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Abstract
Rotaviruses (RV) are important causes of diarrhea in animals, especially in domestic ani-

mals. Of the 9 RV species, rotavirus A, B, and C (RVA, RVB, and RVC, respectively) had

been established as important causes of diarrhea in pigs. The Minnesota Veterinary Diag-

nostic Laboratory receives swine stool samples from North America to determine the etio-

logic agents of disease. Between November 2009 and October 2011, 7,508 samples from

pigs with diarrhea were submitted to determine if enteric pathogens, including RV, were

present in the samples. All samples were tested for RVA, RVB, and RVC by real time RT-

PCR. The majority of the samples (82%) were positive for RVA, RVB, and/or RVC. To better

understand the risk factors associated with RV infections in swine diagnostic samples,

three-level mixed-effects logistic regression models (3L-MLMs) were used to estimate asso-

ciations among RV species, age, and geographical variability within the major swine pro-

duction regions in North America. The conditional odds ratios (cORs) for RVA and RVB

detection were lower for 1–3 day old pigs when compared to any other age group. However,

the cOR of RVC detection in 1–3 day old pigs was significantly higher (p < 0.001) than pigs

in the 4–20 days old and >55 day old age groups. Furthermore, pigs in the 21–55 day old

age group had statistically higher cORs of RV co-detection compared to 1–3 day old pigs

(p < 0.001). The 3L-MLMs indicated that RV status was more similar within states than

among states or within each region. Our results indicated that 3L-MLMs are a powerful and

adaptable tool to handle and analyze large-hierarchical datasets. In addition, our results

indicated that, overall, swine RV epidemiology is complex, and RV species are associated

with different age groups and vary by regions in North America.
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Introduction
Rotaviruses (RVs) belong to the family Reoviridae and contain 11 segments of double stranded
RNA (dsRNA) [1, 2]. RVs are classified into nine species A-I (RVA-RVI) based on sequencing
of the viral protein 6 (VP6) [1, 3, 4]. RVs are a major cause of diarrhea in pigs, and five
(RVA-RVC, RVE, and RVH) out of the nine species have been found in swine [5].

RVA is considered the most prevalent, pathogenic, and the major cause of diarrhea in pigs
[6]. Early studies indicated that 53% of suckling piglets and 44% of weaned pigs were infected
with RVA without evidence of any viral shedding after 2 months of age. In addition, sows
infected with RVA were able to shed many different viral strains [7–10]. While the pathogene-
sis of RVB was established in the 1980s, the revelation of RVB as an important enteric patho-
gen in pigs was only recently discovered in the United States of America (USA) [11, 12]. RVC
were first identified in swine and is an important cause of diarrhea in piglets in the USA [5, 13,
14]. The pathogenesis of swine RVE was established in gnotobiotic pigs although its complete
characterization as a RV species is unknown [13]. While the pathogenesis associated with
swine RVH is undefined, swine RVH was first identified in Japan and has been recently found
circulating in USA and Brazil [15–17]. Co-infections of RVA, RVB, and RVC are common in
nursery piglets from the USA while a limited number of co-infections for RVA and RVC have
been investigated in other countries [6, 18, 19]. In addition, multiple RV infections can occur
within a single swine herd [20], and clinical signs may vary between herds due to strain diver-
sity and/or virulence [21].

Multilevel modeling has been widely used for statistical analysis for more than 50 years [22].
Multilevel modeling incorporates hierarchically demographic information (level) into a single
analysis and provides more accurate estimates of effects than conventional fixed-effects model-
ing. In addition, multilevel modeling allows for multiple comparisons within each level by
accounting for the variability within each level [23]. In veterinary epidemiology, multilevel
modeling has been used in numerous research investigations involving studies of risk factors
for, diarrhea in lambs [24], pre-weaning mortality in goats [25], gastrointestinal diseases in
mink [26], Salmonellosis in poultry [27], effects of ketosis on milk production and reproductive
problems in dairy cows [28, 29], mortality in sows [30], weaned-to-service interval related to
seasonal changes in female pigs [31], and deaths related to seasonal changes in peripartum pigs
[32].

The Minnesota Veterinary Diagnostic Laboratory (MNVDL) at the University of Minnesota
College of Veterinary Medicine is a large-scale diagnostic laboratory and receives swine sam-
ples from North America to identify RV infections. These samples include hierarchical data,
which allows for multilevel modeling to estimate the association between RV detection and
demographic traits (age, state, region, and country). Currently, three major swine production
regions in the USA: Midwest, Southeast, and South-central [33, 34]. Historically, most swine
production systems in the USA were located in the Midwest. After the 1980s, swine popula-
tions increased in the Southeast (North Carolina and South Carolina) and the South-central
(Oklahoma and Texas) regions, and weaned pigs (21 days of age) are transported to the Mid-
west and raised until their ready for harvest (5–6 months) since the Midwest is the major pro-
ducer of the feed supply, corn [34].

