
REVIEW ARTICLE OPEN

Harnessing consumer smartphone and wearable sensors for
clinical cancer research
Carissa A. Low 1✉

As smartphones and consumer wearable devices become more ubiquitous, there is a growing opportunity to capture rich mobile
sensor data continuously, passively, and in real-world settings with minimal burden. In the context of cancer, changes in these
passively sensed digital biomarkers may reflect meaningful variation in functional status, symptom burden, quality of life, and risk
for adverse clinical outcomes. These data could enable real-time remote monitoring of patients between clinical encounters and
more proactive, comprehensive, and personalized care. Over the past few years, small studies across a variety of cancer populations
support the feasibility and potential clinical value of mobile sensors in oncology. Barriers to implementing mobile sensing in clinical
oncology care include the challenges of managing and making sense of continuous sensor data, patient engagement issues,
difficulty integrating sensor data into existing electronic health systems and clinical workflows, and ethical and privacy concerns.
Multidisciplinary collaboration is needed to develop mobile sensing frameworks that overcome these barriers and that can be
implemented at large-scale for remote monitoring of deteriorating health during or after cancer treatment or for promotion and
tailoring of lifestyle or symptom management interventions. Leveraging digital technology has the potential to enrich scientific
understanding of how cancer and its treatment affect patient lives, to use this understanding to offer more timely and personalized
support to patients, and to improve clinical oncology outcomes.
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INTRODUCTION
Smartphones, owned by over 80% of US adults, provide new
opportunities to understand and improve population health1.
Many users keep their smartphones within arm’s reach at all times
and spend hours per day interacting with the device2. Smart-
phones are equipped with a three-axis accelerometer, gyroscope,
magnetometer, and other sensors capable of capturing moment-
to-moment information about mobility, device use, social interac-
tions, and environmental context as individuals go about their
daily routines3. Smartwatches and other consumer wearable
devices are also becoming more widely used4 and collect
information about activity, sleep, and physiology. Thus, there is
an unprecedented amount of health and behavioral data that can
be captured continuously and passively using devices that many
individuals already own.
For adults affected by cancer, mobile sensing can capture

fluctuations in behavior that may reflect meaningful variation in
functional status, symptom burden, quality of life, and risk for
readmission and other adverse outcomes. Continuous assessment
of these digital biomarkers5 could enable real-time monitoring of
patients between clinical encounters, extending the coverage and
reach of care. Further, sharing actionable insights from data
analyses with providers, patients, and caregivers could lead to
more proactive and personalized care. Although not without
challenges, mobile sensing offers opportunities to increase patient
engagement, remotely monitor patients at low cost, and evaluate
the effects of treatments on patient functioning and daily activities.
Mobile sensor data can complement snapshots of health

gathered during clinic visits as well as other forms of patient-
generated health data6 such as patient-reported outcomes
(PROs). Expanding use of PROs in clinical trials7 reflects growing
awareness that PROs may improve capture of treatment
toxicities (compared to clinician ratings, which tend to

underestimate symptom severity and frequency8), helping
patients make informed decisions and better prepare for what
to expect during treatment. Measuring PROs systematically and
between provider visits may also enable earlier symptom
management, leading to better quality of life and potentially
prolonged survival9. Similarly, measuring objective changes in
physical activity, sleep, social interaction, and other passively
sensed behaviors may improve and enrich our understanding of
the effects of cancer and its treatments on daily life, support
decision making and patient education, and enable earlier
detection of deteriorating health and therefore earlier interven-
tion. Unlike PROs, passive sensor data can be collected with
minimal burden to patients, even during acute illness or over
long periods of time, and reflect objective changes in behavior
not subject to reporting biases.
This paper provides a narrative overview of the growing literature

on digital biomarkers in clinical oncology, focusing specifically on
studies linking consumer (as opposed to research-grade) wearable
device or smartphone sensor data to clinical outcomes in cancer
patients. To identify relevant papers, a search of the PubMed
database was conducted in May 2020 using the following search
terms: (smartphone OR mobile OR passive OR wearable) AND
(sensors or sensing) AND (cancer OR oncology); (Fitbit OR Garmin
OR Smartwatch) AND (cancer OR oncology). References of articles
were also scanned for additional studies. After reviewing existing
studies, challenges in integrating these data into routine oncology
care as well as clinical applications of mobile sensing to improve
comprehensive cancer care are discussed.

