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Genome-wide association studies (GWASs) in identifying the disease-associated genetic variants have been proved to be a great
pioneering work. Two-stage design and analysis are often adopted in GWASs. Considering the genetic model uncertainty, many
robust procedures have been proposed and applied in GWASs. However, the existing approaches mostly focused on binary traits,
and few work has been done on continuous (quantitative) traits, since the statistical significance of these robust tests is difficult
to calculate. In this paper, we develop a powerful 𝐹-statistic-based robust joint analysis method for quantitative traits using the
combined raw data from both stages in the framework of two-staged GWASs. Explicit expressions are obtained to calculate the
statistical significance and power. We show using simulations that the proposed method is substantially more robust than the 𝐹-
test based on the additive model when the underlying genetic model is unknown. An example for rheumatic arthritis (RA) is used
for illustration.

1. Introduction

Genome-wide association studies (GWASs) have identified
a large number of genomic regions (especially single-nucle-
otide polymorphisms (SNPs)) with a wide variety of complex
traits/diseases. In a GWAS, two most common types of data,
qualitative (or binary) and quantitative (or continuous) traits,
are analyzed and two contentious points are often faced;
one is how to construct the test statistic considering the
genetic model uncertainty and the other is how to evaluate
the statistical significance for controlling the false positive
rates efficiently (e.g., [1, 2]). Considering these issues, a lot
of work has been done on the binary trait in the past 10 years
(e.g., [3–7]). Computer algorithms have also been developed
to calculated the significance level of robust tests in GWASs,
taking into account the genetic model uncertainty [8]. How-
ever, few work has been done on continuous traits, only

recently So and Sham [9] proposed a MAX3 based on score
test statistics, and Li et al. [10] gave a MAX3 based on 𝐹-test
statistics. Note that these tests just focus on single-marker
analysis in one-stage analysis.

Although the costs of whole-genome genotyping are
decreasing with the high-throughput biological technology,
the total costs for a GWAS are still very expensive due to
the thousands of sampling units and huge amounts of single-
nucleotide polymorphisms. In order to save the costs, the
two-stage design and the corresponding statistical analysis
where all the SNPs are genotyped in Stage 1 on a portion of
the samples and the promising SNPswith small𝑃-values (e.g.,
<0.001) based on some efficient tests are further screened on
the remaining subjects, are often adopted in practice (e.g.,
[11–15]).

In genetic association studies, especially GWASs, genetic
markers are routinely tested under the assumption of additive
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effects. Although convenient to use, those tests are optimal
only when the true underlying genetic model is additive so
that they are not robust against the genetic model misspecifi-
cation. To our best knowledge, fewwork has been done on the
two-stage joint analysis for quantitative trait GWASs allowing
for genetic model uncertainty. Here, we attempt to develop a
joint analysismethodwith data fusion in the two-stage design
using𝐹-statistic, since𝐹-test is commonly employed from the
linear regressionmodel for quantitative trait, and Li et al. [10]
show that MAX3 based on 𝐹-statistics is more powerful than
So and Sham’s method by extensively numerical simulation.

The content of this paper is organized as follows. In Sec-
tion 2, we give some notations and the proposed robust joint
test statistics. Further, we derive the asymptotic distribution
of the test statistics under the null and the alternative hypo-
theses. In Section 3, we show that the proposed joint analysis
method is substantiallymore robust than the additive-model-
based 𝐹-test from the numerical results of power comparison
when the real genetic model is unknown. After that, an
illustrative example for rheumatic arthritis (RA) is presented.
Finally, we give some discussion of this paper in Section 4.

