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Abstract

Research investigating the nature and scope of developmental participation patterns lead-

ing to international senior-level success is mainly explorative up to date. One of the criti-

cisms of earlier research was its typical multiple testing for many individual participation

variables using bivariate, linear analyses. Here, we applied state-of-the-art supervised

machine learning to investigate potential non-linear and multivariate effects of coach-led

practice in the athlete’s respective main sport and in other sports on the achievement of

international medals. Participants were matched pairs (sport, sex, age) of adult international

medallists and non-medallists (n = 166). Comparison of several non-ensemble and tree-

based ensemble binary classification algorithms identified “eXtreme gradient boosting” as

the best-performing algorithm for our classification problem. The model showed fair discrimi-

nation power between the international medallists and non-medallists. The results indicate

that coach-led other-sports practice until age 14 years was the most important feature. Fur-

thermore, both main-sport and other-sports practice were non-linearly related to interna-

tional success. The amount of main-sport practice displayed a parabolic pattern while the

amount of other-sports practice displayed a saturation pattern. The findings question excess

involvement in specialised coach-led main-sport practice at an early age and call for child-

hood/adolescent engagement in coach-led practice in various sports. In data analyses,

combining traditional statistics with advanced supervised machine learning may improve

both testing of the robustness of findings and new discovery of patterns among multivariate

relationships of variables, and thereby of new hypotheses.

Introduction

The pursuit of international success as well as its public funding and private sponsorship pre-

suppose knowledge of effective means and thus of the fundamentals of the production function
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of sporting success. We must understand which features predict the development of excep-

tional international success and in which way they do.

A review of the relevant literature revealed several theoretical, descriptive, and normative

athlete development frameworks; notably, the Stages of Talent Development [1], the Deliberate

Practice concept (DP) [2], the Developmental Model of Sport Participation (DMSP) [3], the

Long Term Athlete Development [4], the Differentiated Model of Giftedness and Talent [5],

the Life-span Model of the Acquisition and Retention of Expert Perceptual-motor Perfor-

mance [6], the Athletic Talent Development Environment Model [7], the Three Dimensional

Athlete Development Model (3D-AD) [8], and the Foundations, Talent, Elite and Mastery

(FTEM) Framework [8, 9]. The number of athlete development frameworks is growing and

they are becoming more complex, postulating complex interactions of personal (genetic

endowment, psychological skills, personality traits) and environmental factors (practice,

opportunities, social support, lifestyle, athlete support programs). Practice during childhood

and adolescence is conceptualised as one of the central manipulable factors in athlete develop-

ment models. Other personal and environmental factors are largely regarded in an instrumen-
tal role to long-term extensive practice.

Besides coach-led practice, two frameworks [1, 3] proposed beneficial effects of “deliberate

play” i.e. informal childhood/adolescent peer-led sports play without coach supervision. How-

ever, a recent systematic review of empirical studies did not provide support for this latter

hypothesis [10]. In the present study, we focus on coach-led practice in organised settings (e.g.,

sport clubs, high school sport, sport academies).

A recent article [11] reviewed studies addressing the relevance of coach-led practice for

international success in the highest, open-age category (i.e., senior success). Table 1 summa-

rises available empirical results regarding effects of the volume of coach-led practice in the ath-

lete’s respective main sport (henceforth: main-sport practice) and in other sports (henceforth:

other-sports practice).

Table 1. Relevance of the volume of coach-led practice in an athlete’s main sport and in other sports for the differentiation between senior international and

national-level success (adapted and updated from [11]).

Amount of main-sport practice Amount of other-sports practice

No Source Childhood and adolescence Adulthood Childhood and adolescence Adulthood

1 [12] – n.a. + n.a.

2 [13] +/o n.a. n.a. n.a.

3 [14] o n.a. +/o n.a.

4 [15] o/– o o o

5 [16] o/– o + +

6 [17] o o//– o/+ o//+

7 [18] – o/n.a. + o/n.a.