CONSUMER WEARABLE DEVICES IN ONCOLOGY RESEARCH
A vast and growing variety of consumer devices are available that
are worn continuously on one’s body to quantify motion and
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other physiological factors (e.g., Fitbit, Apple Watch). These
“wearable devices” include activity tracking wristbands or jewelry
that are often paired with a companion smartphone app to sync
and summarize a user’s data. Wearable devices are typically
marketed as tools to motivate healthy lifestyles4. The wearable
device market continues to evolve and expand, with some devices
capable of measuring skin temperature and blood oxygen
saturation or collecting electrocardiograms.
Consumer wearable devices are gaining traction in oncology

research10,11. The most common uses of wearable devices in
cancer research have been to assess physical activity (e.g., daily
step counts) over time and to link activity metrics to outcomes of
interest. Physical activity levels before, during, and after cancer
treatment have been established as robust predictors of clinical
outcomes as well as quality of life12,13. Compared with self-report
assessments of physical activity, wearable devices offer more
objective and fine-grained activity data14. Research generally
supports the validity of commercial wearable devices for activity
measurement15, although there is some evidence that step counts
may be less accurate with slower gait speed or assistive device
use16. Collection of activity data using consumer devices has been
demonstrated to be feasible and acceptable among cancer
patients in active treatment17–20. The wearable device literature
builds on early studies with older-generation research-grade
accelerometers21, which have been shown to correlate with
consumer activity tracker data in cancer patients22. Unlike
research-grade actigraphy devices, which are costly, require
specialized software to access and analyze the data, and are
commonly worn for a week or less, consumer wearable devices
are affordable and designed to be comfortable and convenient to
wear continuously with easily recharged batteries that enable
long-term data collection. Another major advantage of commer-
cial devices is that they frequently sync data to cloud-based
servers, enabling remote real-time monitoring of activity data by
researchers or clinicians. Thus, wearable devices provide a way to
collect physical activity and other behavioral and physiological
data continuously, unobtrusively, and at large scale in free-living
conditions23.
Prospective observational studies support the hypothesis that

physical activity quantified by consumer wearable devices is
correlated with symptom burden and quality of life. A study of 32
patients undergoing hematopoietic cell transplant found that
lower Fitbit step counts were associated with higher levels of self-
reported symptoms including pain, fatigue, and diarrhea as well as
worse physical health and role functioning (but not mental health
or quality of life)24. Furthermore, within-person decreases in daily
steps were associated with increasing symptoms and worsening
physical health over time. In a study of 39 patients with advanced
lung cancer, lower Fitbit step counts were correlated with lower
quality of life and greater depression25. A study of 24 patients in
systemic therapy found that Fitbit step count variables were
correlated with patient-reported fatigue, quality of life, depression,
and performance status26. These studies suggest that low or
decreasing activity may indicate worsening symptoms and may be
a sensitive measure of performance status.
Studies have also shown that wearable device data relate to

clinical outcomes. During outpatient chemoradiation therapy,
lower levels of activity as measured with Garmin devices were
associated with greater hospitalization risk, lower likelihood of
completing treatment without delays, and shorter survival27,28. In
a sample of 71 patients undergoing surgery for advanced
abdominal cancer, lower Fitbit step counts during inpatient
recovery were associated with greater risk of unplanned 30- and
60-day hospital readmission29. A study of 20 abdominal cancer
patients reported that daily step count on postoperative day 7
inversely correlated with postoperative complication index30.
Finally, a study of 37 advanced cancer patients found that higher
daily Fitbit step counts were associated with better provider-

assessed performance status as well as reduced odds of
hospitalization and death31. Thus, remote real-time monitoring
of activity data may identify patients at risk for adverse outcomes
who could benefit from additional support or intervention.
Because wearable devices offer data and feedback directly to

patients, these tools are also used to promote physical activity
among cancer patients and survivors32. Two recent reviews of
studies using wearable devices to promote activity among cancer
survivors found that interventions using wearable activity
monitors had a positive impact on physical activity as well as
symptoms and quality of life33,34. Moreover, real-time wearable
device data may allow for tailored or just-in-time physical activity
interventions35 that may be further enhanced by the support of a
coach who can review a patient’s real-time data and provide
individualized support for behavior change36.
Although many wearable devices also measure sleep and heart

rate in addition to activity, to date there is limited published
evidence linking these metrics to patient-reported symptoms,
quality of life, or outcomes.