2. Methods

2.1. Notations. Assume that 𝑛 individuals are randomly
selected to be genotyped in a two-staged GWAS for a certain
quantitative trait and that 𝜋 is the sampling proportion in
Stage 1. Let 𝑛

1
= 𝑛𝜋 and 𝑛

2
= 𝑛(1 − 𝜋) be the sample sizes for

Stages 1 and 2, respectively. Consider a biallelic marker with
two alleles G and g.Without loss of generality, we assume that
G is the minor or high-risk allele. We suppose that the total
𝑚 SNPs are genotyped on the samples of Stage 1, and SNPs
with 𝑃-values less than 𝛾 in Stage 1 will be further genotyped
and tested in Stage 2. Let the significance level be 𝛼, and
then the genome-wide significance level per SNP is 𝛼/𝑚with
the Bonferroni adjustments. Let Y

1
= (𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
1

)
󸀠 and

Y
2
= (𝑦

𝑛
1
+1
, 𝑦

𝑛
1
+2
, . . . , 𝑦

𝑛
)
󸀠 be the observed quantitative out-

come vectors for Stage 1 and Stage 2, respectively.Without loss
of generality, we assume that the first 𝑛

10
individuals in Stage

1 have the genotype gg, the second 𝑛
11

individuals in Stage
1 have the genotype Gg, and the last 𝑛

12
subjects in Stage 1

possess the genotype GG. Similarly, the first 𝑛
20

subjects in
Stage 2 have the genotype gg, the second 𝑛

21
individuals in

Stage 2 have the genotype Gg, and the last 𝑛
22

subjects in
Stage 2 possess the genotype GG. Let 0

𝑘
= (0, 0, . . . , 0)

󸀠

𝑘×1
and

1
𝑘
= (1, 1, . . . , 1)

󸀠

𝑘×1
, and let O

𝑘×𝑗
be the 𝑘 × 𝑗matrix with all

its entries being zero and I
𝑛
be the 𝑛 × 𝑛 identity matrix.

2.2. 𝐹-Statistic-Based Robust Joint Analysis. We firstly briefly
introduce 𝐹-statistic-based MAX3 by Li et al. [10] just using
the data fromStage 1. Consider the following linear regression
model:

𝑦
𝑖
= 𝛽

0
+ 𝑔

𝑖
𝛽
1
+ 𝜀

𝑖
, 𝜀

𝑖
∼ 𝑁(0, 𝜎

2
) , 𝑖 = 1, 2, . . . , 𝑛

1
, (1)

where 𝛽
0
is the nuisance parameter for the intercept, 𝛽

1
is the

parameter of interest for genetic effect, and 𝑔
𝑖
is the genotype

value, which takes 0, 1, or 2 corresponding to the count of

G at a marker locus for the 𝑖th subject, 𝑖 = 1, 2, . . . , 𝑛
1
. The

hypotheses of interest are

𝐻
0
: 𝛽

1
= 0 ←→ 𝐻

1
: 𝛽

1
̸= 0. (2)

The variable 𝑔
𝑖
in the previously stated equation is coded

differently for the three common genetic models. Let X
1𝑅
=

(1
𝑛
1

,G
1𝑅
), X

1𝐴
= (1

𝑛
1

,G
1𝐴
), and X
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= (1

𝑛
1

,G
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) be the

design matrices under three commonly used genetic models,
where G
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= (0󸀠

𝑛
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+𝑛
11

, 1󸀠
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12

)
󸀠 corresponds to the recessive

model, G
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= (𝑔
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, . . . , 𝑔

𝑛
1

)
󸀠 corresponds to the additive

model, and G
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= (0󸀠
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10

, 1󸀠
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11
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󸀠 is for the dominant model.

Denote X
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), where x
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󸀠. The modified 𝐹-test statistics under

the recessive, additive, and dominant models for Stage 1 are
given by
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where
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(4)

The robust test statistic in Stage 1 is

𝐹
MAX
1

= max {𝐹𝑅

1
, 𝐹
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1
, 𝐹

𝐷

1
} . (5)

We now give the proposed robust joint analysis. In the
framework of two-stage design GWAS of quantitative traits,
the SNPs with 𝑃-values less than 𝛾 will be genotyped on the
remaining 𝑛

2
subjects in Stage 2. Following the previous nota-

tion for Stage 1, corresponding to the recessive, additive, and
dominant models, the genotype data in Stage 2 are denoted
by G
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󸀠. Then, we can

obtain three modified 𝐹-test statistics under the recessive,
additive, and dominant models for Stage 2 similarly, and
denote them by 𝐹𝑅

2
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2
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the combined sample sizes from two stages, corresponding
to three genotypes. Then the proposed 𝐹-test statistics under
three genetic models on the basis of the combined data are as
follows:
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where X
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Furthermore, we propose the joint testing statistic as
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In order to calculate the power of the proposed joint
analysis, we have to get the thresholds, which is determined
by the significance level. Denote the threshold for choosing
the promising SNPs in Stage 1 by 𝑢