8 [19] o o + n.a./o

9 [20] o//– o o//+ o

Note: n.a.: no information available

Relevance for success:

+: sig. positive correlation (athletes achieving international senior-level success practiced more compared to ‘only’ nationally successful athletes)

–: sig. negative correlation (internationally successful athletes practiced less compared to ‘only’ nationally successful athletes)

o: no correlation between success and amount of practice

x/y: the majority of the results in this category correspond to x, but y was also found

x//y: x and y were found the same number of times

Note that study 2 [13] compared more successful Greek with less successful Canadian gymnasts.

https://doi.org/10.1371/journal.pone.0239378.t001
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Regarding the effect of childhood/adolescent main-sport practice on senior international

success, the results have been inconsistent. While some studies found no or negative effects, one

study that involved rhythmic gymnasts (mean age 17.3 years) [13] reported in parts greater

amounts of gymnastics practice among six more successful Greek than six less successful Canadian

gymnasts. Interestingly, several studies found a positive effect of childhood/adolescent coach-led

other-sports practice on senior international success (Table 1)—an observation that is not ade-

quately explained by the tenets of either of the two most established concepts of talent develop-

ment, the deliberate practice view and the DMSP, nor by the other concepts mentioned above.

Although research into athlete development has been extensive, it is still mainly explorative.

Current theoretical concepts of talent development imply non-linear, multivariate effects of

multiple predictors; by contrast, extant research has typically only involved traditional bivari-

ate analyses using linear methods (i.e., presupposing an appropriate data model and estimating

parameters for this model based on the data) and was perhaps not fully appropriate.

To avoid proceeding from a data model and, instead, use general-purpose learning algo-

rithms to learn about the relationship between the response and its predictive features [21],

advanced state-of-the-art supervised machine learning may be appropriate. Furthermore, these

procedures allow controlling for confounding variables, an issue that has scarcely been ade-

quately considered (cf. [11]). Supervised machine learning has very recently been introduced

into the investigation of athletes’ developmental participation patterns using Gradient Boost-

ing Machine (GBM) (basically [22]; application [23]) and an advancement of GBM called

“eXtreme gradient boosting” (XGBoost) [11, 24].

The present study addressed the issues of earlier research discussed above in two ways.

First, it applied supervised machine learning and thereby extended earlier research by investi-

gating potential non-linear effects of main-sport practice and other-sports practice on interna-

tional success and also potential interactions between main-sport and other-sports practice.

Second, it examined a data set of matched pairs of international medallists and non-medallists

matched on type of sport, sex and age of athletes’ present career peak performance, thereby

controlling for potential confounds of these variables (cf. [11]). The data set was first presented

by [18], then only conducting traditional group comparison statistics.

Methods

We differentiated between international medallists and non-medallists in a sample of German

senior national squad athletes. Thus, our task can be described as a binary classification prob-

lem. The subsample of medallists included 38 Olympic and World Champions, 27 Olympic/

World Championship silver/bronze medallists and 18 European Champions. A matching pro-

cedure within a representative sample of national squad athletes from all Olympic sports [16]

assigned a matched non-medallist to each medallist. The matching was based on type of sport,

sex, and age of career peak performance [18]. The non-medallists were senior national squad

members but never won an international senior-level medal. The procedure resulted in a sam-

ple of 83 pairs of international medallists and non-medallists (n = 166; 86 males, 80 females).

The original study received ethical approval from the German Federal Institute of Sports Sci-

ence (BISp). The ethics committee of the Saarland University confirmed that no repeated ethi-

cal approval was necessary for the re-analysis of the existing and approved data.

To classify the groups, we used athletes’ cumulative hours of coach-led main-sport and

coach-led other-sports practice through three age categories: until 14, 15 to 18 and 19 to 21

years. They are described in Table 2. The missing values at 19 to 21 years were due to two ath-

lete pairs aged below 19 years. Since the values were not missing at random we decided to

exclude the two athlete pairs from further analysis.
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The data analyses proceeded in four major, progressive steps: 1. To compare different pro-

cedures to identify the best-performing algorithm; 2. to determine the importance of each fea-

ture; 3. to analyse “individual conditional expectation” (ICE) curves—an analysis providing

expected classifications for every instance of each feature; and 4. to examine the interaction of

the two most important features.