In the USA, the associations (odd ratios) for swine RVA, RVB, RVC infections are lacking
for different pig age groups as well as the relationship of these infections among the different
production regions. Therefore, the objective of this study was to investigate the associations
among age, RV detection, and regions within the US swine production in samples submitted
for diagnosis to the MNVDL.
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Materials and Methods

Ethic statement
The MNVDL receives animal samples voluntarily submitted by veterinarians or producers in
order to determine the causative agent of disease. The MNVDL was not involved in the collec-
tion or sampling of the pigs in this study. The MNVDL retains ownership of the samples upon
arrival and maintains client(s) confidentiality in public communications by removing any sig-
nifiers that would identify the client(s). Client consent is not required if the aforementioned
conditions are met.

Samples and RV detection
The MNVDL received 7,508 swine samples between November 2009 and October 2011 to
determine the etiological agent of disease from North America continent. Samples were tested
by real time reverse transcriptase polymerase chain reaction (RRT-PCR) for swine RVA, RVB,
and RVC using methods described elsewhere [5, 6]. In addition, samples were categorized into
five age groups (1–3 days; 4–21 days; 22–55 days:> 55 days; and unknown age) and five geo-
graphical regions (Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri,
Nebraska, Ohio, South Dakota, Wisconsin; South-central: Oklahoma, Texas; Southeast: North
Carolina, South Carolina; other US states: North Dakota, Pennsylvania, Colorado, Arizona,
Alabama, Arkansas, Florida, Kentucky, Tennessee, Utah, Virginia, Vermont, Wyoming,
depending on swine production density; and non-USA regions (Mexico and Canada) [35]. The
Midwest, South-central, and Southeast represent the densities regions of swine production.

Statistical analysis and model selection
The RV infectious statuses: RVA, RVB, RVC, RVAB (A+B), RVAC (A+C), RVBC (B+C), and
RVABC (A+B+C) were defined for each sample as binary outcome (positive or negative). Tab-
ular methods were performed to calculate and map the frequency distribution of RV status by
age group and region with the R packages maps [36], maptools [37], RColorBrewer [38] and
classInt [39]. In addition, percentages of RVA, RVB, and RVC were calculated to investigate
seasonality of RV infections using a Locally Weighted Regression model [40]. Graphics were
produced with the R package ggplot2[41]. Statistical analyses were performed the R version
3.2.2 with different packages as aforementioned [42].

Age, as a continuous independent (predictor) variable, was checked for Normality using
Kolmogorov-Smirnov test. To avoid linearity assumption of the independent variable, age was
categorized into four main groups; (Age1: 1–3 days, Age2: 4–20 days, Age3: 21–55 days, and
Age4:>55 days) (S1 Table). If age was missing with the sample, it was categorized as an Age9:
“unknown age group”. The crude associations between RV status and age groups (Model 1) or
regions (Model 2) were measured using univariate logistic regression models, and the 1–3 day
age group and non-USA region were used as reference group for each model, respectively.
Each logistic regression model assumed that each observation (Y1,. . .,Y7508; Yj) was indepen-
dent of positive or negative result. Model 1 assumes Yi~ Bernoulli (π1); Logit (π1| Age1i, Age2i,
Age3i, Age4i, Age-unknown i) = β1 +β2Age2i+β3Age3i+β4Age4i+β5Age-unknowni. Model 2
assumes Yi~ Bernoulli (π2); Logit (π2|Midwesti, South-centrali, Southeasti, Other USA-statesi,
non-USAi,) = β1 +β2Midwesti+β3South-centrali+β4Southeasti+β5non-USAi. The β1 is intercept
term while β2, β3, β4 and β5 are logistic regression coefficients, and π1 and π2 are the probability
of being RV positive in the Models 1 and 2, respectively. Because the overall p-value was<0.05
in the univariate logistic regression models, all the age and region covariates were included in
the mixed-effects logistic regression models.
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Due to the hierarchical structure of the data, three-levels mixed-effects logistic regression
models (3L-MLMs, Models 3–5) were performed to investigate the association of age groups
on RV detection, and the unknown-age group was excluded from the 3L-MLMs analyses.
Because the objective of our study was to investigate associations of age, age was a fixed effect
while individual samples (i), states (j), and region (k) were random effects [43–45]. The
3L-MLMs assumed that observations (Y111,. . .,Yijk) are independent of positive or negative
result, and Yijk~ Bernoulli (πijk), where πijk are probabilities of positive results for individual
samples (i), states (j), and region (k); hence; Logit (π| Age1i, Age2i, Age3i, Age4i, Regionk, Uk,
Wjk) = β1 +β2Age2ijk+ β3Age3ijk +β4Age4ijk+ β5kRegionk+ β2kAge2ijk:Regionk + β3kAge3ijk:
Regionk + β4kAge4ijk:Regionk +Uk+Wjk. The grand mean (β1) is the intercept term. The β2, β3,
and β4 are the fixed-effects logistic regression coefficients corresponding to the three age
groups while β5k are the fixed-effect coefficients at the regional levels (region was assigned to
both fixed and random effects in the 3L-MLMs). The β2k β3k, and β4k are the fixed-effect coeffi-
cients for interactions between the three age groups for the regional levels. The random inter-
cepts Uk andWjk were assumed independent across regions (k) and across states (j) within-the
same region (k). The i = 1,. . .Ij are the level 1 indicator for the individual samples (i), j = 1,. . .Jk
are the level 2 indicator for the states (j), and k = 1. . ., K are the level 3 indicator for the region
(k) (K = 5, J1 = 12, J2 = 2, J3 = 2, J4 = 13, J5 = 5). Model 3 (the full model) include interaction
term between age and region while Model 4 exclude the interaction term. Finally, Model 5
excluded region as a fixed component. The model with the lowest pseudo-Akaike Information
Criterion (pseudo-AIC) was preferred as the final model (Model 5). The random effects for
regions and states were tested using Likelihood Ratio χ2 test (LR χ2), which were obtained from
residual log-Pseudo-Likelihood using the COVTEST function, and the conditional odds (cOR)
of RV detection by age groups were compared to the predefined baseline group (1–3 days old).