1
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Pr
𝐻
0

(𝐹
MAX
1

> 𝑢
1
, 𝐹

MAX
𝐽

> 𝑢
𝐽
) = 𝛼/𝑚, (10)

where 𝑢
𝐽
is the cut-off point for the joint statistic. Once we

have 𝑢
1
and 𝑢

𝐽
, the power is calculated by

Pr
𝐻
1

(𝐹
MAX
1

> 𝑢
1
, 𝐹

MAX
𝐽

> 𝑢
𝐽
) . (11)

We now give the detail to calculate the cut-off point and
power above. The left side of (10) can be further expressed as
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Note that whether 𝐻
0
or 𝐻

1
holds, RSS

1
and RSS

𝐽

and (𝑍𝑅

1
, 𝑍

𝐴

1
, 𝑍

𝐷

1
, 𝑍

𝑅

𝐽
, 𝑍

𝐴

𝐽
, 𝑍

𝐷

𝐽
)
󸀠 aremutually independent (the

proof is given in Appendix A). Denote the correlation
matrix of (𝑍𝑅

1
, 𝑍

𝐴

1
, 𝑍

𝐷

1
)
󸀠 by V

1
= (V

𝑘𝑙
)
3×3

, whose entries
are V

11
= V

22
= V

33
= 1, V

12
= V

21
= √𝑛12 (2𝑛10 +

𝑛
11
)/√(𝑛

10
+ 𝑛

11
)[𝑛

10
(𝑛

11
+ 4𝑛

12
) + 𝑛

11
𝑛
12
], V

13
= V

31
=

√𝑛10𝑛12/√(𝑛10 + 𝑛11)(𝑛11 + 𝑛12), and V
23

= V
32

= √𝑛10

(2𝑛
12
+ 𝑛

11
)/√(𝑛

11
+ 𝑛

12
)[𝑛

10
(𝑛

11
+ 4𝑛

12
) + 𝑛

11
𝑛
12
], respec-

tively. Similarly, let V
𝐽
= (V∗

𝑘𝑙
)
3×3

be the correlation matrix
of (𝑍𝑅

𝐽
, 𝑍

𝐴

𝐽
, 𝑍

𝐷

𝐽
)
󸀠 with V∗

11
= V∗

22
= V∗

33
= 1, V∗

12
= V∗

21
=

√𝑁
2
(2𝑁

0
+ 𝑁

1
)/√(𝑁

0
+ 𝑁

1
)[𝑁

0
(𝑁

1
+ 4𝑁

2
) + 𝑁

1
𝑁

2
], V∗

13
=

V∗
31
= √𝑁

0
𝑁

2
/√(𝑁

0
+ 𝑁

1
)(𝑁

1
+ 𝑁

2
), and V∗

23
= V∗

32
=

√𝑁
0
(2𝑁

2
+ 𝑁

1
)/√(𝑁

1
+ 𝑁

2
)[𝑁

0
(𝑁

1
+ 4𝑁

2
) + 𝑁

1
𝑁

2
]. Then,

we can derive that RRS
1
/𝜎

2
∼ 𝜒

2

𝑛
1
−3
, RSS

𝐽
/𝜎

2
∼ 𝜒

2

𝑛−6
, and

(𝑍
𝑅

1
, 𝑍

𝐴

1
, 𝑍

𝐷

1
, 𝑍

𝑅

𝐽
, 𝑍

𝐴

𝐽
, 𝑍

𝐷

𝐽
)
󸀠󵄨󵄨󵄨󵄨󵄨󵄨𝐻
0

∼ 𝑁
6
(0

6
, 𝜎

2
(

V
1
𝜌

𝜌
󸀠 V

𝐽

)) ,

(13)
where 𝜌 = (𝜌

𝑘𝑙
)
3×3

is the correlation matrix between
(𝑍

𝑅

1
, 𝑍

𝐴

1
, 𝑍

𝐷

1
)
󸀠 and (𝑍𝑅

𝐽
, 𝑍

𝐴

𝐽
, 𝑍

𝐷

𝐽
)
󸀠, with

𝜌
11
= Corr (𝑍𝑅

1
, 𝑍

𝑅

𝐽
) = √

𝑛 (𝑛
10
+ 𝑛

11
) 𝑛

12

𝑛
1
(𝑁

0
+ 𝑁

1
)𝑁

2

,

𝜌
12
= Corr (𝑍𝑅

1
, 𝑍

𝐴

𝐽
)