In advance of applying a certain algorithm to our classification problem, we compared the

performance of one non-ensemble method (Support Vector Machines (SVM)) and two tree-

based ensemble binary classification algorithms (Random Forests (RF) and XGBoost; for their

basic description see e.g. [25]). We built and tuned our models using the caret package (v6.0–

84; function xgbTree for XGBoost and rf for RF; [26]). Optimizing of tuning parameters was

implemented using “tuneLength”, a built-in model within caret to generate random tuning

parameter combinations [26]. Given the limited sample size, resampling and model evaluation

were done by leave-one-out cross validation. This means that each fold (outer loop) was

trained by application of different tuning parameters (inner loop). The procedures yielded a

total of 81,000 predictions. The final parameters were determined by choosing the model with

the highest value of the area under the receiver operating characteristic curves (AUC).

AUC was also used to assess and compare the discrimination performance of our optimised

SVM, RF and XGBoost models. An AUC of 1 indicates a perfect model, a value of 0.5 repre-

sents the performance of a random classifier that does not have any discriminative power [25,

27]). Roughly classified, the AUC can be interpreted as follows: excellent (1.00� AUC�

0.90), good (0.90< AUC� 0.80), fair (0.80< AUC� 0.70), poor (0.70 < AUC� 0.60), and

failed (0.60< AUC� 0.50) (basically, [28]).

The respective results (AUC, Precision, Recall, f1) for the optimised models are shown in

Table 3.

Not only relative to the results, but also to address—at least to some further extent—the

potential issue of overfitting with XGBoost, we decided to do all further analysis by application

of the mentioned algorithm. Tuning parameters for our final XGBoost model were: nrounds =

50, max_depth = 5, eta = 0.3, gamma = 0, colsample_bytree = 0.8, min_child_weight = 1, sub-

sample = 0.625. Max_depth is the maximum depth of a leaf node to the root of the tree (default

value = 6). These hyperparameters “are primarily used to balance overfitting with the accuracy

and computational complexity” [25]. We reduced the value to two to directly control model

complexity (we forewent reduction to one, which would generate decision stumps). Further-

more, we reduced eta (default value = 0.3) to 0.1 to make training more robust to noise and

Table 2. Senior international medallists’ and non-medallists’ main-sport and other-sports coach-led practice hours through three age categories: Until 14, 15 to 18

and 19 to 21 years.

Medallists Non-Medallists

M (SD) n M (SD) n

Age (years) 25.0 4.7 83 24.2 4.4 83

Age of peak performance (years) 23.5 3.9 83 23.3 4.0 83

Main-sport practice (hours)

until 14 years 1005.7 1057.0 83 1482.4 1246.0 83

15 to 18 years 2300.3 1451.2 83 2783.0 1648.8 83

19 to 21 years 2783.7 1503.2 81 3007.0 1422.5 81

Other-sports practice (hours)

until 14 years 728.6 1021.8 83 179.7 336.0 83

15 to 18 years 274.7 505.3 83 60.5 133.1 83

19 to 21 years 90.0 245.9 81 63.5 191.5 81

https://doi.org/10.1371/journal.pone.0239378.t002
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therefore increased nrounds to 150 [29]. The resulting AUC of 0.75 is comparable to the one

of our final model.

Since XGboost and the algorithms are new developments that have only been applied a few

times yet and because we aimed to perform a robustness-check, we decided to use two func-

tions to calculate the feature importance: first, the “xgb.importance” function implemented in

the “xgboost” package and second, the “FeatureImp” function, which is part of the “iml”

package.