SMARTPHONE SENSORS IN ONCOLOGY RESEARCH
Unlike wearable devices, which are owned by only 21% of adults
and an even smaller percentage of older or rural populations, the
vast majority of adults in the United States already own and use a
smartphone1. This ubiquity makes research or clinical applications
using smartphones highly scalable. Like wearable devices,
smartphones are equipped with onboard accelerometer sensors
as well as other sensors capable of passively measuring ambient
light and noise, battery level, whether the screen is on or off,
nearby Bluetooth devices, and other parameters related to
individual behavior patterns and environmental context. For
example, location data may shed light on how much time is
spent at home, at work, in the hospital, or in social settings. Speed
of movement may be related to depression or fatigue, whereas
frequency of smartphone screen unlocks may be related to
concentration or anxiety37. Leveraging data from these sensors for
what has been called digital phenotyping is prevalent in the field
of mental health38–40 but less established in oncology.
In the past few years, several studies suggest that smartphones

may have clinical utility for oncology care. Some of these have
focused exclusively on the ability of smartphone accelerometers
to estimate step count, reporting that smartphone measurements
are valid and reliable41. A pilot intervention where chemotherapy
patients were given a smartphone with a pedometer application
and contacted if their daily step count decreased >15% from
baseline was shown to be feasible and to help identify
chemotherapy toxicity42. In a prospective study of 62 patients
undergoing cancer surgery, mean exertional activity based on
smartphone accelerometer data was useful in differentiating
patients who experienced a postoperative complication, emer-
gency department visit, readmission, reoperation, or mortality
from those with better recovery trajectories43.
Four pilot studies have harnessed smartphone sensors beyond

accelerometry to monitor cancer patients, sometimes in combina-
tion with wearable devices. In a sample of 14 patients undergoing
chemotherapy for gastrointestinal cancer, machine learning
models using smartphone sensor data like screen time and
location in combination with Fitbit data were able to detect
symptom burden with 87% accuracy44. The subset of features
yielding the best performing model included more time in
frequent locations, fewer minutes in light physical activity, and
more time interacting with the device. In a sample of seven breast
cancer patients in active treatment, more time at home or at
locations of friends and family members was associated with
better mood and less anxiety and depression while more time
spent at hospitals and clinics was associated with worse mood45.
In a sample of 10 gynecologic cancer patients, Fitbit and
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smartphone sensor data were actively monitored for anomalies;
this led the research team to identify a patient with severe nausea
and vomiting whose symptoms were then able to be managed
over the phone as well as a patient who took fewer steps and
spent less time away from home prior to an emergency
department visit46. Finally, a recent study collected both
smartphone and wearable sensor data as well as patient-
reported pain and distress ratings and quality of life measures in
25 palliative cancer patients47. Mobile sensor data were signifi-
cantly correlated with pain and distress ratings. Moreover,
although patient-reported pain, distress, and quality of life were
not associated with emergency visits, increased resting heart rate,
decreased heart rate variability, and a trend for increased step
speed was associated with emergency visits. These last two
studies provide preliminary evidence that anomalies in passive
sensor data, particularly deviations in heart rate and activity data,
may serve as early warning signals for clinically significant
deterioration, presaging changes in patient self-report and
offering a wider window for preventive intervention.

OTHER SENSORS IN ONCOLOGY RESEARCH
This review focuses on personal consumer devices and passively
captured data from typical patterns of use, but there are many
opportunities for additional passive sensors or applications using
existing sensors to inform oncology care. For example, wearable
or smartphone sensors can be used in performance-based tasks
such as the six-minute walk test or 30-second maximal sit-to-stand
test48,49. Additional sensors such as Bluetooth scales or blood
pressure monitors or beacons to estimate in-home location may
provide additional data about health status, home environment,
and activities of daily living50,51. Passive monitoring of diet or
eating behaviors has proven challenging, although using smart-
phone cameras with machine learning algorithms to label foods
and estimate portions may be less burdensome than manually
entering foods6. Research is underway investigating wearable
sensors to detect biomarkers in sweat52 and ingestible sensors to
monitor medication compliance53. Finally, sensing opportunities
related to cancer prevention include leveraging wearable sensor
data to detect smoking gestures54 or using wearable ultraviolet
radiation sensors to monitor sun exposure55.

SUMMARY OF PREVIOUS RESEARCH
Over the past four years, a growing body of evidence supports the
feasibility and potential clinical value of mobile sensors in clinical
oncology research. We identified 14 prospective studies since
2016 that have examined a variety of oncology populations
before, during, and after cancer treatment and have included a
range of consumer wearable devices and smartphone sensing
frameworks (see Table 1). Most studies have included very small
samples (median n= 34.5, range 7–71), and only a handful have
used real-time sensor data to inform clinical care42,46. Larger-scale
longitudinal studies that implement mobile sensing in clinical
settings are needed.