For the final model, the variance components were considered random effects and partitioned
into three sources level (L1-L3). The L1 variance equals π2/3 on the logit scale, the error variance
of the binary models [45–47]. The L2 variance equalsWjk~N(0,τ2), the random intercept varying
over the effect of states (j) (USA or non-USA variance) with zero means and variance τ2. The L3
variance equals Uk~N(0,γ

2), and the random intercept varying over the effect of the region (k),
with zero means and variance (γ2). The residual intra-class correlation coefficients were esti-
mated to measure dependence and heterogeneity (variation explained by regions) in the three-
levels random intercepts (L1-L3). Consequently, the first residual intra-class correlation is
defined as ρ(region) = γ2 / (γ2+τ2+π2/3) with the same region (k) but different states (j) while the
second the residual intra-class correlations is defined as ρ(states, region) = (γ2 +τ2)/(γ2+τ2+π2/3)
with the same states (j) [43, 45].

Univariate analyses were performed with SAS 9.4, and the 3L-MLMs analyses were per-
formed with PROC GLIMMIX (SAS Institute Inc. Cary, NC). The associations were considered
significant when the p-value< 0.05.

Results
In this study, 6158 of the 7508 diarrheic swine stool samples (82.0%) tested positive for RVs.
The percentage of positive RV samples from the USA, Canada, and Mexico was 81.1% (6072/
7399), 79.9% (63/79), and 73.3% (20/30), respectively. Of the 6072 USA samples, 3638 (59.9%)
were fromMinnesota, and 2941 (81%) of these samples were positive for RVs (Fig 1). The per-
centage of RV positive samples by states ranged from 5.1% to 100.0%, with the lowest and high-
est percentages found in Florida and Utah, respectively. The percentage of RVA positive
samples was higher than RVB and RVC in 14 states (Fig 2). Michigan was the only state to
have higher percentage of RVB detection while seven states had higher percentage of RVC
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detection than RVA and RVB. Interestingly, RVA and RVC positive samples occurred in the
same percentage (59%) in Arizona. Co-infections of RVAC were detected in the highest per-
centage in 12 states (Fig 3). Co-infections of RVABC were detected in the highest percentage in
seven states while co-infections of RVAB or RVBC were not dominant in our data set.

Samples were categorized into 5 regions; Midwest (n = 5590), South-central (n = 754),
Southeast (n = 288), other USA (n = 767), and non-USA region (n = 109) (Table 1). While the
highest proportion of RVA positive samples (70.1%) was found in the Southeast region, the

Fig 1. Percentages of any RV positive samples by state. The shading represents variation in percentage of positive samples.

doi:10.1371/journal.pone.0154734.g001

Fig 2. Percentages of RVA, RVB, and RVC samples by state. The color represented highest prevalence of the RV species (green represents RVA,
purple represents RVB, blue represents RVC while pink represents equal percentages of RVA and RVC.

doi:10.1371/journal.pone.0154734.g002
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highest proportion of RVB and RVC samples were found in the South-central region (34.2%
and 62.2%, respectively). Moreover, the highest co-detection of two different RV species was
found in the Southeast (21.2%, RVAC). Of the RVABC co-infections, 18.1% of the samples
from the Midwest were positive.

To investigate the seasonality of RVA, RVB and RVC detection among swine diagnostic
samples, the percentage of positive samples (observed and expected) were plotted over time
(Fig 4). Overall, the expected percentage of positive samples was higher for RVA than for RVC
and RVB. However, between April and July 2011, the expected percentage of RVA and RVC
overlapped. In addition, the expected percentage of RVA detections decreased from 72% to
57% during the study period while the expected percentage of RVB positive samples increased

Fig 3. Percentages of positive RVAB, RVAC, RVBC and RVABC sample by state.

doi:10.1371/journal.pone.0154734.g003

Table 1. Descriptive statistics of RV positive samples by regions.

Region2 Positive for Rotavirus, N (%)

Any RV A B C AB AC BC ABC Total1

Midwest 4544 (81.3%) 3435 (61.5%) 1851 (33.1%) 2801 (50.1%) 487 (8.7%) 870 (15.6%) 158 (2.8%) 1014 (18.1%) 5590

South-central 644 (85.4%) 338 (44.8%) 258 (34.2%) 469 (62.2%) 52 (6.9%) 80 (10.6%) 43 (5.7%) 123 (16.3%) 754

Southeast 258 (89.6%) 202 (70.1%) 91 (31.6%) 144 (50%) 30 (10.4%) 61 (21.2%) 14 (4.9%) 37 (12.9%) 288

Other-USA 626 (81.6%) 422 (55.0%) 175 (22.8%) 387 (50.5%) 58 (7.6%) 123 (16.0%) 15 (2%) 81 (10.6%) 767

Non-USA 86 (78.9%) 68 (62.4%) 13 (11.9%) 32 (29.4%) 7 (6.4%) 16 (14.7%) 0 (0%) 2 (1.8%) 109

Total 6158 (82%) 4465 (59.5%) 2388 (31.8%) 3833 (51.1%) 634 (8.4%) 1150 (15.3%) 230 (3.1%) 1257 (16.7%) 7508

1 Total across all RV may exceed the number of samples submitted because a sample may be positive more than one category.
2 Midwest (Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, Ohio, North Dakota, Wisconsin).