In the “xgb.importance” function, the higher the value (“gain”), the more important the

feature for the model [29]. The feature importance in the XGBoost package is similar to the

one in the “gbm” package (function: “rel.inf”), which is based on the formulae developed by

Friedman [22]. “The measures are based on the number of times a variable is selected for split-

ting, weighted by the squared improvement to the model as a result of each split, and averaged

over all trees” [21]. Each variable’s relative contribution is scaled with their sum adding to 100

[21].

In the second, “FeatureImp” function, a feature’s importance is measured by the increase of

the model’s prediction error after permuting the feature. If the feature’s value is permuted and

the model’s error remains unchanged, the feature is “unimportant” to the model [30]. Based

on this, the ratio between “permutation error” and “original error” was calculated, which

means features with an importance of (around) 1 are not relevant for the model.

Since feature importance does not say anything about the direction and the way in which a

feature influences the response, the “individual conditional expectation (ICE) curves” [31] are

presented for each feature. Implementation was done using the “pdp” package version 0.6.0

[31]. No trimming of outliers was done.

ICE curves visualize local expectations—i.e. expectations for every instance of a feature.

When averaging the ICE curves (here: arithmetic mean) we get a so called “partial dependence

plot” (pdp) for the feature. The partial dependence plot shows how the prediction in a data set

changes on average (over all instances) when a feature is changed and simultaneously all other

features are held “constant”. It should be noted that assumingly, the feature for which the par-

tial dependence plot is computed is distributed independently from the other features of the

model [30]. This assumption may not be unproblematic. Therefore, possible interactions

between the predictive features should be examined.

We investigated interactions between the model’s most important features, performing the

calculation of interactions’ importance by the “Interaction” function (package: “iml”, version:

0.9.0; cf. [32]). This interaction was then examined using a three-dimensional partial depen-

dency plot (“pdp” package).

Implementations of all procedures were done in the R environment (v3.6.1).

Table 3. Assessed classification accuracy of different methods.

Indicator Support Vector Machines Random Forests eXtreme Gradient Boosting

AUC 0.71 0.78 0.79

Precision medallists 0.72 0.70 0.71

non-medallists 0.67 0.71 0.73

Recall medallists 0.63 0.72 0.74

non-medallists 0.75 0.69 0.69

f1 medallists 0.67 0.71 0.72

non-medallists 0.71 0.70 0.71

Baseline values are in all cases 0.50.

https://doi.org/10.1371/journal.pone.0239378.t003
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Results

The mean AUC was 0.79. That is, the model showed fair (nearly good) discrimination power.

Fig 1 presents the importance of the model’s features.

The two variants of calculating feature importance showed identical results with regard to

the order of features’ importance. Coach-led “other-sports practice until age 14 years” was the

discriminating feature with the highest importance (see Fig 1). However, when using “xgb.

importance”, other-sports practice until age 14 years, main-sport practice at 19 to 21 years and

main-sport practice until 14 years showed comparable values. Other-sports practice at 19 to 21

years had no relevance to athletes’ classification, irrespective of the way of calculation.

The ICE curves for all model features are shown in Fig 2. The discriminating effects of the

two most important features, other-sports practice until age 14 years and main-sport practice

at 19–21 years, clearly display non-linear patterns. Other-sports practice until age 14 years

shows a saturation pattern (see Fig 2, top right): Amounts up to ~300 hours were associated

with a probability below chance to become an international medallist. With increasing amount

of other-sports practice, the probability to win international medals increased dramatically up

to a value of 0.86 at ~800 accumulated hours. Further expansion of other-sports practice did

not further increase the chance to become a medallist.

Main-sport practice at 19–21 years displayed a parabolic pattern (see Fig 2, bottom left):

The probability to become a medallist was greatest (0.72) when accumulating ~2,200 hours

(corresponding to ~14.7 hours/week) and was below chance when accumulating either less

than ~1,200 or more than ~4,000 hours. Interestingly, the curves for main-sport practice until

age 14 years and at 15 to 18 years oscillate around 0.5, i.e. chance (Fig 2, top left and centre

left).

