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Abstract Being confident in whether a stimulus is present or absent (a detection judgment) is

qualitatively distinct from being confident in the identity of that stimulus (a discrimination

judgment). In particular, in detection, evidence can only be available for the presence, not the

absence, of a target object. This asymmetry suggests that higher-order cognitive and neural

processes may be required for confidence in detection, and more specifically, in judgments about

absence. In a within-subject, pre-registered and performance-matched fMRI design, we observed

quadratic confidence effects in frontopolar cortex for detection but not discrimination.

Furthermore, in the right temporoparietal junction, confidence effects were enhanced for

judgments of target absence compared to judgments of target presence. We interpret these

findings as reflecting qualitative differences between a neural basis for metacognitive evaluation of

detection and discrimination, potentially in line with counterfactual or higher-order models of

confidence formation in detection.

Introduction
When foraging for berries, one first needs to decide whether a certain bush bears fruit or not. Only

if berries are detected, can one proceed to examine and classify them into a category - are these

raspberries or blackberries? The first is a detection task: a decision about whether something is there

or not, and the second is a discrimination task: a decision about which item is there. For these types

of decisions, it is important not only to understand the decision process that leads to deciding pres-

ent or absent, or raspberries or blackberries, but also our ability to reflect on and estimate the qual-

ity of the decision, known as metacognition. For instance, two foragers working together may want

to share their confidence in deciding which bush to tackle next (Bahrami et al., 2010; Frith, 2012).

There is an increasing understanding of the neural basis of confidence in simple decisions, with a

network of prefrontal and parietal regions being identified as important for tracking metacognitive

beliefs about the accuracy of both perceptual and value-based decisions (see Domenech and

Koechlin, 2015; Meyniel et al., 2015, for reviews). Accordingly, neuropsychological data in humans

suggest that damage or impairment of prefrontal function can lead to metacognitive impairments

such as noisy or inappropriate confidence judgments (see Rouault et al., 2018, for a review). How-

ever, in a majority of these cases, the study of confidence has been restricted to discrimination, or

deciding whether a stimulus is from category A or B. Despite their ubiquity and importance in deci-

sion-making, much less is known about how confidence is formed in detection settings, in which sub-

jects are asked to make a judgment about whether a target stimulus is present or not.

Computational considerations and behavioral findings suggest that computing confidence in

detection judgments may differ from computing confidence in the more commonly studied
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discrimination tasks. In particular, detection is unique in the landscape of perceptual tasks in that evi-

dence can only be available to support the presence, not the absence, of a target object. This makes

confidence ratings in judgments about absence a unique case, where confidence is decoupled from

the amount of supporting perceptual evidence. Accordingly, behavioral evidence indicates that

metacognitive sensitivity, or the alignment between subjective confidence and objective perfor-

mance, for judgments about absence is typically impaired compared to metacognitive sensitivity for

judgments about presence (Meuwese et al., 2014; Kanai et al., 2010).

Under one family of models (first-order models), confidence in detection judgments is formed in

the same way as confidence in discrimination judgments. For example, in evidence-accumulation

models, confidence can be evaluated as the distance of the losing accumulator from the threshold at

the time of decision (Vickers, 1979; Merkle and Van Zandt, 2006). Similarly, in models of discrimi-

nation confidence based on Signal Detection Theory (SDT), decision confidence is assumed to be

proportional to the strength of the available evidence supporting the decision, which is modeled as

the distance of the perceptual sample from the decision criterion on a strength-of-evidence axis

(Wickens, 2002, section 5.2). While first-order models are traditionally symmetric, they can be

adapted to account for the asymmetry between judgments about presence and absence. For exam-

ple, unequal-variance (uv-SDT) and multi-dimensional SDT models account for the inherent differ-

ence between presence and absence by making the signal distribution wider than the noise

distribution (Wickens, 2002, section 3.4), or by assuming a high-dimensional stimulus space, in

which the absence of a signal is represented as a distribution centered around the origin (King and

Dehaene, 2014; Wickens, 2002, section 7.2). Importantly, first-order models treat the process of

metacogntive evaluation of detection and discrimination as qualitatively similar, with any differences

between detection and discrimination emerging from differences in the underlying distributions (uv-

SDT), or the mapping between stimulus features and responses (two-dimensional SDT).

In contrast with first-order models of detection confidence, higher-order models treat confidence

in judgments about target absence as emerging from a distinct, higher-order cognitive process. For

instance, in one version of the higher-order approach, confidence in judgments about absence is

assumed to be based on counterfactual estimation of the likelihood of a hypothetical stimulus to be

detected, if presented. In other words, subjects may be more confident in the absence of a target

object when they believe they would not have missed it, based on their global estimation of task dif-

ficulty, or on their current level of attention. A similar type of modeling has been successfully

employed in studies of memory, to explain how participants form judgments that an item was not

presented during the preceding learning phase, based on their counterfactual expectations about

remembering an item (Glanzer and Adams, 1990). When applied to the comparison of detection

and discrimination, this approach predicts that qualitatively distinct cognitive and neural resources

will be recruited when judging confidence in detection responses, due to the additional demand on

counterfactual and self-monitoring processes, and that this recruitment will be most pronounced for

confidence about absence. In particular, the counterfactual account predicts that responses in the

frontopolar cortex, a region which has been shown to track counterfactual world states

(Boorman et al., 2009), will show specificity for confidence judgements when inferring the absence

of a target.

To test for such qualitative differences, here we set out to directly compare the neural basis of

metacognitive evaluation of detection and discrimination responses within two similar low-level per-

ceptual tasks, while controlling for differences in task performance. In a pre-registered design, we

asked whether parametric relationships between subjective confidence ratings and the blood-oxy-

genation-level-dependent (BOLD) signal in a set of predefined prefrontal and parietal regions of

interests (ROIs) would show systematic interaction with task (detection/discrimination) and, within

detection, type of response (present/absent). To anticipate our results, we observed a quadratic

effect of confidence on regional responses in frontopolar cortex for detection, but not for discrimina-

tion judgments. In further whole-brain exploratory analyses, we found stronger confidence-related

effects for judgments of absence compared to presence in right temporoparietal junction.

Results
A total of 35 participants performed two perceptual decision-making tasks while being scanned in a

3T MRI scanner: an orientation discrimination task (‘was the grating tilted clockwise or
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anticlockwise?‘), and a detection task (‘was any grating presented at all?’; see Figure 1). The discrim-

ination and detection tasks were performed in separate blocks each lasting 40 trials. At the end of

each trial, participants rated their confidence in the accuracy of their decision on a 6-point scale. We

adjusted the difficulty of the two tasks in a preceding behavioral session to achieve equal perfor-

mance of around 70% accuracy. At scanning, 10 discrimination and detection blocks were presented

in 5 scanner runs.

Behavioral results
Task performance was similar for detection (75% accuracy, d’=1.48) and discrimination blocks (76%

accuracy, d’=1.50). Repeated measures t-tests failed to detect a difference between tasks both in

mean accuracy (t(34) = �0.90, p=0.37, BF01 = 5.15), and d’ ( t(34) = �0.30, p=0.76, BF01=7.29), indi-

cating that performance was well matched. Responses were also balanced for the two tasks. The

probability of responding YES (target present) in the detection task was 0.49 ± 0.11, and not signifi-

cantly different from 0.5 (t(34) = �0.39, p=0.70, BF01=7.07). The probability of responding CLOCKWISE

in the discrimination task was 0.50 ± 0.08, and not significantly different from 0.5 (t(34) = 0.22,

p=0.83, BF01=7.43).

The distribution of confidence ratings was generally similar between the two tasks and four

responses. For all four responses, participants were most likely to report the highest confidence rat-

ing compared to any other option. Within detection, a significant difference in mean confidence was

observed between YES (target present) and NO (target absent) responses, such that participants were

more confident in their YES responses (t(34) = �4.85, p<0.0001; see Figure 2). This difference in

mean confidence was mostly driven by the higher proportion of maximum confidence ratings in YES

responses compared to NO responses (46% of all YES responses compared to 26% of all NO responses,

t(34)=5.63, p<0.00001), but persisted even when ignoring the highest ratings (t(34)=2.39, p<0.05).