South-central (Oklahoma, Texas).

Southeast (North Carolina South Carolina).

Other-USA (South Dakota, Pennsylvania, Colorado, Arizona, Alabama, Arkansas, Florida, Kentucky, Tennessee, Utah, Virginia, Vermont, Wyoming).

Non-USA (Mexico and Canada).

doi:10.1371/journal.pone.0154734.t001
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from 33% to 40%. Nevertheless, the percentage of RVC detections remained relative stable
(53% to 51%) throughout the study.

Since age as a continuous variable was not normally distributed (p-value<0.01), samples
were categorized into five different age groups. Univariate logistics regression models were
employed to determine if age and regions (Model 1 and 2, respectively) were risk factors for
RV detection, and the RVA, RVB, RVC, RVAB, RVAC, and RVABC crude odds ratios (OR)
were estimated (S2 Table). In Models 1 and 2, both age and regions were significant (p-
value<0.001, except for RVAB in model 2, p-value = 0.042), indicating both variables should
be in the same model. Thus, the 3L-MLMs (Models 3–5) were employed to partition and
understand the variability of RV detection (Table 2). The 3L-MLMs contained a variation of
model specifications, including fixed effects of region, random effects of age and regions, and
the interaction between age and regions. Model 5, with age as fixed effect and random region
and state effects as random effect, had the lowest Pseudo-AIC, indicating it was the preferred
final model, and the COVTEST function verified the final model (p-value<0.001).

For the final model, the conditional odds ratios (cORs) of being positive to RV infection by
age groups after adjusting for sample source variation were calculated (Table 3). The cORs for
RVA and RVB were lower for pigs in the 1–3 days old compared to the other age groups. How-
ever, the odd of RVC detection in the 1–3 day age group was higher than in the 4–20 and the
>55 day age groups (p<0.001). Furthermore, pigs in the 21–55 day age group had an increased
odds for RV co-detections compared to pigs in the 1–3 day age group. The random effects for
the region (γ2) and the states (τ2) were estimated from the assumptions of the final model to
calculate the intra-class correlation coefficient of ρ(region) and ρ(States, region) to compare the

Fig 4. Percentages of positive RVA, RVB, and RVC samples by month.Red, green, and blue dots represent the percentage of positive RVA, RVB,
and RVC samples, respectively. Time-series were smoothed by Locally Weighted Regression method, and the gray area represents 95% confidence
interval for the fitted line.

doi:10.1371/journal.pone.0154734.g004
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variability within region and among states. The intra-class correlation coefficient of ρ(States,
region) was greater than ρ(region) for RV detection, implying RV status was more similar
within states than among states or within regions.

Discussion
To better understand the epidemiology of RV infection in pigs with enteric disease, 3L-MLMs
were developed to estimate the association between RV detection by RRT-PCR and age in

Table 2. Model selection for three-level mixed-effects logistic regression models.

Model Model specification AIC/Pseudo-AIC1

Fixed effect Random effect

Age Region Interaction (Age:Region) Region States RVA RVB RVC RVAB RVAC RVBC RVABC

1 ✓ 8916.7 8452.7 10162.0 4226.4 6294.5 1998.4 6041.7

2 ✓ 10051.9 9340.7 10353.7 4351.2 6417.6 2037.9 6732.7

3 ✓ ✓ ✓ ✓ ✓ 30891.0 31344.2 29334.9 37917.2 33945.2 NA NA

4 ✓ ✓ ✓ ✓ 30869.3 31291.9 29244.1 NA 33823.6 NA 35075.3

52 ✓ ✓ ✓ 30846.2 31259 29224 37757.6 33775.5 44303.6 35011.2

COVTEST for Model 5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

1AIC for univariate models (Models 1 and 2) and Pseudo-AIC for three-level mixed-effects models (Models 3–5).
2Final model is indicated by lowest Pseudo-AIC.

NA means the models did not converge.

doi:10.1371/journal.pone.0154734.t002

Table 3. The final model (age as fixed effect, with region and state as random effect) of three-level mixed-effects logistic regression.