=
√𝑛𝑛12 (2𝑛10 + 𝑛11)

√𝑛
1
(𝑛

10
+ 𝑛

11
) [𝑁

0
(𝑁

1
+ 4𝑁

2
) + 𝑁

1
𝑁

2
]

,

𝜌
13
= Corr (𝑍𝑅

1
, 𝑍

𝐷

𝐽
) =

√𝑛𝑛12𝑛10

√𝑛
1
(𝑛

10
+ 𝑛

11
)𝑁

0
(𝑁

1
+ 𝑁

2
)

,

𝜌
21
= Corr (𝑍𝐴

1
, 𝑍

𝑅

𝐽
)

=
√𝑛𝑛

12
(2𝑛

10
+ 𝑛

11
)

√𝑛
1
[𝑛

10
(𝑛

11
+ 4𝑛

12
) + 𝑛

11
𝑛
12
] (𝑁

0
+ 𝑁

1
)𝑁

2

,

𝜌
22
= Corr (𝑍𝐴

1
, 𝑍

𝐴

𝐽
) = √

𝑛 [𝑛
10
(𝑛

11
+ 4𝑛

12
) + 𝑛

11
𝑛
12
]

𝑛
1
[𝑁

0
(𝑁

1
+ 4𝑁

2
) + 𝑁

1
𝑁

2
]
,

𝜌
23
= Corr (𝑍𝐴

1
, 𝑍

𝐷

𝐽
)

=
√𝑛𝑛

10
(𝑛

11
+ 2𝑛

12
)

√𝑛
1
[𝑛

10
(𝑛

11
+ 4𝑛

12
) + 𝑛

11
𝑛
12
]𝑁

0
(𝑁

1
+ 𝑁

2
)

,

𝜌
31
= Corr (𝑍𝐷

1
, 𝑍

𝑅

𝐽
) =

√𝑛𝑛10𝑛12

√𝑛
1
(𝑛

11
+ 𝑛

12
) (𝑁

0
+ 𝑁

1
)𝑁

2

,

𝜌
32
= Corr (𝑍𝐷

1
, 𝑍

𝐴

𝐽
)

=
√𝑛𝑛10 (𝑛11 + 2𝑛12)

√𝑛
1
(𝑛

11
+ 𝑛

12
) [𝑁

0
(𝑁

1
+ 4𝑁

2
) + 𝑁

1
𝑁

2
]

,

𝜌
33
= Corr (𝑍𝐷

1
, 𝑍

𝐷

𝐽
) = √

𝑛𝑛
10
(𝑛

11
+ 𝑛

12
)

𝑛
1
𝑁

0
(𝑁

1
+ 𝑁

2
)
.

(14)

Under 𝐻
1
, for a given odds ratio OR = exp(𝛽

1
) for

subjects with two copies of risk allele corresponding to
recessive model or one copy of risk allele corresponding to
additive or dominant models, we have the following:

(i) when the true genetic model is recessive,

(𝑍
𝑅

1
, 𝑍

𝐴

1
, 𝑍

𝐷

1
, 𝑍

𝑅

𝐽
, 𝑍

𝐴

𝐽
, 𝑍

𝐷

𝐽
)
󸀠󵄨󵄨󵄨󵄨󵄨󵄨𝐻
1

∼ 𝑁
6
(𝜇

𝑅
, 𝜎

2
(

V
1
𝜌

𝜌
󸀠 V

𝐽

)) ,

(15)

where 𝜇𝑅 = (𝜇𝑅𝑅
1
, 𝜇

𝑅𝐴

1
, 𝜇

𝑅𝐷

1
, 𝜇

𝑅𝑅

𝐽
, 𝜇

𝑅𝐴

𝐽
, 𝜇

𝑅𝐷

𝐽
)
󸀠 with

𝜇
𝑅𝑅

1
= −√

(𝑛
10
+ 𝑛

11
) 𝑛

12

𝑛
1

𝛽
1
,

𝜇
𝑅𝐴

1
=

−𝑛
12
(2𝑛

10
+ 𝑛

11
) 𝛽

1

√𝑛
1
[𝑛

10
(𝑛

11
+ 4𝑛

12
) + 𝑛

11
𝑛
12
]