Figure 1. Experimental design for discrimination and detection trials. Perceptual decisions were reported using the right index and middle fingers, and

confidence ratings were reported using the left thumb. (A) In discrimination blocks, participants indicated the orientation of a visual grating (CLOCKWISE

or ANTICLOCKWISE). (B) In detection blocks, participants indicated whether a grating was embedded in the random noise, or not (YES or NO). Confidence

ratings were made by varying the size and color of a circle, with 6 options ranging from small and red to big and blue. For half of the subjects, high

confidence was mapped to a small, red circle. For the other half, high confidence was mapped to a big, blue circle. The initial size and color of the

circle was determined randomly at the beginning of the confidence rating phase. Participants performed 10 interleaved 40-trial detection and

discrimination blocks inside a 3T MRI scanner.
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Metacognitive sensitivity, quantified as the area under the type-II ROC curve, was significantly

higher for YES compared to NO responses (t(34) = 7.83, p<10–8; see Figure 2), as expected

(Meuwese et al., 2014). In other words, confidence ratings about the presence of a target stimulus

were more diagnostic of accuracy than ratings about target absence, even though both sets of rat-

ings tended to cover the full range of the scale, from low to high confidence. Taking metacognitive

sensitivity following discrimination responses as a baseline, we found that this effect was driven by a

decrease in metacognitive sensitivity for NO responses (t(34) = �4.89, p<0.0001), whereas a quantita-

tive increase in metacognitive sensitivity for YES responses compared to discrimination was not signif-

icant (t(34)=1.84, p=0.07). No difference was observed in metacognitive sensitivity between the two

discrimination responses (CLOCKWISE and ANTICLOCKWISE; t(34) = 0.06, p=0.95, BF01=7.6). Taken

together, these results are consistent with the previously reported selective asymmetry in the fidelity

of metacognitive evaluation following judgments about target absence (Meuwese et al., 2014;

Kanai et al., 2010).

Response times were faster on average for correct responses (849 ± 79 milliseconds) compared

to incorrect responses (938 ± 95 milliseconds; t(34)=10.59, p<10-11 for a paired t-test on the log-

transformed response times). Within the detection task, YES responses were significantly faster than

NO responses (850 ± 90 milliseconds and 896 ± 103 milliseconds, respectively; t(34)=3.16, p<0.005

for a paired t-test on the log-transformed response times).

Imaging results
Parametric effect of confidence
We next turned to our fMRI data to ask whether confidence-related responses were similar or dis-

tinct across tasks (detection/discrimination) and response (target present: YES/target absent: NO). We

first established the presence of linear confidence-related effects in our a priori ROIs, both across

tasks and response types and across correct and incorrect responses, in line with previous findings

of ‘generic’ or task-invariant confidence signals in these regions (Morales et al., 2018). Specifically,

higher confidence ratings were associated with increased activation in the ventromedial prefrontal

cortex (vmPFC), the ventral striatum, and the precuneus. Conversely, activations in the posterior

medial frontal cortex (pMFC) were negatively correlated with confidence (see Figure 3). For the

Figure 2. Upper panels: response conditional type-2 ROC curves. In parentheses: the mean area under the curve. Lower panels: distribution of

confidence ratings for the two tasks and four responses. Right panel: Mean accuracy for both tasks. Error bars represent the standard error of the mean.
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confidence effect pattern obtained from the Global-Confidence Design Matrix (GC-DM), see Appen-

dix 3—figure 1.

Interaction of linear confidence effects with task and response
We next asked whether the linear parametric relationship between confidence and BOLD activity dif-

fered as a function of task (discrimination vs. detection) and response type (YES vs. NO in detection).

In the pMFC, vmPFC, ventral striatum and precuneus ROIs, the parametric effect of confidence

failed to show a significant difference between the two tasks (all p-values>0.3), between the two dis-

crimination responses (all p-values>0.24), or between the two detection responses (all p-val-

ues>0.09). Similarly, no cluster within the pre-specified frontopolar ROI showed a differential effect

of confidence as a function of task or response. We show below that this absence of a linear interac-

tion should not be taken as evidence of absence of differences between detection and discrimina-

tion, due to the presence of nonlinear interaction effects. In the next section we first explain the

analysis steps we took to uncover nonlinear effects of confidence.

Interaction of nonlinear confidence effects with task and response
An exploratory whole brain analysis (p<0.05, corrected for multiple comparisons at the cluster-level)

revealed no differential confidence effect as a function of task anywhere in the brain. However,

within detection, whole-brain analysis revealed that the linear effect of confidence was significantly

more negative for NO compared to YES responses in the right temporo-parietal junction (rTPJ: 101

voxels, peak voxel: [54,-46, 26], z = 5.10). To further characterize the nature of the interaction

between confidence and response in the rTPJ, we fitted a new design matrix for each task (Categori-

cal-Confidence Design Matrices (post-hoc analysis; CC-DM)) where confidence was represented as a

categorical variable with 6 levels instead of one parametric modulator. In contrast to our original

design matrix (Main Design Matrix (DM-1)) that assumed a linear effect of confidence, this analysis is

agnostic as to the functional form of the confidence effect. We then plotted the mean activation

level for each combination of response and confidence level in the rTPJ cluster (see Figure 3, panel

c).

The categorical-confidence design matrix revealed a positive quadratic effect of confidence on

activation levels in the rTPJ, with stronger activation levels for the two extremities of the confidence

scale. We confirmed the presence of a significant quadratic effect of confidence in this region by fit-

ting a second-order polynomial to the response-specific confidence curve of each participant (see

Figure 3. Univariate parametric effect of confidence. (a) Glass brain visualization of global effect of confidence, thresholded at the single voxel level for

visualization (p<0.001, uncorrected). Negative confidence effect appears in blue, and positive effect in red. (b) Whole brain contrast between

confidence in ‘target present’ (YES) and ‘target absent’ (NO) detection responses, corrected for family-wise error rate at the cluster level (p<0.05) with a

cluster defining threshold of p<0.001, uncorrected. (c) Upper panel: BOLD signal in the rTPJ cluster from panel b as a function of response and

confidence. lower panel: mean coefficients of response- and subject-specific multiple linear regression models, predicting rTPJ activation as a linear

and quadratic function of confidence. * - p<0.05; uncorrected for multiple comparisons across the four tests. Comparison lines above and below the x

axis indicate main effect of response and task, respectively.
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Materials and methods). This analysis revealed a main quadratic effect of confidence in this region (t

(34) = 5.21, p<0.00001), an effect which was stronger in detection compared to discrimination (t(34)

=2.06, p<0.05, d = 0.35). Importantly, the linear interaction of confidence with detection responses

remained significant for this quadratic model, establishing that this response-specific effect is not

explained by an overall quadratic pattern (t(33)=2.09, p<0.05, d = 0.36 ; see Figure 3). More gener-

ally, these analyses make clear that linear effects of parametric modulators and their interactions are

not exhaustive in their characterization of the confidence-related BOLD response – in this region and

potentially in our other ROIs too.

To formally test for such nonlinear differences in the activation profile of other ROIs, we extracted

the coefficients from the categorical model for each ROI, and fitted a second-order polynomial to

the ensuing confidence-related response. Within our a priori ROIs, no quadratic effect of confidence

was observed in the pMFC, the precuneus, the ventral striatum, or the vmPFC (Appendix 5—figure

1). In contrast, in all three anatomical subregions of the frontopolar cortex, we found a positive qua-

dratic effect of confidence, with stronger activations for the two extremities of the confidence scale.