Component RVA RVB RVC RVAB RVAC RVBC RVABC

Age Group (Fixed
Effect)

Conditional odds ratio (95%CI)

1–3 days - - - - - - -

4–20 days 1.96c (1.66–
2.316)

1.86c (1.46–
2.36)

0.53c (0.46–
0.63)

1.72b (1.14–
2.61)

1.26 (0.99–
1.61)

0.91 (0.52–
1.58)

3.80c (2.40–6.04)

21–55 days 11.56c (9.69–
13.79)

8.06c (6.43–
10.09)

0.96 (0.82–
1.12)

4.15c (2.81–
6.12)

2.33c (1.86–
2.93)

1.83a (1.11–
3.01)

19.40c (12.46–
30.20)

>55 days 3.65c (3.04–
4.38)

8.69c (6.84–
11.04)

0.55c (0.47–
0.66)

4.39c (2.92–
6.60)

0.9 (0.68–1.19) 3.64c (2.20–
6.01)

13.51c (8.58–
21.29)

Random effects Covariance estimates

Region, γ2 (SE) 0.032 (0.067) 0.06 (0.091) - - 0.021 (0.115) 0.044 (0.162) 0.074 (0.179)

States, τ2 (SE) 0.113 (0.063) 0.087 (0.065) 0.126 (0.051) 0.004 (0.010) 0.102 (0.075) 0.172 (0.122) 0.152 (0.103)

Intra-class
correlation

ρ(region) 0.009 0.017 - - 0.006 0.013 0.021

ρ(States, region) 0.042 0.043 0.037 0.001 0.036 0.061 0.064

Pseudo-AIC 30846.23 31259.05 29224 37757.55 33775.54 44303.59 35011.2

ap-value < 0.05.
bp-value < 0.01.
cp-value < 0.001.

ρ(region) = γ2 / (γ2+τ2+π2/3), ρ(states, region) = (γ2 +τ2)/ (γ2+τ2+π2/3).

SE is standards of error of means.

doi:10.1371/journal.pone.0154734.t003
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veterinary diagnostic samples. The effect of geographical location was incorporated to adjust
the associations (conditional odds ratios) of RV detection among age groups. The detection of
the different RV species was not evenly distributed within age groups or geographical regions.
Understanding the distribution of RV infection among swine populations is important to
develop better intervention practices to minimize the effect of RV infections on swine health.

The ecology of RV infections is complex, which has been demonstrated in different animal
species [48]. Our results support those findings and indicate that the epidemiology of enteric
diseases among swine populations is difficult due to the co-circulation of more than one RV
species. While RV co-infections are common and complex, the ecology of RVA, RVB and RVC
are different since they are not evenly distributed among pig age groups. In our study, older
pigs (4–20, 21–55, and>55 days age groups) had higher cOR for RVA detection compared to
piglets in the 1–3 day age group. Moreover, the cOR for RVA detection decreased in the> 55
day age group, which might be contributed to RV exposure and an increase of active immunity
in the 21–55 day age group. Compared to RVA studies, RVC research is extremely limited. In
our study, a higher proportion of RVC positive samples were present in 1–3 day old piglets,
highlighting the significance of RVC on neonatal enteric disease. We hypothesize that the vari-
ability of RVC exposure in sows is correlated to the lack passive immunity protection, leaving
the 1–3 day old piglets susceptible to a RVC infection. While sows are exposed to RVC via nat-
urally planned exposure events (i.e. feeding RVC infected material to the sows) before farrow-
ing, swine producers still report problems in preventing clinical disease associated with RVC
infections in piglets. Hence, further studies are required to understand the development of
maternal immunity to RVC, and its effect on preventing infection in piglets.

Multilevel mixed-effects logistic regression models are designed to handle hierarchical
structure data sets with binary outcome for a dependent variable and independent variables
Multilevel mixed-effects logistic regression models are very versatile and powerful, especially
with large data set because inaccurate estimates may be generated if the hierarchical structure
(multiple-demographic information) and source of variability is ignored [23]. Fixed-effect
logistic regression models for states and regions increase the number of additional parameters,
which is equal to the number of higher-level units minus 1 (j-1 for state levels and k-1 for
region levels). If the number of parameters (states) is large, estimating the number of nuisance
parameters is difficult, which may yield poor estimates [49]. In our data set, state (αij = α+ αi+-
Wij) and region (αi = α+Ui) effects were treated as random intercepts with specified probabilis-
tic distribution, and the nuisance parameters were not estimated because the analysis provided
conserve estimates for the state and region effects [49].

Unsurprisingly, our model indicated variability in RV detection among states. While RV
detection was similar to within-regions but not similar among regions, different swine densities
in North America may lead to less variability within each region. Furthermore, swine produc-
tion systems could differ between regions, which may explain the differences among regions.
In addition, wind, humidity and temperature vary by states and may affect RV infections in
each swine regions, which were considered part of the regional level random effect. Under
experimental settings, RV particles were aerosolized, which could be transported between
farms by the wind [50]. In addition, transportation of pigs between states was also considered
as a regional level random effect in our multilevel mixed-effect logistic regression models.
Farm management and production systems (all-in all-out vs. continuous flow swine produc-
tions systems) can affect dynamics of viral transmission, infection, and evolution. Dewey and
colleagues demonstrated farm management practices, including farm expansion, early wean-
ing, and all-in all-out production affect the dynamics of RV infections [51]. Since the farm
management information is lacking with sample submission, these factors were deemed as
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states level random effects (L2 random intercept) to encompass variations between farm man-
agement and production systems.

In summary, RV infections are a significant cause of diarrhea in swine. Determining the RV
species associated with clinical disease and estimating the risk of RV infection over time will
lead to better intervention tools to minimize the effect on swine health. Due to the large geogra-
phy and different swine production regions within North America, 3L MLMs were used to
adjust for variability in states and regions, and indicated RV status was more similar within
states than between states or within region. Piglets in the 1–3 day old age group were less risky
to RVA and RVB infection but more risky to RVC infection while associations in the older age
group piglets were reversed. Our research indicates the swine RV epidemiology is complex in
North America, but one thing is known, RV species are associated with different age groups
and varied by regions.