,

𝜇
𝑅𝐷

1
=

−√𝑛10𝑛12𝛽1

√𝑛
1
(𝑛

11
+ 𝑛

12
)

,

𝜇
𝑅𝑅

𝐽
= −√

(𝑁
0
+ 𝑁

1
)𝑁

2

𝑛
𝛽
1
,

𝜇
𝑅𝐴

𝐽
=

−𝑁
2
(2𝑁

0
+ 𝑁

1
) 𝛽

1

√𝑛 [𝑁
0
(𝑁

1
+ 4𝑁

2
) + 𝑁

1
𝑁

2
]

,

𝜇
𝑅𝐷

𝐽
=
−√𝑁

0
𝑁

2
𝛽
1

√𝑛 (𝑁
1
+ 𝑁

2
)

,

(16)
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We develop a method for simplifying the calculations of
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3. Results

3.1. Power Comparison. We conduct simulation studies to
evaluate the performance of the proposed method under
three commonly used geneticmodels (recessive, additive, and
dominant models). We mainly compare the power of two
approaches; one is the proposed method in this paper, and
the other is the joint analysis based on the 𝐹-test statistics 𝐹𝐴

1

and 𝐹𝐴

𝐽
. For convenience, we refer to the proposed method

as MAXFJ and AFJ for the other one. We choose the sample
size 𝑛 = 2000, and 𝑚 = 5 × 10

5. The proportion of subjects
genotyped in Stage 1 has three levels 𝜋 = 0.3, 0.4, 0.5. We set
the genome-wide significance level as 𝛼 = 0.05 and that the
significance level per SNP as 𝛼/𝑚 = 1 × 10−7. In Stage 1, the
𝑃-value threshold for SNPs selected for followup is set to be
1 × 10

−4 and 2 × 10−4. We assume that the Hardy-Weinberg

Table 1: Power comparison (𝑛 = 2000, 𝛾 = 1 × 10
−4
, 𝛼 =

0.05, and 𝑚 = 5 × 105).

𝜋 MAF REC ADD DOM
AFJ MAXFJ AFJ MAXFJ AFJ MAXFJ

0.30
0.15 7.5𝑒 − 5 0.005 0.426 0.365 0.610 0.618
0.30 0.052 0.285 0.811 0.759 0.698 0.784
0.45 0.487 0.785 0.893 0.854 0.449 0.647

0.40
0.15 1.1𝑒 − 4 0.009 0.651 0.589 0.826 0.837
0.30 0.086 0.470 0.945 0.922 0.887 0.938
0.45 0.711 0.938 0.979 0.968 0.677 0.859

0.50
0.15 1.0𝑒 − 4 0.010 0.802 0.751 0.933 0.941
0.30 0.121 0.639 0.987 0.980 0.965 0.986
0.45 0.856 0.987 0.997 0.995 0.826 0.953

Table 2: Power comparison (𝑛 = 2000, 𝛾 = 2 × 10
−4
, 𝛼 =

0.05, and 𝑚 = 5 × 105).

𝜋 MAF REC ADD DOM
AFJ MAXFJ AFJ MAXFJ AFJ MAXFJ

0.30
0.15 1.3𝑒 − 4 0.006 0.489 0.426 0.676 0.681
0.30 0.066 0.340 0.852 0.806 0.754 0.828
0.45 0.556 0.833 0.922 0.891 0.516 0.706

0.40
0.15 1.2𝑒 − 4 0.011 0.709 0.651 0.866 0.876
0.30 0.101 0.529 0.961 0.943 0.916 0.956
0.45 0.765 0.957 0.987 0.979 0.732 0.892