Strikingly, in both the FPl and the FPm, this positive quadratic effect of confidence was entirely

driven by the detection task (FPm: t(34)=3.04, p<0.005, d = 0.51; FPl: t(34)=3.90, p<0.001, d = 0.66;

see Figure 4). Confidence ratings for the discrimination task however showed a quadratic effect that

was not statistically different from zero (FPm: t(34)=-0.54, p=0.59, d = �0.09, BF01=6.61; FPl: t(34)

=1.42, p=0.16, d = 0.24, BF01=2.92). In the FPm, the linear effect of confidence was more negative

for detection than for discrimination (t(34) = �2.11, d = �0.36, p<0.05), and within detection, more

negative for confidence in judgments about absence (NO responses; t(34) = 2.10, d = �0.36,

p<0.05).

Finally, to test for similar quadratic effects of confidence at the whole-brain level, we constructed

a new design matrix (in a departure to our pre-registered analysis plan) in which confidence was

modeled by a parametric modulator with a polynomial expansion of 2 (Quadratic-Confidence Design

Matrix (post-hoc analysis; QC-DM)). Three clusters showed a significantly stronger quadratic effect

of confidence in detection compared to discrimination (Figure 5). These were located in the right

superior temporal sulcus (72 voxels, peak voxel: [60,-43,2], Z = 3.99), pre-SMA (130 voxels, peak

voxel: [0,35,47], Z = 4.07), and right frontopolar cortex, overlapping with our FPl and FPm frontopo-

lar anatomical subregions (51 voxels, peak voxel: [9,65,-10], Z = 4.00). Importantly, no region showed

stronger quadratic effects of confidence in discrimination compared to detection.

To visualize activity patterns in these regions, we extracted the mean coefficients from the cate-

gorical model for these three clusters, and fitted a second-order polynomial separately to each

response estimate (see Figure 5). In addition to the effect of task on the quadratic effect of confi-

dence in all three clusters, the linear effect of confidence in the right frontopolar cluster was signifi-

cantly more negative for detection, compared to discrimination (t(34)=-3.13, d = �0.53, p<0.005).

For both tasks, inter-subject variability in metacognitive efficiency (measured as meta-d’/d’;

Maniscalco and Lau, 2012) was not reliably correlated with linear or quadratic parametric effect of

confidence in any of the three regions (see Appendix 7).

Computational models
We next considered alternative computational-level explanations for the detection-specific quadratic

activation profile. Specifically, we evaluated how latent model variables or belief states change non-

linearly as a function of confidence in three candidate model architectures (see Figure 6): a static

‘Signal Detection’ model, a ‘Dynamic Criterion’ model where policy changes as a function of previ-

ous perceptual samples, and an ‘Attention Monitoring’ model in which beliefs about fluctuations in

attention inform decisions and confidence judgments. A detailed formal description of the three

models is available in the appendix (sections 9, 10 and 11).

First, we consider the static Signal Detection Theory (SDT) model. In SDT models of confidence

formation, the log likelihood-ratio between the two competing hypotheses (LLR ¼ log
pðxjS1Þ
pðxjS2Þ

) is a use-

ful measure for determining the certainty with which one should commit to a choice. The mapping

between the perceptual sample x and the LLR is linear for equal-variance SDT, which is often used to

model discrimination, but quadratic for unequal-variance SDT, which is often used to model detec-

tion. It then follows that if confidence is proportional to the distance of the sample x from the deci-

sion criterion, neuronal populations that represent the relative likelihood of a choice being correct
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Figure 4. Confidence effect as a function of response in the frontopolar cortex separated into its three anatomical

subcomponents: FPm, FPl, and BA 46. Same conventions as in Figure 3c. * - p<0.05; uncorrected for multiple

comparisons. Comparison lines above and below the x axis indicate main effect of response and task, respectively.
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(be it LLR or an analogue quantity) will show a quadratic tuning function of confidence in detection

and a linear tuning function in discrimination, similar to that observed in FPC, pre-SMA and STS.

However, LLR is also expected to scale more strongly with confidence in YES responses (see simula-

tion results in Figure 6, upper panel), which was not observed in these brain regions. This model

also predicts a stronger quadratic effect of confidence in participants for which the variance ratio

between the signal and noise distributions is particularly high. However, the variance ratio was not

significantly correlated with the quadratic effect of confidence in any of these regions, as would be

expected if they were representing LLR or a similar quantity (see Appendix 6—figure 1).

For the next two models, confidence was assumed to be directly proportional to the LLR, with

the measured signal representing internal beliefs about hidden model parameters. In the ‘Dynamic

Criterion’ model, we considered whether a quadratic effect of confidence in detection may reflect

the active tuning of decision policy in the absence of explicit feedback (Guggenmos et al., 2016;

Ko and Lau, 2012). In the model, beliefs about the underlying distributions are updated on a trial-

to-trial basis, and in turn affect the placement of decision criterion (for a formal description of the

model, see Appendix section 10). The Dynamic Criterion model predicts that the magnitude of shift

in decision criterion will display a positive quadratic relation to confidence (LLR) in detection but not

discrimination (see simulation results in Figure 6, middle panel). This is because the problem is

asymmetric in detection, and decision policy should depend on beliefs about both sensory precision

Figure 5. Left, top panel: a glass-brain representation of a contrast between the quadratic effects of confidence in detection and in discrimination,

whole-brain corrected for family-wise error rate at the cluster-level (p<0.05) with a cluster-defining threshold of p<0.001, uncorrected. Remaining panels:

mean betas from the categorical model for each of the four responses and six confidence ratings, for the three indicated clusters. The second-order

polynomial coefficients for these estimates are presented below each plot. Significance is only indicated for the linear effects, which are orthogonal to

the quadratic contrast used to select the clusters. * - p<0.05; ** - p<0.01. Comparison lines above and below the x axis indicate main effect of response

and task, respectively.
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(or the relative variance of the noise and signal distribution) and expected signal strength (mean of

the signal distribution), which is not the case for a symmetric discrimination problem.

Notably, the pattern of criterion shifts in the Dynamic Criterion model resembled the task-specific

effect of confidence in the FPC, STS and pre-SMA. As a post-hoc test of a role for these regions in

criterion adjustment, we examined sequential pairs of trials of the same stimulus category (for exam-

ple, a signal present trial that was followed by a signal present trial), and contrasted ‘repeat’ trials

with ‘switch’ trials (for example, [YES, YES] vs. [YES, NO]). The Dynamic Criterion model predicts stronger

activation in switch compared to stay trials in both detection and discrimination. The FPl showed a

weak effect in this direction (t = 2.03, p=0.05, d = 0.34), whereas FPm, pre-SMA, right BA10 and

STS did not (all p-values>0.15).

Finally, we considered a higher-order ‘Attention Monitoring’ model in which beliefs about one’s

current attentional state (precision or inverse variance in SDT) are taken into account when making

perceptual decisions and confidence ratings on detection trials. This model formalizes the notion

that after not detecting a target the participant may ask ‘Given my current attentional state, would I

have missed the target?’. The Attention Monitoring model thus makes different predictions for confi-

dence in detection ‘target absent’ (NO) responses, where the participant is assumed to reflect on the

detection-likelihood of hypothetical targets, compared to ‘target present’ (YES) responses, similar to

Figure 6. The three models (left) and their prediction for confidence effects (right). Top panel: In Signal Detection Theory, perceptual decisions and

confidence ratings are generated by comparing the sensory evidence to a fixed set of criteria. In detection the ’signal’ distribution is assumed to have

higher variance. Plotting the absolute value of the log likelihood ratio as a function of decision and confidence results in a linear curve for

discrimination, and a pronounced quadratic effect for YES responses in detection, an effect that is specific to unequal-variance SDT. Middle panel: In a

Dynamic Criterion model beliefs about the mean and variance of the perceptual distributions are updated as a function of incoming samples (plotted

as circles) and the decision criterion is shifted accordingly. Plotting the absolute change in criterion placement as a function of decision and confidence

results in a quadratic effect of confidence for detection responses only. Bottom: In the Attention Monitoring model, beliefs about overall attentiveness

(’onTask’ node) probabilistically reflect sensory precision. Plotting beliefs about overall attentiveness as a function of decision and confidence results in

an overall quadratic effect of confidence, and an interaction between YES and NO responses in detection. For a detailed specification of all three models

see appendix sections 9, 10 and 11.
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the activation profile observed in the rTPJ. However, this model also predicts a pronounced qua-

dratic confidence profile for all four responses, which we do not see in our data.