Supporting Information
S1 Table. Descriptive statistics for number of positive samples to RVs by age group.
(DOCX)

S2 Table. Univariate logistic regression models for the risk factors of age and location.
(DOCX)

Acknowledgments
The research was conducted while NH was a PhD candidate at the University of Minnesota
College of Veterinary Medicine. Currently, he has been a faculty member at Kasetsart Univer-
sity, Thailand. The authors would like to thank the Molecular Diagnostic Section at the
MNVDL for their technical service. The authors thank the Ministry of Science and Technology
of the Royal Thai Government and in part by Skoll Global Threats Fund for funding PhD
training of NH. The study was funded by the MNVLD. The funder provided support in the
form of salaries for authors (NH, AD, SR, MC, AND DM), but did not have any additional role
in the study design, data collection and analysis, decision to publish, or preparation of the man-
uscript. The specific roles of these authors are articulated in the “author contributions’ section.

Author Contributions
Conceived and designed the experiments: NH DM. Performed the experiments: NH DM. Ana-
lyzed the data: NH AD. Contributed reagents/materials/analysis tools: NH SR DM. Wrote the
paper: NH AD SRMC DM.

References
1. Estes M, Greenberg HB. Rotaviruses. In: Knipe DM, Howley P, editors. Fields Virology. 5th ed. Phila-

delphia: Wolters Kluwer Health/Lippincott Williams &Wilkins; 2013. p. 1347–95.

2. Chang K-O, Saif LJ, Kim Y. Reoviruses (Rotaviruses and Reoviruses). In: Zimmerman JJ, Karriker LA,
Ramirez A, Schwartz KJ, Stevenson GW, editors. Diseases of Swine. Tenth Edition ed: JohnWiley &
Sons, Inc; 2012. p. 621–34.

3. Matthijnssens J, Otto PH, Ciarlet M, Desselberger U, Van Ranst M, Johne R. VP6-sequence-based cut-
off values as a criterion for rotavirus species demarcation. Archives of virology. 2012; 157(6):1177–82.
doi: 10.1007/s00705-012-1273-3 PMID: 22430951

4. Mihalov-Kovács E, Gellért Á, Marton S, Farkas SL, Fehér E, Oldal M, et al. Candidate new rotavirus
species in sheltered dogs, Hungary. Emerging infectious diseases. 2015; 21(4):660. doi: 10.3201/
eid2104.141370 PMID: 25811414

Epidemiology of Swine Rotaviruses from North America

PLOS ONE | DOI:10.1371/journal.pone.0154734 May 4, 2016 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154734.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154734.s002
http://dx.doi.org/10.1007/s00705-012-1273-3
http://www.ncbi.nlm.nih.gov/pubmed/22430951
http://dx.doi.org/10.3201/eid2104.141370
http://dx.doi.org/10.3201/eid2104.141370
http://www.ncbi.nlm.nih.gov/pubmed/25811414


5. Marthaler D, Rossow K, CulhaneM, Collins J, Goyal S, Ciarlet M, et al. Identification, phylogenetic anal-
ysis and classification of porcine group C rotavirus VP7 sequences from the United States and Canada.
Virology. 2013; 446(1):189–98.

6. Marthaler D, Homwong N, Rossow K, Culhane M, Goyal S, Collins J, et al. Rapid detection and high
occurrence of porcine rotavirus A, B, and C by RT-qPCR in diagnostic samples. Journal of virological
methods. 2014; 209:30–4. doi: 10.1016/j.jviromet.2014.08.018 PMID: 25194889

7. Gatti M, Ferraz M, Racz M, De Castro A. Rotavirus excretion in naturally infected pigs with and without
diarrhoea. Veterinary microbiology. 1993; 37(1):187–90.

8. Fitzgerald G, Barker T, Welter M, Welter C. Diarrhea in young pigs: comparing the incidence of the five
most common infectious agents. Veterinary medicine (USA). 1988.

9. Fu Z, Hampson D. Group A rotavirus excretion patterns in naturally infected pigs. Research in veteri-
nary science. 1987; 43(3):297–300. PMID: 2832911

10. Miyazaki A, Kuga K, Suzuki T, Kohmoto M, Katsuda K, Tsunemitsu H. Annual changes in predominant
genotypes of rotavirus A detected in the feces of pigs in various developmental stages raised on a con-
ventional farm. Veterinary microbiology. 2013; 163(1):162–6.

11. Marthaler D, Rossow K, Gramer M, Collins J, Goyal S, Tsunemitsu H, et al. Detection of substantial por-
cine group B rotavirus genetic diversity in the United States, resulting in a modified classification pro-
posal for G genotypes. Virology. 2012; 433(1):85–96. doi: 10.1016/j.virol.2012.07.006 PMID:
22877843

12. Theil K, Saif L, Moorhead P, Whitmoyer R. Porcine rotavirus-like virus (group B rotavirus): characteriza-
tion and pathogenicity for gnotobiotic pigs. Journal of clinical microbiology. 1985; 21(3):340–5. PMID:
2984243

13. Saif LJ, Bohl EH, Theil KW, Cross RF, House JA. Rotavirus-like, calicivirus-like, and 23-nm virus-like
particles associated with diarrhea in young pigs. Journal of Clinical Microbiology. 1980; 12(1):105–11.
PMID: 6252238

14. Amimo JO, Vlasova A, Saif L. Prevalence and genetic heterogeneity of porcine group C rotaviruses in
nursing and weaned piglets in Ohio, USA and identification of a potential new VP4 genotype. Veterinary
microbiology. 2013; 164(1):27–38.