0.50
0.15 1.7𝑒 − 4 0.012 0.838 0.793 0.951 0.958
0.30 0.133 0.683 0.992 0.987 0.975 0.991
0.45 0.888 0.992 0.998 0.997 0.860 0.967

equilibrium holds in the general sample population, and then
there are on average 𝑛 × (1 −MAF)2, 2𝑛 ×MAF × (1 −MAF),
and 𝑛 × MAF2 individuals with genotype gg, Gg, and GG,
respectively, where the minor allele frequency is set to be
0.15, 0.30 and 0.45. To make the power comparison more
distinctly, we specify different genetic effect parameters 𝛽

1

under three genetic models as follows: 𝛽
1
= 0.5 for the

recessivemodel, 𝛽
1
= 0.3 for the additivemodel, and 𝛽

1
= 0.4

for the dominant model.
The power results are displayed in Tables 1 and 2 for

𝛾 = 1 × 10
−4 and 𝛾 = 2 × 10−4, respectively. They indicate

thatMAXFJ is more efficiency robust than AFJ across various
inheritance models. As expected, AFJ is more powerful than
MAXFJ under the additive model. However, MAFJ performs
much more powerful than AFJ when the true genetic model
is recessive. For instance, in Table 2, with 𝜋 = 0.4 and
MAF = 0.3, the powers of AFJ and MAXFJ are 0.101 and
0.529, respectively. In summary,MAXFJ is substantially more
powerful thanAFJ in two-stagedGWAS of quantitative traits,
when the model for AFJ is misspecified.

3.2. An Illustration Example: Rheumatoid Arthritis. Rheuma-
toid arthritis (RA) is an autoimmune disease (resulting in a
chronically systemic inflammatory disorder) which mainly
attacks synovial joints. About 1% of the common adult
population worldwide is affected by RA [16]. It has been
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Figure 1: The histogram and density of −log
10
𝑃 when 𝜋 = 0.3 (the left subgraph corresponds to MAXFJ while the right one for AFJ).

pointed out that the genetic variants might play a major
role in RA susceptibility [17]. Genetic Analysis Workshop
16 (GAW16) based on the North American Rheumatoid
Arthritis Consortium (NARAC) is a GWAS testing associa-
tion with RA using about 5 × 105 SNPs [18–20]. It included
868 individuals who were RA positive (cases) and also had
continuous trait anticyclic citrullinated peptide (anti-CCP)
measures and 1194 controls sampled from the New York
Cancer Project (NYCP) without RA which had no anti-CCP
measures. Huizinga et al. [21] pointed out that a greater anti-
CCP would be linked to better prediction of increased risk
developing RA. Chen et al. [22] showed that SNP rs2476601
located in PTPN22 had the most significant association with
RA. Here, we only focus on SNP rs2476601 and apply two
joint analysis methods (AFJ and MAXFJ) to evaluate its
statistical significance.Theminimumof anti-CCP among 868
cases was affected to each control, and a log transformation
of anti-CCP was applied in the analysis. Then, we considered
𝜋 = 0.3, 0.4, 0.5 three simulation circumstances. For 𝜋 = 0.3,
thirty percent of individuals were randomly sampled from all
cases and controls and were used as the data from Stage 1,
and the rest of individuals were treated as the data of Stage 2.
The𝑃-values ofAFJ andMAXFJwere calculated, respectively.
We repeated the above procedure 1,000 times and saved the
corresponding 𝑃-values. A base-10 logarithm transformation
and an opposite transformation were successively applied
to these 𝑃-values, and the histogram and density of these
transformed data were obtained (Figure 1). Similarly, we

conducted the simulation and calculation for 𝜋 = 0.4 and 0.5,
and the corresponding histogram and density were presented
in Figures 2 and 3. Examination of Figures 1–3 showed that
the 𝑃-values of MAXFJ are more stable than those of AFJ
and the estimated density curves of MAXFJ are more closer
to the symmetrical normal distribution while the estimated
density curves of AFJ are rather skewed, which indicated that
MAXFJ possesses more robust performance when the real
genetic models are unknown.