Discussion
Previous studies of the neural basis of human perceptual decision-making have tended to focus on

discrimination judgments, such as sorting stimuli into category A or B. The general computational

architecture supporting discrimination judgments can be naturally extended to support detection

(for instance, within signal detection theory). However, computational considerations and behavioral

findings suggest that forming confidence in detection judgments may rest on qualitatively distinct

cognitive and neural processes in comparison to generating confidence in discrimination judgments.

To test for such differences, here we acquired functional MRI data from 35 participants who

reported their subjective confidence in judgments about stimulus type (discrimination), and target

presence or absence (detection). These judgments were given on separate trials that were well-

matched for stimulus characteristics, response requirements and task difficulty. Across both tasks,

we found the expected linear effects of confidence in our pre-specified regions of interest in the pre-

frontal and parietal cortex. Specifically, in the precuneus, vmPFC, pMFC and ventral striatum, the

effect of confidence was invariant to task and response. In contrast, having adjusted our planned

design matrix to be sensitive to non-monotonic effects of confidence, we observed a quadratic

effect of confidence in detection judgments in the frontopolar cortex (medial and lateral surfaces of

BA10), that was absent for discrimination judgments. Similar quadratic activation profiles were

observed for both YES and NO responses. Whole-brain analysis revealed a similar effect of task on the

quadratic effect of confidence in the right STS and the pre-SMA. Since task performance was

matched across the two tasks and since we did not observe overall differences in activation between

detection and discrimination (see Appendix 4—figure 1), these differences in confidence profiles

are unlikely to originate from experimental confounds such as task difficulty, but instead indicate a

unique neurocognitive contribution to metacognition of detection judgments. In what follows we will

unpack what this contribution might be.

The three regions that showed an interaction of the quadratic expansion of confidence with task

in our whole-brain analysis (right frontopolar cortex, right STS, and pre-SMA), as well as two anatom-

ical subcomponents of our frontopolar ROI (FPl and FPm), all shared a very similar activation profile.

In detection, the quadratic effect of confidence was positive, but was almost entirely absent for the

discrimination task. Follow-up analysis confirmed that this difference was not driven by motor

aspects of the confidence rating procedure, such as the number of increase or decrease confidence

steps taken to reach the desired confidence level, which was similar for the two tasks (see Appen-

dix 1—figure 1). Ours is not the first report of a quadratic relation between activation in prefrontal

cortical structures and different subjective ratings. For example, in a study by Christensen et al.

(2006), participants were presented with masked stimuli and gave subjective visibility ratings on a

three-point scale. The right frontopolar cortex showed decreased activation for ‘clear perception’

and ‘no perception’ categories relative to a middle ‘vague perception’ category. Similarly,

De Martino et al. (2017) reported a quadratic effect of product desirability in the pMFC. However,

for both of the above cases, a quadratic effect can reflect a monotonic relationship with an implicit

representation of subjective confidence (Lebreton et al., 2015). For example, participants may be

more confident in the ‘clear perception’ and ‘no perception’ responses compared to the ‘vague per-

ception’ option, or more confident about liking or not liking a product, compared to when using the

middle parts of the liking scale. This explanation cannot account for the observed quadratic trend in

our case, where in addition to strong activation levels for the highest confidence ratings in target

presence and absence, we also find strong activation levels for the lowest levels of confidence.

We are unable to determine whether this effect originates from one homogeneous population of

neurons that shows a quadratic effect of detection confidence, or from two overlapping populations

that show nonlinear positive and negative effects of detection confidence – summing to an overall

quadratic effect at the voxel level (similar to positive and negative confidence-selective neurons in

the human posterior parietal cortex; Rutishauser et al., 2018) Addressing this question would

require higher spatial resolution, for example using single-cell recordings in patients. Furthermore,

because confidence judgments were always preceded by perceptual decisions in our design, we can-

not determine whether the observed effects reflect an implicit representation of uncertainty,
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computed in parallel with the perceptual decision itself, or a higher-order representation that

emerges at the explicit confidence rating phase. Future studies which use model-based estimates of

covert decision confidence (Bang and Fleming, 2018) or EEG-informed fMRI to resolve early and

late processing stages (Gherman and Philiastides, 2018) may answer this question.

We considered three alternative computational models that were able to account for asymmetries

between detection and discrimination activation profiles. An unequal variance signal detection the-

ory model provided a simple account of the asymmetry between detection and discrimination, but

could not account for the similar quadratic profiles observed for YES and NO responses. A more direct

test of the proposal that a detection-specific quadratic effect of confidence originates from the

unequal-variance properties of stimulus distributions in detection would be to test for similar effects

in a discrimination task in which one category of stimuli is of higher variance (e.g., Denison et al.,

2018). In contrast, the Dynamic Criterion model provided good qualitative accounts for distinct

regional activation profiles, and the Attention Monitoring account predicted an interaction between

confidence in judgments about presence and absence. However, the Attention Monitoring model

also predicted a quadratic effect in discrimination, which we did not see.

Notably, both of these models share the need to learn (in the Dynamic Criterion model) or esti-

mate (in the Attention Monitoring model) the current level of precision (inverse variance) in detec-

tion. Such online precision estimation evinces a profound asymmetry between detection and

discrimination tasks: in discrimination tasks, one simply has to evaluate the relative evidence for dif-

ferent causes of sensory samples, under some prior belief about sensory precision; namely, the pre-

cision of the likelihood that any particular cause (e.g., CLOCKWISE or ANTICLOCKWISE orientation) would

generate sensory samples. In contrast, detection presents a difficult (ill-posed, dual estimation) prob-

lem. When assessing the evidence for the absence of a target, there could be no sensory evidence

because the target is not there or because precision is low (or both). This puts pressure on the esti-

mation of precision to resolve conditional dependencies between posterior beliefs about target

presence and the precision with which it can be detected. In short, two things have to be estimated;

the posterior expectation about the target and posterior beliefs about precision (Clark, 2013;

Feldman and Friston, 2010; Haarsma et al., 2018; Palmer et al., 2019; Parr et al., 2018).

In line with a role in monitoring of attention or precision, right TPJ showed a negative effect of

confidence that was stronger for ‘target absent’ responses compared to ‘target present’ responses

in detection. This cluster was closest to the posterior subdivision of the right TPJ (TPJp-R;

Igelström et al., 2015), which is most strongly associated with reasoning about others’ beliefs

(Igelström et al., 2016). In addition to its role in Theory of Mind (Saxe and Wexler, 2005; Lee and

McCarthy, 2016), previous work has highlighted the importance of the rTPJ in controlling attention

(Marois et al., 2004; Geng and Vossel, 2013; Lee and McCarthy, 2016; Dugué et al., 2018) and

filtering distractors in visual search (Shulman et al., 2007). Furthermore, damage to the rTPJ can

result in visual hemineglect: a condition in which stimuli in the left visual hemifield fail to reach

awareness (Corbetta et al., 2005). Together, these observations have led to a proposal (the ‘Atten-

tion Schema Theory’) that the rTPJ is maintaining a simplified representation of one’s own and

others’ attentional states, and that this function makes this region essential for maintaining conscious

awareness (Graziano and Webb, 2015).

The current Attention Monitoring model fits well with the Attention Schema Theory. A represen-

tation of one’s current attentional state is a useful source of information for determining confidence

in detection judgments, because stimuli are more likely to be missed when participants are not pay-

ing careful attention. This will be specifically useful for judgments about stimulus absence: if a target

was not observed, the participant may reason something along the lines of ’given my current state

of attention, I was not very likely to miss a target, therefore I can be very confident that a target was

not presented’. In support of this idea, the typically poor metacognitive evaluations of decisions

about stimulus absence are partially recovered when task difficulty is controlled by manipulating

attention rather than stimulus visibility (Kanai et al., 2010; Kellij et al., 2018), suggesting that sub-

jects may harness information about their attentional state to inform their confidence judgments.