The two most important features, coach-led other-sports practice until age 14 years and

coach-led main-sport practice at 19–21 years, also displayed the highest two-way interaction

strength (0.33). Fig 3 illustrates this (weak) positive interaction. The probability to be an inter-

national medallist was increased when less than ~3,600 hours of main-sport practice at 19–21

years were combined with ~700–1,150 hours of other-sports practice until age 14 years. This

chance was the highest, exceeding 0.95, when combining ~1,400–2,100 main-sport practice

hours at 19–21 years (~9.3–14.0 hours/week) with ~730–1,020 other-sports practice hours

accumulated until 14 years of age. On the other hand, the probability to win international

Fig 1. Importance of the model’s features. Note: A: Each variable’s relative contribution is scaled with the sum of all adding to 100. B: Ratio

between “permutation error” and “original error” was calculated, which means features with an importance of (around) 1 are not relevant for the

model.

https://doi.org/10.1371/journal.pone.0239378.g001
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medals was reduced when either combining less than ~1,200 hours of main-sport practice at

19–21 years with less than ~500 hours of other-sports practice until age 14 years or combining

more than ~3,700 main-sport practice hours at 19–21 years with less than ~700 other-sports

practice hours until 14 years of age.

Fig 2. Individual Conditional Expectation (ICE) curves for the features volume of coach-led practice in the

athlete’s main sport and coach-led practice in other sports. Bold curves illustrate the mean values. A likelihood value

of 0.5 corresponds to chance. Note the different abscissae scale orientations.

https://doi.org/10.1371/journal.pone.0239378.g002

Fig 3. Interactive effect of the features coach-led other-sports practice up to 14 years and coach-led main-sport

practice at 19 to 21 years on the probability to be classified as an international medallist. A partial dependence

value of 0.5 corresponds to chance. Note the different scale orientations of the abscissae.

https://doi.org/10.1371/journal.pone.0239378.g003
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Discussion

The study used a state-of-the-art approach from supervised machine learning, XGBoost, to

analyse developmental participation data of international medallists and non-medallists. Over-

all, the model had fair (nearly good) discrimination power.

The first finding was that coach-led other-sports practice until age 14 years stood out as the

model’s most important feature, while the probability to be an international medallist was

widely unrelated to the amounts of coach-led main-sport practice until age 14 and 18 years.

Perhaps even more significantly, the present analyses extend earlier findings by revealing non-
linear relationships of international medalling success with the most important features. Child-

hood/adolescent other-sports practice displayed a saturation pattern: Low amount (< ~300

hours) was associated with reduced medalling probability; this probability increased (up to

0.86) with growing other-sports practice up to ~800 hours, but further expansion did not fur-

ther increase the likelihood to win international medals. It should be noted, however, that only

18.8% of athletes engaged in more than these 800 hours.

Main-sport practice at 19–21 years displayed a parabolic pattern with the peak probability

to be a medallist around 2,200 hours. Moreover, interaction analyses indicated that the prob-

ability to be an international medallist was the highest (> 0.95) when combining ~1,400–

2,100 hours of main-sport practice at 19–21 years (~9.3–14.0 hours/week) with ~730–1,020

hours of other-sports practice accumulated until age 14 years. Medalling probability was

below chance when combining little childhood/adolescent other-sports practice with either

very little (< 1,200 hours) or very extensive (> 3,700 hours) main-sport practice at 19–21

years.

Interestingly, the majority of the athletes (64%) invested amounts of main-sport practice

that were above the optimal range as per the present analysis—consistent with a small negative

effect of the volume of main-sport practice noted in Güllich’s [18] group comparison (see also

Table 2 above). The athletes’ absolute volume of other-sports practice was much smaller than

of main-sport practice (see Table 2), but the former differentiated international medallists

from non-medallists to a much greater extent. The beneficial effect of childhood/adolescent

coach-led other-sports practice on adult world-class success clearly speaks against some of the

central assumptions of the deliberate practice view [2] and the “elite performance through

early specialization” pathway of the DMSP [3], which suggested focusing on intensified spe-

cific practice in a single sport. Instead, among senior high performers similarly engaging in

multi-year sport-specific practice, a broadened variability of childhood/adolescent participa-

tion in multi-sport practice apparently increases the probability of the emergence of adult

exceptional performers (for hypotheses on potential mechanisms, see [16, 18]).