4. Discussion

We have developed a feasible two-stage design and the corre-
sponding robust joint analysis approach for quantitative trait
GWASs. The method is based on the 𝐹-statistics over three
different genetic models. The denominator of the used 𝐹-
statistic, which is constructed without assuming any genetic
model, is different from the commonly used one. This adop-
tion can reduce the computation intensity. Taking advantage
of an ingenious design matrix, we successfully construct the
common denominator of three 𝐹-test statistics for the joint
analysis with combined raw data from both stages. The sta-
tistical significance (𝑃-value) for the proposed joint analysis
method can be calculated with the derived analytic expres-
sions on the basis of the asymptotic distributions, which
greatly reduce the complexity and computational inten-
sity compared with the resampling-type permutation and
bootstrap procedures. Our numerical results demonstrate
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that this novel approach has the greater efficiency robustness
for genetic model uncertainty than the 𝐹-statistic-based joint
analysis which assumes the additive genetic model.

In this work, we did not investigate the power of joint
analysis based on other existing robust association methods
for quantitative traits such as So and Sham’s method. We find
that it is very difficult to extend So and Sham’s method (score
test-based MAX3) to two-staged GWASs with quantitative
outcomes, since it is almost impossible to derive the joint
distribution of score tests from two stages.

For simplicity, here we do not take into account the effects
of covariates in the considered two-stage design. However, in
real application, the proposed method can be easily applied
to the situation including one or more covariates as shown by
the original MAXF by Li et al. [10]. It is important to stress
that we combine the raw data from two stages to construct
the joint statistic, unlike the joint analysis for binary traits
using the weighted sum of two statistics in Stages 1 and 2
[12]. Furthermore, one basic assumption in this paper is that
the effect sizes of genetic variants between two stages are
identical (i.e., no heterogeneity exists), which is the natural
and reasonable precondition for the data fusion strategy. In
addition, the population-based genetic association studies
may be affected by the population stratification, and this
needs future research to examine it.

Appendix

A. The Derivation of the Asymptotic
Properties of 𝐹𝑅
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Based on the property of conditional distributions of the
multivariate normal distribution, we have
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Moreover, we can obtain that 𝐿
2
= 𝐿

3
, 𝐿

4
= 𝐿

7
, 𝐿

5
= 𝐿

9
, and

𝐿
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8
based on the symmetry of the integration domain
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0
, 𝑧

1
) and (𝑧
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3
), respectively.

We have

𝑓 (𝑧
0
, 𝑧

1
, 𝑧

2
, 𝑧

3
;Σ

1
)

= 𝜙 (𝑧
0
) 𝑓 (𝑧

1
| 𝑧

0
; V

13
)

× 𝑓 (𝑧
2
| 𝑧

0
, 𝑧

1
; V

13
, 𝜌

11
, 𝜌

31
)

× 𝑓 (𝑧
3
| 𝑧

0
, 𝑧

1
, 𝑧

2
; V

13
, V

∗

13
, 𝜌

11
, 𝜌

13
, 𝜌

31
, 𝜌

33
) ,

(B.11)

where 𝑓(𝑧
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| 𝑧

0
, 𝑧

1
; V

13
, 𝜌

11
, 𝜌

31
) is the conditional normal

density function as
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and 𝑓(𝑧
3
| 𝑧

0
, 𝑧

1
, 𝑧

2
; V

13
, V∗

13
, 𝜌

11
, 𝜌

13
, 𝜌

31
, 𝜌

33
) is the condi-

tional normal density function given by

𝑓 (𝑧
3
| 𝑧

0
, 𝑧

1
, 𝑧

2
; V

13
, V

∗

13
, 𝜌

11
, 𝜌

13
, 𝜌

31
, 𝜌

33
)

=
1

√1 − (𝜌
13
, 𝜌

33
, V∗

13
) Γ

−1
(𝜌

13
, 𝜌

33
, V∗

13
)
󸀠

× 𝜙(
𝑧
3
− (𝜌

13
, 𝜌

33
, V∗

13
) Γ

−1
(𝑧

0
, 𝑧

1
, 𝑧

2
)
󸀠

√1 − (𝜌
13
, 𝜌

33
, V∗

13
) Γ

−1
(𝜌

13
, 𝜌

33
, V∗

13
)
󸀠

)

(B.13)

with Γ the submatrix of Σ
1
formed by first three rows and

three columns.
Denote (𝜎∗)2 = (𝜌
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Finally,
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