Interestingly, the frontopolar cortex, which showed a detection-specific quadratic effect of confi-

dence in our experiment, has also been implicated in attentional control via the gating of internal

and external modes of attention (Burgess et al., 2007) and in discriminating between imagined and

externally perceived memory items (Simons et al., 2006; Turner et al., 2008). Together, the
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engagement of this set of regions in detection confidence hints at a potential role for self-monitoring

of attention in metacognition of detection.

To conclude, we find a quadratic effect of confidence in detection judgments in several brain

regions, including the frontopolar cortex and rTPJ. In the frontopolar cortex, this quadratic effect

was not seen for discrimination judgments. In the rTPJ, we also found a linear effect of confidence

that was more negative for judgments about stimulus absence compared to judgments about stimu-

lus presence. We consider three computational accounts of our results, two of which implicate the

learning and estimation of signal-to-noise statistics as promising accounts of the observed detec-

tion-specific activation profiles. However, while each of these accounts could explain some of our

findings, none of the models could provide a complete account of the data. Further work is needed

to decide between these alternatives, or to suggest new ones.

Materials and methods
All design and analysis details were pre-registered before data acquisition and time-locked using

pre-RNG randomization (Mazor et al., 2019). The time-locked protocol folder is available at https://

github.com/matanmazor/detectionVsDiscrimination_fMRI (Mazor, 2020; copy archived at https://

github.com/elifesciences-publications/detectionVsDiscrimination_fMRI). The entire set of pre-regis-

tered analyses results is available at https://osf.io/98mv4/.

Participants
46 participants took part in the study (ages 18–36, mean = 24 ± 4; 29 females). 35 participants met

our pre-specified inclusion criteria (ages 18–36, mean = 24 ± 4; 20 females). After applying our run-

wise exclusion criteria to the data of the remaining 35 participants, our dataset consisted of 5 usable

experimental runs from 15 participants, 4 usable experimental runs from 14 participants, 3 usable

experimental runs from 5 participants, and 2 usable experimental runs from one participant. We pre-

specified a sample-size of 35, balancing statistical power and resource considerations.

Design and procedure
After a temporally jittered rest period of 500–4000 milliseconds, each trial started with a fixation

cross (500 milliseconds), followed by a presentation of a target for 33 milliseconds. In discrimination

trials, the target was a circle of diameter 3˚ containing randomly generated white noise, merged

with a sinusoidal grating (2 cycles per degree; oriented 45˚ or �45˚). In half of the detection trials,

targets did not contain a sinusoidal grating and consisted of random noise only. After stimulus off-

set, participants used their right-hand index and middle fingers to make a perceptual decision about

the orientation of the grating (discrimination blocks), or about the presence or absence of a grating

(detection blocks). The response mapping was counterbalanced between blocks, such that an index

finger press was used to indicate a CLOCKWISE tilt on half of the trials, and an ANTICLOCKWISE tilt on the

other half. Similarly, in half of the detection trials the index finger was mapped to a YES (‘target pres-

ent’) response, and on the other half to a NO (‘target absent’) response.

Immediately after making a decision, participants rated their confidence on a 6-point scale by

using two keys to increase and decrease their reported confidence level with their left-hand thumb.

Confidence levels were indicated by the size and color of a circle presented at the center of the

screen. The initial size and color of the circle was determined randomly at the beginning of the confi-

dence rating phase, to decorrelate the number of button presses and the final confidence rating.

The mapping between color and size to confidence was counterbalanced between participants: for

half of the participants high confidence was mapped to small, red circles, and for the other half high

confidence was mapped to large, blue circles. This counterbalancing was employed to isolate confi-

dence-related activations from activations that originate from the perceptual properties of the confi-

dence scale or from differences in the motor requirement to press the upper and lower buttons. The

perceptual decision and the confidence rating phases were restricted to 1500 and 2500 milliseconds,

respectively. No feedback was delivered to subjects about their performance.

Participants were acquainted with the task in a preceding behavioral session. During this session,

task difficulty was adjusted independently for detection and for discrimination, targeting around

70% accuracy on both tasks. We achieved this by adaptively controlling the stimulus signal-to-noise

ratio (SNR) once in every 10 trials: increasing the SNR when accuracy fell below 60%, and decreasing
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it when accuracy exceeded 80%. Performance on the detection and discrimination task was further

calibrated to the scanner environment at the beginning of the scanning session, during the acquisi-

tion of anatomical (MP-RAGE and fieldmap) images. After completing the calibration phase, partici-

pants underwent five ten-minute functional scanner runs, each comprising one detection and one

discrimination block of 40 trials each, presented in random order.

To avoid stimulus-driven fluctuations in confidence, grating SNR was fixed within each experimen-

tal block. Nevertheless, following experimental blocks with markedly bad (� 52.5%) or good

(� 85%) accuracy, grating SNR was adjusted for the next block of the same task (SNR level was

divided or multiplied by a factor of 0.9 for bad and good performance, respectively). Finally, grating

SNR was adjusted for both tasks following runs in which the difference in performance between the

two tasks exceeded 16.25% (SNR level was multiplied by the square root of 0.9 for the easier task

and divided by the square root of 0.9 for the more difficult task).

To incentivize participants to do their best at the task and rate their confidence accurately, we

offered a bonus payment according to the following payment schedule: bonus = £
accuracy�����!

�confidence
������!

200

Where accuracy�����! is a vector of 1 and �1 for correct and incorrect responses, and confidence
������!

is a vector

of integers in the range of 1 to 6, representing confidence reports for all trials. We explained the

payment structure to participants in the preceding behavioral session. Specifically, we advised partic-

ipants that to maximize their bonus they should do their best at the main task, rate the confidence

higher when they believe they are correct, and rate their confidence lower when they believe they

might be wrong.

Scanning parameters
Scanning took place at the Wellcome Centre for Human Neuroimaging, London, using a 3 Tesla Sie-

mens Prisma MRI scanner with a 64-channel head coil. We acquired structural images using an

MPRAGE sequence (1�1�1 mm voxels, 176 slices, in plane FoV = 256�256 mm2), followed by a

double-echo FLASH (gradient echo) sequence with TE1 = 10 ms and TE2 = 12.46 ms (64 slices, slice

thickness = 2 mm, gap = 1 mm, in plane FoV = 192 � 192 mm2, resolution = 3 � 3 mm2) that was

later used for field inhomogeneity correction. Functional scans were acquired using a 2D EPI

sequence, optimized for regions near the orbito-frontal cortex (3�3�3 mm voxels, TR = 3.36 s,

TE = 30 ms, 48 slices tilted by �30 degrees with respect to the T > C axis, matrix size = 64�72,

Z-shim = �1.4).

Analysis
The preregistered objectives of this study were to:

1. Replicate findings of a generic (task-invariant) confidence signal in the activity of medial pre-
frontal cortex (De Martino et al., 2013; Morales et al., 2018).

2. Test for an interaction between the parametric effect of confidence level and task (detection/
discrimination) in the BOLD response in prefrontal cortex ROIs.

3. Within detection trials, test for an interaction between the parametric effect of confidence
level and response (YES/NO) in the BOLD response, specifically in the prefrontal cortex and in
frontopolar regions that have previously been associated with counterfactual reasoning
(Boorman et al., 2009; Donoso et al., 2014).

4. Test for relationships between fluctuations in metacognitive adequacy (a trial-by-trial measure
of metacognitive sensitivity; Wokke et al., 2017), and the BOLD signal separately for detec-
tion and for discrimination, and for YES and NO responses within detection.

5. Replicate previous findings of between-subject correlations between lateral prefrontal cortex
(lPFC) function and metacognitive efficiency (meta-d’/d’; Fleming and Lau, 2014) in discrimi-
nation (Yokoyama et al., 2010).

6. Identify between-subject functional correlates of metacognitive efficiency in detection. Specifi-
cally, ask if metacognitive efficiency in detection is predicted by activity in distinct networks
compared to metacognitive efficiency in discrimination.