15. Marthaler D, Rossow K, Culhane M, Goyal S, Collins J, Matthijnssens J, et al. Widespread rotavirus H
in commercially raised pigs, United States. Emerging infectious diseases. 2014; 20(7):1203.

16. Molinari BL, Lorenzetti E, Otonel RA, Alfieri AF, Alfieri AA. Species H rotavirus detected in piglets with
diarrhea, Brazil, 2012. Emerging infectious diseases. 2014; 20(6):1019. doi: 10.3201/eid2006.130776
PMID: 24855935

17. Wakuda M, Ide T, Sasaki J, Komoto S, Ishii J, Sanekata T, et al. Porcine rotavirus closely related to
novel group of human rotaviruses. Emerging infectious diseases. 2011; 17(8):1491. doi: 10.3201/
eid1708.101466 PMID: 21801631

18. Martella V, Bányai K, Lorusso E, Bellacicco AL, Decaro N, Camero M, et al. Prevalence of group C rota-
viruses in weaning and post-weaning pigs with enteritis. Veterinary microbiology. 2007; 123(1):26–33.

19. Theuns S, Vyt P, Desmarets LM, Roukaerts ID, Heylen E, Zeller M, et al. Presence and characteriza-
tion of pig group A and C rotaviruses in feces of Belgian diarrheic suckling piglets. Virus research.
2016; 213:172–83. doi: 10.1016/j.virusres.2015.12.004 PMID: 26677793

20. Geyer A, Sebata T, Peenze I, Steele A. A molecular epidemiological study of porcine rotaviruses. Jour-
nal of the South African Veterinary Association. 1995; 66(4):202–5. PMID: 8691407

21. Collins J, Benfield D, Duimstra J. Comparative virulence of two porcine group-A rotavirus isolates in
gnotobiotic pigs. American journal of veterinary research. 1989; 50(6):827–35. PMID: 2548420

22. Greenland S. Principles of multilevel modelling. International journal of epidemiology. 2000; 29(1):158–
67. PMID: 10750618

23. Witte JS, Greenland S, Kim L-L, Arab L. Multilevel modeling in epidemiology with GLIMMIX. Epidemiol-
ogy. 2000; 11(6):684–8. PMID: 11055630

24. Green L, Morgan K. Mortality in early born, housed lambs in south-west England. Preventive Veterinary
Medicine. 1993; 17(3):251–61.

25. Lancelot R, Lescourret F, Faye B. Multilevel modelling of pre-weaning kid mortality during the cold, dry
season 1991–1992 in the outskirts of N'Djamena, Chad. Preventive Veterinary Medicine. 1995; 24
(3):171–86.

26. Rattenborg E, Chriél M, Dietz HH. Influence of farm, feed-producer and season on incidence of gastro-
intestinal disorders in Danish farm mink. Preventive veterinary medicine. 1999; 38(4):231–7.

Epidemiology of Swine Rotaviruses from North America

PLOS ONE | DOI:10.1371/journal.pone.0154734 May 4, 2016 11 / 12

http://dx.doi.org/10.1016/j.jviromet.2014.08.018
http://www.ncbi.nlm.nih.gov/pubmed/25194889
http://www.ncbi.nlm.nih.gov/pubmed/2832911
http://dx.doi.org/10.1016/j.virol.2012.07.006
http://www.ncbi.nlm.nih.gov/pubmed/22877843
http://www.ncbi.nlm.nih.gov/pubmed/2984243
http://www.ncbi.nlm.nih.gov/pubmed/6252238
http://dx.doi.org/10.3201/eid2006.130776
http://www.ncbi.nlm.nih.gov/pubmed/24855935
http://dx.doi.org/10.3201/eid1708.101466
http://dx.doi.org/10.3201/eid1708.101466
http://www.ncbi.nlm.nih.gov/pubmed/21801631
http://dx.doi.org/10.1016/j.virusres.2015.12.004
http://www.ncbi.nlm.nih.gov/pubmed/26677793
http://www.ncbi.nlm.nih.gov/pubmed/8691407
http://www.ncbi.nlm.nih.gov/pubmed/2548420
http://www.ncbi.nlm.nih.gov/pubmed/10750618
http://www.ncbi.nlm.nih.gov/pubmed/11055630


27. Chriél M, Stryhn H, Dauphin G. Generalised linear mixed models analysis of risk factors for contamina-
tion of Danish broiler flocks with Salmonella typhimurium. Preventive veterinary medicine. 1999; 40
(1):1–17. PMID: 10343330

28. Gröhn YT, McDermott JJ, Schukken YH, Hertl JA, Eicker SW. Analysis of correlated continuous
repeated observations: modelling the effect of ketosis on milk yield in dairy cows. Preventive veterinary
medicine. 1999; 39(2):137–53. PMID: 10223317

29. Dohoo I, Tillard E, Stryhn H, Faye B. The use of multilevel models to evaluate sources of variation in
reproductive performance in dairy cattle in Reunion Island. Preventive Veterinary Medicine. 2001; 50
(1):127–44.