CHALLENGES AND PRACTICAL CONSIDERATIONS
Several issues must be considered when integrating mobile
sensing into cancer research and care. Addressing these
challenges will enable broader use of these methods and allow
cancer researchers and clinicians to capitalize on mobile
technology advances and maximize potential benefit to patients
and families.
The first set of challenges involves the collection, cleaning, and

processing of mobile sensor data to make it useful to patients or
providers. One hurdle is selecting the right device to use, as
existing evidence provides only limited guidance regarding which

digital biomarkers may be most valuable for specific clinical
oncology populations or contexts. Selecting which device to use
may be a function of feasibility and cost of data collection, where
and for how long data will be collected, and whether real-time
data will be monitored. For example, some wearable devices are
uncomfortable to wear overnight or require daily charging and
therefore may not be the ideal choice for a long-term sleep
monitoring study. Harnessing data from whichever device patients
already own is appealing, but it remains unclear whether metrics
of activity, sleep, and other behaviors are comparable across
different manufacturer’s devices, and it may be challenging to
standardize data collection, compilation, and processing across
different devices. As the devices discussed in this review were
developed as consumer devices rather than research-grade
measures, additional work is needed to validate that sensor data
reliably measure behaviors of interest compared with gold-
standard measures, evaluate their robustness in real-world
settings, and confirm their correlation with clinical outcomes in
older cancer populations.
Translating raw data into digital biomarkers requires multi-

disciplinary collaboration, as the volume of continuously collected
sensor data can be enormous, and both clinical and technical
expertise are needed to extract meaning from continuous sensor
data. Some data reduction such as calculation of daily step counts
or average resting heart rate may be handled by device software
through opaque proprietary algorithms56. To fully realize the
potential of continuous sensor data, researchers may want to
consider whether raw or more granular (e.g., minute-level step
count, beat-to-beat heart rate, continuous location) data are
available so that they can calculate additional features like gait
speed, percent of time spent at home, circadian rhythmicity of
activity, or variability in heart rate37. Interviews with patients,
providers, and other stakeholders may be useful in identifying
additional useful and relevant biomarkers57. Other decisions
include how to handle missing data, time windows over which to
aggregate data, and which data analytic approach to use. Missing
sensor data are common owing to both participant noncom-
pliance and technical issues, and guidelines for best practices in
cleaning data (e.g., deleting duplicates or handling outliers) or
considering issues like how to determine when a participant was
wearing a device and the minimum amount of daily wear time
necessary to estimate activity level have not yet been estab-
lished10. From a relatively modest number of sensors, hundreds of
features can be extracted from single sensors or combinations of
sensors (e.g., high heart rate during sedentary behavior). With
such a large number of input variables that may contain
predictive value, finding robust patterns linking these features
to clinical outcomes may require machine learning approaches
that can be complex, computationally intensive, and difficult to
interpret. Visualizing data in an accessible way for patients,
caregivers, researchers, or clinical providers requires user-
centered design to better understand each stakeholder’s needs
and preferences and to determine how to transform data
analyses into actionable recommendations58.
A second set of issues involve health system and patient

barriers to mobile-sensing implementation. For mobile sensor
data and associated prediction models to be clinically useful,
seamless integration with electronic health records (EHR) and
existing workflows would be ideal. Pulling data collected by
patients’ personal wearable devices or smartphones into EHR
would allow these data to be viewed and discussed during
clinical encounters and would also enable automatic provider
alerts to be triggered if prespecified thresholds are exceeded or
significant anomalies are detected59. Making data available to
clinicians and integrated into their EHR workflow will require
training or guidance about how to use these data in clinical
conversations and decision making60. In one feasibility trial that
integrated Fitbit step count data into EHR, investigators reported
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that the majority of clinicians looked at survivors’ activity data
and reported that Fitbit data provided insight into their patients’
lifestyles61.
Even with passive sensing, patient engagement is critical in

ensuring quality and clinical utility of patient-generated health data.
If patients are required to wear, sync, or charge devices consistently,
frequent reminders or technical support may be necessary. If data
from personal smartphones is being shared with providers or
researchers, patients must fully understand and consent to this data
sharing. If patients have difficulty adhering to recommended use or
if compliance declines over time, interviews to understand barriers
to using the technology and whether patients believe sensor data
are valid and useful may be enlightening10.
Third, ethical challenges must be confronted in using mobile

sensor data62,63. These include ensuring that patients understand
the risks and benefits of collecting and sharing these data and that
risks related to privacy and data security are minimized. It is also
important to ensure that advances in mobile-sensing tools are
accessible to diverse populations. Smartphone use is widespread
across racial and economic groups, but wearable devices are more
common among individuals of higher socioeconomic status4.
Digital literacy may be particularly relevant for older cancer
patients, who may own smartphones or wearable devices but not
understand how to fully utilize their capabilities. It will be
important to consider issues like access to technology and
consistent Wi-Fi for data syncing as well as digital literacy to
prevent these innovations from widening existing health
disparities.