Exclusion criteria
Subjects were excluded from all analyses for any of the following pre-specified reasons: missing

more than 20% of the trials, performing one of the tasks with accuracy below 60%, exceeding the 4
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mm affine motion cutoff criterion in more than 2 experimental runs, and showing a consistent

response bias (i.e. using the same response in more than 75% of the trials) in at least one task. Indi-

vidual scan runs were excluded from all analyses if the participant exceeded the affine motion cutoff,

if more than 20% of trials were missed, if mean accuracy was below 60% or if the response bias for

one of the tasks exceeded 80%.

In addition, we applied a confidence-related exclusion criterion: participants were excluded if

they used the same confidence level in more than 80% of all trials globally or for a particular

response, and individual scan runs were excluded if the same confidence level was used in more

than 95% of the trials, either globally or for particular response types. Our preregistration document

specified that the confidence exclusion criterion will be used to exclude participants from confi-

dence-related analyses only, but we subsequently revised this plan in order to use identical design

matrices for all participants.

Behavioral analysis
Response conditional type-II ROC curves
Response conditional type-II ROC (Receiver Operating Characteristic) curves were extracted for the

two discrimination and two detection responses. This was done by plotting the cumulative distribu-

tion of confidence levels in correct responses against the cumulative distribution of confidence levels

in incorrect responses. As a measure of response-specific metacognitive sensitivity, we extracted the

area under these curves (AUROC2). The expected AUROC2 for no metacognitive insight (i.e., the

confidence distributions are identical for correct and incorrect responses) is 0.5. Perfect metacogni-

tive insight (i.e., confidence in all correct responses is higher than confidence in all incorrect

responses) will result in an AUROC2 of 1.

Imaging analysis
fMRI data preprocessing
Data preprocessing followed the procedure described in Morales et al. (2018): ’Imaging analysis

was performed using SPM12 (Statistical Parametric Mapping; www.fil.ion.ucl.ac.uk/spm). The first

five volumes of each run were discarded to allow for T1 stabilization. Functional images were real-

igned and unwarped using local field maps (Andersson et al., 2001) and then slice-time corrected

(Sladky et al., 2011). Each participant’s structural image was segmented into gray matter, white

matter, CSF, bone, soft tissue, and air/background images using a nonlinear deformation field to

map it onto template tissue probability maps (Ashburner and Friston, 2005). This mapping was

applied to both structural and functional images to create normalized images in Montreal Neurologi-

cal Institute (MNI) space. Normalized images were spatially smoothed using a Gaussian kernel (6 mm

FWHM). We set a within-run 4 mm affine motion cutoff criterion’.

Preprocessing and construction of first- and second-level models used standardized pipelines and

scripts available at https://github.com/metacoglab/MetaLabCore/.

Regions of interest
In addition to an exploratory whole-brain analysis (corrected for multiple comparisons at the cluster

level), our analysis focused on the following a priori regions of interest, largely following the ROIs

used by Fleming et al. (2018):

1. Frontopolar cortex (FPC, defined anatomically). We used a connectivity-based parcellation
(Neubert et al., 2014) to define a general FPC region of interest as the total area spanned by
areas FPl, FPm and BA46. The right hemisphere mask was mirrored to create a bilateral mask.

2. Ventromedial prefrontal cortex (vmPFC). The vmPFC ROI was defined as a 8 mm sphere
around MNI coordinates [0,46,–7], obtained from a meta-analysis of subjective-value related
activations (Bartra et al., 2013) and aligned to the cortical midline.

3. Bilateral ventral striatum. The ventral striatum ROIs was specified anatomically from the
Oxford-Imanova Striatal Structural Atlas included with FSL (http://fsl.fmrib.ox.ac.uk).

4. Posterior medial frontal cortex (pMFC). The pMFC ROI was defined as a 8 mm sphere around
MNI coordinates [0, 17, 46], obtained from a functional MRI study on decision confidence and
aligned to the cortical midline (Fleming et al., 2012).
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5. Precuneus. The precuneus ROI was defined as a 8 mm sphere around MNI coordinates [0,–
57,18], based on Voxel- Based Morphometry studies of metacognitive efficiency
(Fleming et al., 2010; McCurdy et al., 2013) and aligned to the cortical midline.

For the general FPC ROI, small-volume correction was applied to individual voxels within the ROI

for all univariate contrasts. For the multivariate analysis, we used a searchlight approach to scan for

spatial patterns within the ROI, followed by a correction for multiple comparisons. For all other

ROIs, a GLM was fitted to the mean time course of voxels within the region, and multivariate analysis

was performed on all voxels within the ROI. While our pre-registered analysis defined the frontopo-

lar cortex as a single region, we subsequently decided to separately analyze its 3 separate anatomi-

cal subregions identified by Neubert et al. (2014) (FPl, FPm and BA46). The decision to separate

the FPC ROI to its subcomponents was made after data collection and these anatomical subregions

should not be taken as a priori ROIs.

Univariate analysis
Univariate analysis was based on a design matrix in which different trial types are modeled by differ-

ent regressors (main design matrix, below). Additionally, to examine the global effect of confidence

across trial types, a simpler design matrix was fitted to the data as a first step (global confidence

design matrix, below). Experimental runs for each subject were temporally concatenated before esti-

mating the GLM coefficients. This was done in order to maximize sensitivity to response- and task-

specific modulations of confidence, given the limited and varying number of trials within each experi-

mental run.

Main design matrix (DM-1)
The main design matrix for the univariate GLM analysis consisted of 16 regressors of interest. There

was a regressor for each of the eight combinations of task x condition x response: For example, a

regressor for detection trials where a signal was present and the subject reported seeing a signal

with a YES response (present and present, P_P). The relevant trials were modeled by a boxcar regres-

sor with nonzero entries at the interval starting at the offset of the stimulus and ending immediately

after the confidence rating phase, convolved with the canonical hemodynamic response function

(HRF). The duration of this interval was 4300 milliseconds, and not 4000 milliseconds as mistakenly

indicated in the preregistration document. Each of these primary regressors was accompanied by a

linear parametric modulation of the confidence reported for each trial. Together, the design matrix

included 16 regressors of interest (see Table 1).

Trials in which the participant did not respond within the 1500 millisecond time frame were mod-

eled by a separate regressor. The design matrix also include a run-wise constant term regressor, an

instruction-screen regressor for the beginning of each block, motion regressors (the 6 motion param-

eters and their first derivatives as extracted by SPM in the head motion correction preprocessing

phase) and regressors for physiological measures. Button presses were modeled as stick functions,

convolved with the canonical HRF, in three regressors: two regressors for the right and left right-

hand buttons, and one regressor for both up and down left-hand presses. We decided to have one

regressor for both types of left-hand presses due to the strong positive correlation of the final confi-

dence rating with the number of ‘increase confidence’ button presses, and the strong negative cor-

relation with the number of ‘decrease confidence’ button presses.

Global confidence design matrix (GC-DM)
The global confidence design matrix consisted of 4 regressors of interest. The first two primary

regressors were ’correct trials’ (trials in which the participant was correct, across tasks and

responses) and ’incorrect trials’ (trials in which the participant was incorrect, across tasks and

responses). Single events were modeled by a boxcar regressor with nonzero entries at the

4300 millisecond interval starting at the offset of the stimulus and ending immediately after the con-

fidence rating phase, convolved with the canonical hemodynamic response function (HRF). Addition-

ally, the design matrix included a confidence parametric modulator for each of the first two

regressors. The construction of the regressors and the additional nuisance regressors was handled

similarly to the main design.
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Quadratic-Confidence design matrix (post-hoc analysis; QC-DM)
The quadratic-confidence design matrix for the univariate GLM analysis consisted of 12 regressors of

interest. There was a regressor for each of the four responses: YES, NO, CLOCKWISE and ANTICLOCKWISE.

Similar to the main design matrix, the relevant trials were modeled by a boxcar regressor with non-

zero entries at the 4300 millisecond interval starting at the offset of the stimulus and ending immedi-

ately after the confidence rating phase, convolved with the canonical hemodynamic response

function (HRF). Each of these primary regressors was accompanied by two parametric modulators,

representing the linear and quadratic effects of confidence. Together, the design matrix included 12

regressors (4 responses + 4 linear confidence regressors + 4 quadratic confidence regressors). The

QC-DM included the same set of nuisance regressors as the main design matrix.

