecture and training procedure. Similar neural network
structures were built for accelerometer and coordinate data models except for
channel lengths according to different sizes of input data: 2500 for the accel-
erometer model and 800 for the coordinate model. The network contains seven
convolutional layers, seven max-pooling layers, and one fully connected layer
activated by a sigmoid function for the output (Figs. 2a, 3a).

We performed cross-validation by partitioning the mPower samples into the
training set (75%) and the testing set (25%) at the individual level with a random
seed. Furthermore, half of the training samples were used to train the model and
the other half were used in the validation process for hyperparameter tuning.
During each training process, the binary cross-entropy Hb(p) was applied as the
loss function for selecting the best epoch, the parameters used in that epoch would
then be stored for validation. The loss function is defined as:

HbðpÞ ¼ �p ´ logðp̂Þ � ð1� pÞ´ logð1� p̂Þ ð1Þ

where p is the ground truth (1 or 0 in our case) and p̂ is the prediction value. To
evaluate the performances of different models, Area Under Receiver Operating
Characteristic Curve (AUC) and Area Under Precision-Recall Curve (AUPRC)
scores were calculated and compared. Notably, AUC would not be affected by the
baseline accuracy (number of PD individuals/number of all individuals), thus was

more stable in our imbalanced data50. Predicting most individuals as non-PD
would retrieve a relatively high accuracy, while the AUC could be nearly random.

Adabound was an variant of the Adam optimizer employing dynamic bounds on
the learning rate. It was claimed to have both a rapid training process and good
generalization ability51. We implemented this algorithm in Theano and applied it to
our coordinate data model, along with a series of hyperparameter tunings on input
length, batch size, and learning rate. The model with Adabound optimizer, 800 input
length, 8 batch size, and 1e−4 learning rate reached the best performance (Fig. 3b).

Data normalization and augmentations. In order to avoid the potential data
leakage, both the normalization and the augmentations are applied on each batch
separately during the training process23.

Normalization methods in our experiments include a z-score normalization
ðXb � XbÞ=stdðXbÞ, a centering Xb � Xb (Xb is the data in a batch), and a boundary
normalization using the bounds of the tapping areas. The boundary normalization
is inspired by the fact that the resolutions of different devices may also contribute
to the tapping position variances among the individuals. Calculating the relative
positions by subtracting the bounds from the raw coordinates can eliminate the
bias from devices.

The augmentations are scalings and rotations. To scale the time, we resize the
lengths of the raw inputs with a coefficient randomly selected from (0.8, 1.2) using
the OpenCV52. To scale the magnitude, we multiply the raw signals with
coefficients randomly selected from (0.8, 1.2) on each channel. The rotations are
implemented based on the quaternion rotation matrix53 for the 3-D (the
accelerometer data) and the 2D (the coordinates data) objects. The alternative
rotation ranges in our experiments are (0, 2π) and (−π/2, π/2).

Pulling predictions of multiple records of a single individual and aggregation
of the two models. Since mPower collected data from voluntary participants in an

Fig. 5 Performance comparison of different demographic groups. a–c Performances in AUC and the predictions in different groups of data, separated by
gender, smoking and age. d–f Distribution of prediction scores of Non-PD and PD for different gender, smoking, and age groups.
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uncontrolled environment, each individual might perform one task multiple times
and generate more than one record. We used the same pulling prediction strategy
to deal with multiple records from the same individual as models we built on
mPower walking data and voice data15. Since we applied a 5-fold cross-validation
method during model training, we had five evaluation scores for the same record in
each fold. We first averaged these five scores to one mean score and used this score
in pulling. We tried two pulling methods—average pulling and maximum pulling.
In average pulling, the mean of all the records from a single individual was cal-
culated. In maximum pulling, the maximum evaluation score of an individual was
picked. The final evaluation score was then used to predict the PwP status of that
individual.

Since each tapping test collected both acceleration and tapping coordinate data,
we were able to assemble the results of these two models to see if model
performance improved. Since the pulling method improved the AUC score for each
model, we used the pulled score for each individual during aggregation. The
evaluation scores from the two models of the same individual were collected, which
is similar to adding another feature in the single model. The mean of the two scores
was calculated as the final score for that individual. We used this final score to
predict the PwP status.

Assembling gait and voice models on top of the tapping model. In order to
compare among models built on different types of data, we identified the indivi-
duals with all types of these records. We used records from these individuals to
train all four models (gait, voice, and tapping models) with the same split of 5-fold
cross-validation. After comparing the performance of these single models, we tried
to assemble gait and voice models on top of the best-performed tapping model
(coordinate model). Similar strategies as aggregating two tapping models were used
—the pulled score for each individual from the three models was collected together
and averaged to a final score for the following evaluation.

Statistics and reproducibility. Statistics were performed in the R Studio (R ver-
sion 4.0.2). The p-values were calculated by the two-sided t-test on the AUCs from
the 5-fold cross-validations. The models were constructed using Theano (version

1.0.2) and the Lasagne (version 0.2.dev1) in Python (version 2.7.5). More infor-
mation about the environment and implementation details can be found in https://
github.com/GuanLab/PDTap.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets used in our works are available through the mPower Public Researcher
Portal (https://www.synapse.org/mpower). Researchers who are interested in accessing
these data should follow the mPower Data Governance (https://github.com/Sage-
Bionetworks/mPower-sdata) (Bot et al. 2016). All the data behind the figures are
available in the zip file of the Supplementary Data.

Code availability
Code is available at https://github.com/GuanLab/PDTap.
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