OPPORTUNITIES AND CLINICAL IMPLICATIONS
There are a number of potential clinical applications for smartphone
and wearable sensors in clinical oncology (Fig. 1). Behavioral sensor
data could be useful in evaluating patients prior to treatment to
obtain a more objective measure of performance status or frailty
and to predict likelihood of tolerating a new or aggressive
therapy58,64. Digital biomarkers could also be included as secondary
measures of performance status in clinical trials, providing many
more data points from which to gain insight about the effect of
treatments on patient lives56,57. If mobile sensing data are
monitored in real-time or used in combination with algorithms
that trigger notifications to clinicians when preset thresholds are
exceeded or trajectories suggest significant anomalies or changes
over time, they can be used for remote monitoring of toxicities and
symptoms57,65. These symptom monitoring systems could also
trigger symptom self-management interventions for patients and
caregivers or support patients in making timely decisions about
when to seek care42,46. In the post-treatment survivorship phase,
when clinical encounters become less frequent but treatment
sequelae like fatigue, insomnia, and cognitive difficulties remain
common, passive monitoring could be useful in evaluating quality
of life, personalizing survivorship care, and gaining insight into the
long-term effects of cancer and its treatments64.
Mobile sensor data can also be used to inform, trigger, or

personalize supportive interventions. For example, wearable
devices can be used to monitor and motivate physical activity
as part of prehabilitation or rehabilitation efforts. Interventions
such as those to support pain management, address cognitive

Smartphone sensors
- Accelerometer
- Bluetooth
- Screen

Wearable sensors
- Accelerometer
- Photoplethysmograph

Patient Reported Outcomes

Raw Data

Processed Data

Clinical Outcome
Models

Provider

Patient

Alert

Caregiver

- Pain
- Quality of life

- Steps
- % time at home
- # locations visited
- Screen time
- Heart rate
- Summaries over
different time windows

Electronic Medical Records
- Readmission
- Pafstations?

Alert

Alert

Fig. 1 Highlights a mobile sensing framework for monitoring oncology patients. Patients provide passive sensor data via smartphone and
wearable sensors that, when combined with patient-reported outcomes or electronic health record data, can be used to generate clinical risk
prediction models. These models can be used to trigger alerts for oncology providers or alerts for personalized interventions for patients and
caregivers.
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impairment, or reduce stress can be delivered via smartphone
apps, and collecting concurrent sensor data can enable research-
ers to evaluate app use patterns and behavioral changes in
response to intervention content45,60. Furthermore, sensor data
can be used to tailor intervention content, dose, or timing, setting
attainable individualized goals and delivering prompts at the right
time, when participants are receptive to intervention messages or
in need of support63. Finally, sensor data themselves can be
leveraged to develop n-of-1 interventions, helping individual
patients identify patterns and recognize how their activity, sleep,
or other behaviors affect their health.

CONCLUSION
Smartphones and wearable devices are becoming ubiquitous and
offer powerful opportunities for passive remote sensing of patient
behavior and health. Existing data based on small observational
studies suggest that collecting mobile sensor data from cancer
patients is feasible and that these digital biomarkers are related to
symptoms, quality of life, and physical function as well as risk of
adverse events. Monitoring mobile sensor data in real-time
between clinical encounters may lead to earlier detection of
significant changes in activity, sleep, social interactions, or other
behaviors, allowing more proactive and timely management of
toxicities and risks during and after cancer treatment. Mobile
sensing can also be used to promote and personalize behavior
change recommendations, such as lifestyle or symptom manage-
ment interventions. Implementing mobile sensing in oncology
clinics will require multidisciplinary teams to support the manage-
ment and interpretation of large amounts of continuous data
collected by mobile devices, consideration of ethical and privacy
issues, and engagement with patients, providers, EHR systems,
and other stakeholders in order to minimize barriers to uptake.
Leveraging these ubiquitous technologies has the potential to
improve scientific understanding of how cancer and its treatment
affect patient lives and to use this understanding to better support
and empower patients, personalize and extend care, and improve
clinical outcomes.
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