Categorical-Confidence design matrices (post-hoc analysis; CC-DM)
In order to better understand the nature of the linear interaction between confidence in YES and NO

responses, we specified a pair of design matrices—one for each task—in which confidence level was

modeled as a categorical variable. Instead of the 8 primary regressors in the main design matrix, this

design matrix consisted of only one regressor of interest for all trials, modeled by a boxcar with non-

zero entries at the 4300 millisecond interval starting at the offset of the stimulus and ending immedi-

ately after the confidence rating phase, convolved with the canonical hemodynamic response

function (HRF). This regressor was in turn modulated by a series of 12 dummy (0/1) parametric mod-

ulators - one for every response (YES and NO for detection and CLOCKWISE and ANTICLOCKWISE for discrimi-

nation) and confidence rating (1–6 for both tasks). Using two design matrices instead of one allowed

us to set discrimination trials to be the baseline category for detection, and detection trials as the

baseline for discrimination. These design matrices included the same set of nuisance regressors as

the main design matrix.

For each participant, we used the beta-estimates from the categorical-confidence design matrices

as the input to four response-specific multiple linear regression models, with linear confidence and

quadratic confidence as predictors, in addition to an intercept term. The subject-specific coefficients

were then subjected to ordinary least squares group-level inference, to compare linear and quadratic

effects of confidence between responses. The rationale for choosing this two-step approach was its

indifference to the confidence distributions for the four responses, that may bias the estimation of

the quadratic and linear terms.

Table 1. List of regressors in the main design matrix (DM-1).

Task Stimulus Response

1 CW_CW Discrimination Clockwise Clockwise

2 CW_CW_conf

3 CW_ACW Discrimination Clockwise Anticlockwise

4 CW_ACW_conf

5 ACW_CW Discrimination Anticlockwise Clockwise

6 ACW_CW_conf

7 ACW_ACW Discrimination Anticlockwise Anticlockwise

8 ACW_ACW_conf

9 P_P Detection Present Present

10 P_P_conf

11 P_A Detection Present Absent

12 P_A_conf

13 A_P Detection Absent Present

14 A_P_conf

15 A_A Detection Absent Absent

16 A_A_conf
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Multivariate analysis
Multi-voxel pattern analysis (Norman et al., 2006) was used to test for consistent spatial patterns in

the fMRI data. We used The Decoding Toolbox (Hebart et al., 2015) and followed the procedures

described by Morales et al. (2018). In order to identify brain regions that are implicated in inference

about presence and absence, we trained and tested a linear classifier on detection decisions. We

classified hits and correct rejections, instead of hits and misses as originally planned, due to an insuf-

ficient number of detection misses in some experimental blocks. We then compared the resulting

classification accuracy with the cross-classification accuracy of training on detection responses and

testing on discrimination confidence and vice versa. The purpose of this comparison was to isolate

neural correlates of inference about stimulus absence or presence that should be specific to detec-

tion from more general neural correlates of stimulus visibility, that are also expected to affect confi-

dence in discrimination judgements (see Appendix 8—figure 1).

The other prespecified multivariate tests were designed to find universal and response-specific

spatially multivariate representations of confidence. After conducting this analysis we came to realize

that our experimental design was not appropriate for estimating the degree to which the represen-

tation of confidence is ‘response-general’. In our experimental design, confidence is confounded

with visual feedback during the confidence-rating phase, such that ‘response-general’ representa-

tions of confidence could appear if the spatial pattern of activation was sensitive to the visual feed-

back in the confidence rating. For completeness, we include the results of this analysis in the

osf project page, but do not interpret them further.

Statistical inference
T-test and anova Bayes factors use a Jeffrey-Zellner-Siow Prior for the null distribution, with a unit

prior scale (Rouder et al., 2009; Rouder et al., 2012). Whole-brain fMRI significance was corrected

for family-wise error rate at the cluster level (p<0.05), with a cluster defining threshold of p<0.001.
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Appendix 1

Confidence button presses

Appendix 1—figure 1. Average number of button presses for each confidence level, as a func-

tion of task. More button presses were needed on average to reach the extreme confidence

ratings, hence the quadratic shape. No difference between the two tasks was observed in the

mean number of button presses for any of the confidence levels. Error bars represent the

standard error of the mean.
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Appendix 2

zROC curves

Appendix 2—figure 1. mean zROC curves for the discrimination and detection tasks. As

expected in a uv-SDT setting, the discrimination curve is approximately linear with a slope of

1, and the detection curve is approximately linear with a shallower slope. Error bars represent

the standard error of the mean.
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Appendix 3

Global confidence design matrix
From our pre-specified ROIs, only the vmPFC and BA46 ROIs showed a significant linear effect

of confidence in correct responses, in the opposite direction to what we expected based on

previous studies. This is likely to be due to the differences in confidence profiles between the

detection and discrimination tasks:

Appendix 3—figure 1. Effect of confidence in correct responses, from the global-confidence

design matrix. Uncorrected, thresholded at p<0.001. Left: glass brain visualization of the whole

brain contrast. Right: yellow-red represent a positive correlation with subjective confidence

ratings, and green-blue represent a negative correlation.

Average beta T value P value Standard deviation

vmPFC -0.35 -3.06 4 � 10-3 0.67

pMFC -0.31 -2.48 0.02 0.74

precuneus 0.25 2.30 0.03 0.64

ventral striatum -0.056 -1.51 0.14 0.22

FPl 0.16 1.52 0.14 0.64

FPm -0.12 -1.46 0.16 0.48

BA 46 0.37 3.77 6 � 10-4 0.57
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Appendix 4

Main effect of task

Appendix 4—figure 1. main effect of task, from the main design matrix. Uncorrected,

thresholded at p<0.001. Left: glass brain visualization of the whole brain contrast. Right:

yellow-red represent stronger activations in detection, and green-blue in discrimination. None

of our ROIs showed a main effect of task (detection vs. discrimination).

Average beta T value P value Standard deviation

vmPFC -0.01 -0.05 0.96 1.64

pMFC 0.15 0.60 0.55 1.45

precuneus -0.04 -0.16 0.87 1.65

ventral striatum 0.09 0.77 0.45 0.72

FPl 0.28 1.08 0.29 1.55

FPm 5 � 10-3 0.02 0.98 1.22

BA 46 0.38 1.19 0.24 1.89
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Appendix 5

Effect of confidence in our pre-specified ROIs

Appendix 5—figure 1. Effect of confidence in all 4 ROIs, as a function of task and response, as

extracted from the categorical design matrix. No significant interaction between the linear or

quadratic effects and task or response was observed in any of the ROIs.
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Appendix 6

SDT variance ratio correlation with the quadratic
confidence effect

Appendix 6—figure 1. Inter-subject correlation between the quadratic effect in the right hemi-

sphere clusters and the ratio between the detection (top panel) and discrimination (lower panel)

distribution variances, as estimated from the zROC curve slopes in the two tasks. Marker color

indicates the goodness of fit of the second-order polynomial model to the BOLD data. All

Spearman correlation coefficients are <0.25.
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Appendix 7

Correlation of metacognitive efficiency with linear and
quadratic confidence effects

Appendix 7—figure 1. Inter-subject correlation between the linear (upper panel) and quadratic

(lower panel) effects in the right hemisphere clusters and the metacognitive efficiency scores

(measured as M ratio = meta-d’/d’, Maniscalco and Lau, 2012).
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Appendix 8

Confidence-decision cross classification

Appendix 8—figure 1. Accuracy minus chance for classification of response in detection (YES vs.