30. Jensen TB, Toft N, Bonde MK, Kongsted AG, Kristensen AR, Sørensen JT. Herd and sow-related risk
factors for mortality in sows in group-housed systems. Preventive veterinary medicine. 2012; 103
(1):31–7. doi: 10.1016/j.prevetmed.2011.09.009 PMID: 21996451

31. Iida R, Koketsu Y. Interactions between climatic and production factors on returns of female pigs to ser-
vice during summer in Japanese commercial breeding herds. Theriogenology. 2013; 80(5):487–93.
doi: 10.1016/j.theriogenology.2013.05.011 PMID: 23756040

32. Iida R, Koketsu Y. Climatic factors associated with peripartum pig deaths during hot and humid or cold
seasons. Preventive veterinary medicine. 2014; 115(3):166–72.

33. Key N, McBride WD. The changing economics of US hog production. USDA-ERS Economic Research
Report. 2007;(52: ).

34. Checkoff P. Quick facts: the pork industry at a glance. 2013.

35. McBride WD, Key ND. Economic and structural relationships in US hog production: US Department of
Agriculture, Economic Research Service; 2003.

36. Becker R, Wilks A, Brownrigg R, Minka T. Maps: draw geographical maps 2014. Available from: http://
CRAN.R-project.org/package=maps.

37. Bivand R, Lewin-Koh N. maptools: Tools for reading and handling spatial objects 2014. Available from:
http://CRAN.R-project.org/package=maptools.

38. Neuwirth E. RColorBrewer: ColorBrewer Palettes 2014. Available from: http://CRAN.R-project.org/
package=RColorBrewer.

39. Bivand R. classInt: Choose univariate class intervals 2013. Available from: http://CRAN.R-project.org/
package=classInt.

40. Shumway RH, Stoffer DS. Time series analysis and its applications: with R examples. New York:
Springer Science & Business Media; 2011.

41. HadleyW. ggplot2: Elegant graphics for data analysis. New York: Springer; 2009.

42. R Core Team. R: A language and environment for statistical computing. 3.2.2 ed: R Foundation for
Statistical Computing; 2015.

43. Rabe-Hesketh S, Skrondal A. Multilevel and longitudinal modeling using Stata Volume II: Catergorical
Responses Count, and Survival. Third Edition ed: STATA press; 2012.

44. Guo G, Zhao H. Multilevel modeling for binary data. Annual review of sociology. 2000:441–62.

45. Agresti A. Alternative Modeling of Binary Response Data. Categorical Data Analysis. 3rd ed. Hoboken,
New Jersey: JohnWiley & Sons, Inc.; 2013. p. 251–92.

46. Berridge DM, Crouchley R. Multivariate generalized linear mixed models using R: CRC Press; 2011.

47. Dohoo IR, Tillard E, Stryhn H, Faye B. The use of multilevel models to evaluate sources of variation in
reproductive performance in dairy cattle in Reunion Island. Preventive Veterinary Medicine. 2001; 50
(1):127–44.

48. Otto PH, Rosenhain S, Elschner MC, Hotzel H, Machnowska P, Trojnar E, et al. Detection of rotavirus
species A, B and C in domestic mammalian animals with diarrhoea and genotyping of bovine species A
rotavirus strains. Veterinary microbiology. 2015; 179(3):168–76.

49. Dai J, Li Z, Rocke D, editors. Hierarchical logistic regression modeling with SAS GLIMMIX. Proceed-
ings of the Thirty-first Annual SAS Users Group International Conference Cary, North Carolina: SAS
Institute Inc; 2006.

50. Prince DS, Astry C, Vonderfecht S, Jakab G, Shen F-M, Yolken RH. Aerosol transmission of experi-
mental rotavirus infection. The Pediatric Infectious Disease Journal. 1986; 5(2):218–22.

51. Dewey C, Carman S, Pasma T, Josephson G, McEwen B. Relationship between group A porcine rota-
virus and management practices in swine herds in Ontario. The Canadian Veterinary Journal. 2003; 44
(8):649.

Epidemiology of Swine Rotaviruses from North America

PLOS ONE | DOI:10.1371/journal.pone.0154734 May 4, 2016 12 / 12

http://www.ncbi.nlm.nih.gov/pubmed/10343330
http://www.ncbi.nlm.nih.gov/pubmed/10223317
http://dx.doi.org/10.1016/j.prevetmed.2011.09.009
http://www.ncbi.nlm.nih.gov/pubmed/21996451
http://dx.doi.org/10.1016/j.theriogenology.2013.05.011
http://www.ncbi.nlm.nih.gov/pubmed/23756040
http://CRAN.R-project.org/package=maps
http://CRAN.R-project.org/package=maps
http://CRAN.R-project.org/package=maptools
http://CRAN.R-project.org/package=RColorBrewer
http://CRAN.R-project.org/package=RColorBrewer
http://CRAN.R-project.org/package=classInt
http://CRAN.R-project.org/package=classInt