Strengths of the present study included the application of state-of-the-art supervised

machine learning procedures involving investigation of non-linear and multivariate effects in

a considerable, matched-pairs sample involving the world’s best athletes. But the present study

does have limitations. First, the data collection was based on a retrospective survey, which not

only implies the common constraints in power but also that the findings are observational and

not causal [18]. Second, the present sample was large relative to the population of international

medallists, who are scarce by definition, but it was relatively small in absolute terms. In addi-

tion, we only included a few variables in the model (those considered to promise greatest lever-

age). Furthermore, machine learning has hardly ever been applied to athletes’ practice data

with respect to the present research question before. We sought to address this weak point by

comparing different procedures and also applying leave-one-out cross-validation. In addition,

we compared the AUC of various models, systematically manipulating hyperparameters

directly controlling model complexity.
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Third, the micro-structure and quality of practice were not taken into account. The model

did also not consider scholastic physical education because it is highly standardised by obliga-

tory curricula throughout Germany.

Besides, a general issue of empirical research into athletes’ participation patterns has not

been considered in the research literature and also applies to the present study. The range of

athletes’ empirically implemented practice regimes is societally constricted by sport-specific

practice cultures, traditions, sport federations’ practice frameworks and coach education. That

is, we can only empirically observe a narrowed sector of conceivable practice activities, where

the range is constricted by normative imperatives of the ‘sport system’ (for rationalised myths

see generally [33]). This narrowed range may not only affect outcomes, but also constrict

investigation of the full range of conceivable participation patterns and compositions of vary-

ing types of practice activities.

The results clearly show that adequate data analysis procedures for the present classification

problem have to be able to explore potential non-linear and multivariate effects of predictive

features.

Appropriate frameworks for future research should envisage the interplay of nature and

nurture including the incorporation of further factors, such as genetic endowment and gene-

environment interaction [34], other forms of preparation (e.g., psychological preparation; cf.

[35]) or contextual factors (e.g., socioeconomic factors [36]). Furthermore, we should also con-

sider “situative factors” (e.g., management of competition anxiety; [11]).

Another valuable approach may be to organise and pragmatically tailor theoretically

derived concepts, rather than attempting to include all potential factors [37]. In this, due to the

fact that senior international medallists are per se a small population, sport-specific studies—

although valuable—are difficult to realise with sufficient power. Thus, new ways to categorise

and combine different sports based on various similarities may be promising (e.g. pooling ath-

letes from team game sports, artistic composition sports or typical endurance sports [16]).

Combining traditional statistics with advanced supervised machine learning may improve

both testing of the robustness of findings and new discovery of patterns among multivariate

relationships between variables. To ensure generalisability, the assessment of models on fur-

ther test data sets is requested. We therefore see one of the great benefits of the procedure in

the development of new hypotheses, which seems to be justified and necessary in an explor-

atory field of research such as the one at hand.

It can be concluded that the research findings question excessive specialised main-sport

practice at an early age and call for engagement in coach-led practice in various sports through

childhood/adolescence. Existing institutionalised programmes for talent development—in

essence pursuing the expansion of the available sport-specific practice time and more intensive

usage of the available time (extensive and intensive time economy; for economics of time in

practice see [12])—probably induce excess involvement in childhood/adolescent specialised

main-sport practice.

Generally, there is a clear lack of theoretically derived and empirically substantiated frame-

works for athlete development, which opens the door for future research in this field.
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PLOS ONE Machine learning and the path to international medals

PLOS ONE | https://doi.org/10.1371/journal.pone.0239378 September 25, 2020 9 / 11

https://doi.org/10.1371/journal.pone.0239378


Software: Michael Barth.

Visualization: Michael Barth.

Writing – original draft: Michael Barth, Arne Güllich.
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