NO; blue), and from a cross-classification between tasks: confidence in detection and confidence

in discrimination (gray), and confidence in discrimination and decision in detection (pink). In

order to dissociate between brain regions that encode stimulus visibility and brain regions that

encode decision confidence, we performed a multivariate cross-classification analysis. We

trained a linear classifier on detection decisions (YES and NO), and tested it on discrimination

confidence (high and low), and vice versa. Shared information content between detection

responses and confidence in discrimination is expected in brain regions that encode stimulus

visibility, rather than accuracy estimation. In detection, YES responses are associated with

higher stimulus visibility compared to NO responses (regardless of decision confidence), and in

discrimination high confidence trials are associated with higher visibility than low confidence

trials (regardless of subjective confidence).

Presented cross classification scores are the mean of cross classification accuracies in both

directions. Detection-response and discrimination-confidence cross-classification was

significantly above chance in in the pMFC (t(29)=2.76, p<0.05, corrected for family-wise error

across the four ROIs), and in the BA46 anatomical subregion of the frontopolar ROI (t(29)

=2.64, p<0.05, corrected).
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Appendix 9

Static signal detection theory

Discrimination

Generative model
According to SDT, a decision variable x is sampled from one of two distributions on each

experimental trial.

�t ¼
0:5; if CW.

�0:5; if ACW.

�

(1)

xt ~Nð�t;1Þ (2)

Inference
x is compared against a criterion to generate a decision about which of the two distributions

was most likely, given the sample. For a discrimination task with equally likely symmetric

distributions around 0, the optimal placement for a criterion is at 0.

decisiont ¼
CW; if xt>0:

ACW; else:

�

(3)

In standard discrimination tasks, a common assumption is that the two distributions are

Gaussian with equal variance. This assumption has a convenient computational consequence:

the log-likelihood ratio (LLR), a quantity that reflects the degree to which the sample is more

likely under one distribution or another, is linear with respect to x. Confidence is then assumed

to be proportional to the distance of xt from the decision criterion.

In what follows fðx; �;sÞ is the likelihood of observing x when sampling from a normal

distribution with mean � and standard deviation s.

LLR¼ logðfðxt;0:5;1ÞÞ� logðfðxt;�0:5;1ÞÞ (4)

confidencet / jxtj (5)

Detection

Generative model
A common assumption is that in detection the signal distribution is wider than the noise

distribution (unequal-variance SDT; Wickens, 2002, section 3.4).

�t ¼
1:3; if P.

0; if A.

�

(6)

st ¼
2; if P.

1; if A.

�

(7)

xt ~Nð�t;stÞ (8)

Inference
Here medðxÞ represents the median sensory sample x. This criterion was chosen to ensure that

detection responses are balanced.
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decision¼
P; if xt>medðxÞ:

A; else:

�

(9)

Importantly, in uv-SDT, LLR is quadratic in x.

LLR¼ logðfðx;1:3;2ÞÞ� logðfðx;0;1ÞÞ (10)

confidence/ jxt �medðxÞj (11)
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Appendix 10

Dynamic criterion
In SDT, task performance depends on the degree of overlap between the underlying

distributions (d’) and on the positioning of the decision criterion (c). Participants may optimize

criterion placement based on their changing beliefs about the underlying distributions

(Lau, 2007; Ko and Lau, 2012). To model this dynamic process of criterion setting we

simulated a model where beliefs about the underlying distributions are the Maximum

Likelihood Estimates of the mean and standard deviation, based on the last 5 samples that

were (correctly or not) categorized.

Discrimination

Generative Model
As in the Static Signal Detection model.

Inference
Means and standard deviations of the two distributions are estimated based on the last 5

samples in each category. To model prior beliefs about these parameters, each participant

starts the task with 5 imaginary samples from the veridical distributions. Means and standard

deviations are then extracted from these imaginary samples. In what follows, ~cw and ~acw are

vectors with entries corresponding to the last 5 samples that were (correcly or not) labelled as

CLOCKWISE and ANTICLOCKWISE, respectively. �xcw and �xacw correspond to the sample means of these

vectors. scw and sacw correspond to their standard deviations.

LLR¼ logðfðx;�xcw;scwÞÞ� logðfðx;�xacw;sacwÞÞ (12)

Decisions and confidence are extracted from the LLR as in the Static Signal Detection

model.

Detection

Generative Model
As in the Static Signal Detection model.

Inference
As in discrimination. In what follows,~a and~p are vectors with entries corresponding to the last

5 samples that were (correcly or not) labelled as ’signal absent’ and ’signal present’,

respectively. �xa and �xp correspond to the sample means of these vectors. sa and sp

correspond to their standard deviations.

LLR¼ logðfðx;�xp;spÞÞ� logðfðx;�xa;saÞÞ (13)

In detection, LLR = 0 at two points (see Figure 6). The decision criterion ct is chosen to

coincide with the rightmost point, which is positioned between the Signal and Noise

distribution means.

decision¼
P; if xt>ct:

A; else:

�

(14)

confidence/ jLLRj (15)
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Appendix 11

Attention monitoring
Similar to the Dynamic Criterion model, in the Attention Monitoring model participants adjust

a decision criterion based on changing beliefs about the underlying distributions. However,

unlike the Dynamic Criterion model, here beliefs change not as a function of recent perceptual

samples, but as a function of access to an internal variable that represents the expected

sensory precision (attention).

Discrimination

Generative model
In our schematic formulation of this model, participants have a true attentional state, which for

simplicity we treat as either being on (1) or off (0). When attending, participatns enjoy higher

sensitivity than when they are not attending.

pðattendedtÞ ¼ 0:5 (16)

The attentional state determines the means of sensory distributions.

�t ¼

0:5; if CW and :attendedt .

�0:5; if ACW and :attendedt .

2; if CW and attendedt .

�2; if ACW and attendedt .

8

>
>
>
<

>
>
>
:

(17)

xt ~Nð�t;1Þ (18)

However, they do not have direct access to their attentional state, but only to a noisy

approximation of the probability that they were attending.

onTaskt ~
Betað2;1Þ; if attendedt .

Betað1;2Þ; if :attendedt .

�

(19)

Inference
Participants are then assumed to use their knowledge about the onTask variable when making

a decision and confidence estimate.

pðxtjCWÞ ¼ pðattendedtjonTasktÞfðxt;2;1Þþ pð:attendedt jonTasktÞfðxt;0:5;1Þ

¼ onTasktfðxt;2;1Þþ ð1� onTasktÞfðxt;0:5;1Þ
(20)

pðxtjACWÞ ¼ pðattendedT jonTasktÞfðxt ;�2;1Þþ pð:attendedtjonTasktÞfðxt ;�0:5;1Þ

¼ onTasktfðxt;�2;1Þþ ð1� onTasktÞfðxt;�0:5;1Þ
(21)

LLR¼ logðpðxt jCWÞÞ� logðpðxt jACWÞ (22)

decisiont ¼
CW; if LLR >0.

ACW; else.

�

(23)

confidencet / jLLRj (24)
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Detection

Generative model
In detection, attentional states only affect the signal distribution, as noise is always centred at

0.

�t ¼

0; if A and :attendedt .

0:5; if P and :attendedt .

0; if A and attendedt .

2; if P and attendedt .

8

>
>
>
<

>
>
>
:

(25)

xt ~Nð�t;1Þ (26)

Inference

pðxtjPÞ ¼ pðattendedtjonTasktÞfðxt;2;1Þþ pð:attendedt jonTasktÞfðxt;0:5;1Þ

¼ onTasktfðxt;2;1Þþ ð1� onTasktÞfðxt;0:5;1Þ
(27)

The likelihood of observing xt if no stimulus was presented is independent of the attention

state.

pðxtjAÞ ¼ pðattendedtjonTasktÞfðxt;0;1ÞÞþ pð:attendedtjonTasktÞfðxt;0;1Þ

¼fðxt;0;1Þ
(28)

LLR¼ logðpðxtjpÞÞ� logðpðxtjaÞ (29)

decisiont ¼
P; if LLR >0.

A; else.

�

(30)

Nevertheless, confidence in judgments about stimulus absence is dependent on beliefs

about the attentional state. This is mediated by the effect of attention on the likelihood of

observing xt if a stimulus were present. This is the counterfactual part.

confidencet / jLLRj (31)
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